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Abstract. Edge-colorings are used to extend the notion of the graph Cartesian product
to a quotient operation that allows for the formation of graph fractions. Fractional graphs
form a group that is isomorphic to the positive rational numbers.

1 Introduction

The Cartesian product of two simple graphs G = (V (G), E(G)) and H = (V (H), E(H)) is the graph
G�H with V (G�H) = V (G)×V (H), and (u, x)(v, y) ∈ E(G�H) if either u = v and xy ∈ E(H), or
uv ∈ E(G) and x = y. Figure 1 shows an example. Notice that if x0 is a fixed vertex of H, the edges
{(u, x0)(v, x0) | uv ∈ E(G)} of G�H form a subgraph that is isomorphic to G. Call this the fiber over
x0. Likewise, if u0 ∈ V (G), the fiber over u0 is the subgraph with edges {(u0, x)(u0, y) | xy ∈ E(H)},
and it is isomorphic to H.
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Figure 1

This paper describess how to extend the idea of the Cartesian product to an operation that
allows for the formation of quotients of graphs. Doing this involves enriching graphs by coloring
their edges with two colors that encode information about numerator and denominator.
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2 Colorings

An edge two-coloring of a graph G is a function κ : E(G) → {1,−1}. We think of 1 and −1 as two
colors, so κ just assigns colors to the edges of G. (Notice this definition allows incident edges to
have the same color.) Henceforth we will simply call such a function κ a coloring of G. In drawing
a colored graph, we draw the edges of color 1 solid and those of color −1 dotted.

If κ : E(G) → {1,−1} is identically 1, it is called the trivial coloring of G. Henceforth, every
graph under discussion is assumed to have a coloring. If a coloring is not stated, it is trivial by
default. Trivially colored graphs can be identified with ordinary (i.e. uncolored) ones.

There is a natural way to color a Cartesian product. In this article, the product of two colored
graphs is always assumed to have the coloring given by the following definition.

Definition 1. Suppose graphs G and H have colorings κG and κH . Then G�H has coloring κG�H

defined as κG�H((u, x)(v, x)) = κG(uv) and κ((u, x)(u, y)) = κH(xy).

Figure 2 gives an example. Notice that fibers over x0 ∈ V (H) have the same coloring as G, and
fibers over u0 ∈ V (G) have the same coloring as H.
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Figure 2

Definition 2. Colored graphs G and H are equal, written G = H, if there is a color-preserving
isomorphism between them. Specifically, G = H means there is a bijective function α : V (G) →
V (H) with uv ∈ E(G) if and only if α(u)α(v) ∈ E(H), and κG(uv) = κH(α(u)α(v)) for all uv ∈
E(G).

Lemma 1. The Cartesian product of colored graphs is commutative and associative, that is G�H
= H�G and G�(H�K) = (G�H)�K for all (colored) graphs G, H and K.

Proof. Let G, H and K have colorings κG, κH and κK , respectively.
Consider commutativity. The function α : V (G�H) → V (H�G) defined as α(u, x) = (x, u) is a

bijection. We examine the two types of edges in G�H. In the first case, an edge of form (u, x)(v, x)
has color κG(uv) by Definition 1. This edge maps to α(u, x)α(v, x) = (x, u)(x, v) which an edge of
H�G, again with color κG(uv) by Definition 1. In the second case, an edge of form (u, x)(u, y) has
color κH(xy) and maps to α(u, x)α(u, y) = (x, u)(y, u), an edge of H�G with color κH(xy). In the
same way, we check that α−1 preserves adjacencies. Then G�H = H�G by Definition 2.

For associativity, consider α : V (G�(H�K)) → V ((G�H)�K) defined as α(u, (x, z)) = ((u, x), z).
We consider the three types of edges in G�(H�K) separately. In the first case, consider an
edge of form (u, (x, z))(v, (x, z)), which has color κG(uv). The map α sends this edge to the edge
((u, x), z)((v, x), z) of (G�H)�K, which according to Definition 1 has color κG�H((u, x)(v, x)) =
κG(uv). Second, an edge of form (u, (x, z))(u, (y, z)), of color κH�K((x, z)(y, z)) = κH(xy), is
mapped to edge ((u, x), z)((u, y), z) of color κG�H((u, x)(u, y)) = κH(xy). Third, an edge of form
(u, (x, z))(u, (x,w)), of color κH�K((x, z)(x,w)) = κK(zw), is mapped to edge ((u, x), z)((u, x), w)
of color κK(zw). These three cases show α preserves adjacencies and colors. Similarly, α−1 also
preserves adjacencies, so G�(H�K) = (G�H)�K follows.
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3 Graph Fractions

If G has coloring κ, let G−1 designate the graph G with coloring −κ, that is G−1 is G with the
colors interchanged. Call G−1 the inverse of G. Obviously (G−1)−1 = G, and it is easy to check
that (G�H)−1 = G−1

�H−1. Now comes our main definition.

Definition 3. Let G and H be colored graphs. The quotient of G by H is the graph
G

H
= G �H−1.

For typographical reasons, G

H
may be written as G/H. Figure 3 shows a few examples. In each

case the numerator and denominator are either trivially colored graphs or their inverses, though
that is not required in general.
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The next four propositions show that graph fractions behave much as fractions of integers do,
but with � playing the role of multiplication.

Proposition 1. If F , G, H and K are colored graphs, then
F

G
�

H

K
=

F�H

G�K
.

Proof. This follows from Definition 3, Lemma 1, and the fact (G�H)−1 = G−1
�H−1. Indeed,

F

G
�

H

K
= (F�G−1)�(H�K−1) = (F�H)�(G−1

�K−1) = (F�H)�(G�K)−1 =
F�H

G�K
.

Proposition 2. If F , G, H, K are colored graphs,
F/G

H/K
=

F

G
�

K

H
=

F�K

G�H
.

Proof. By the definitions,
F/G

H/K
=

F�G−1

H�K−1
= (F�G−1)�(H�K−1)−1 = (F�G−1)�(H−1

�(K−1)−1)

= (F�G−1)�(H−1
�K) = (F�G−1)�(K�H−1) =

F

G
�

K

H
. This latter expression equals

F�K

G�H
by

Proposition 1.

Proposition 3. If G and H are colored graphs, then

(

G

H

)

−1

=
H

G
.

Proof. Observe

(

G

H

)

−1

= (G�H−1)−1 = G−1
�H = H�G−1 =

H

G
.

3



Define the trivial graph I to be the graph with one vertex and no edges. Its coloring can thus
only be the empty function κI : ∅ → ∅. The definitions show I−1 = I and G�I = G for all graphs
G.

Proposition 4. If G is any colored graph, then
G

I
= G, and

I

G
= G−1.

Proof. Observe
G

I
= G�I−1 = G�I = G and

I

G
= I�G−1 = G−1.

The analogy between fractions of integers and fractions of graphs goes further. Just as the
nonzero rational numbers form a group, so do fractional graphs.

4 A Group of Graphs

One way to define the multiplicative group of positive rational numbers is to declare fractions a/b
and c/d of positive integers to be equivalent if ad = bc, and confirm that this is an equivalence
relation. The positive rational numbers are then the equivalence classes of this relation, and these
classes form a group. The same approach works with graphs.

Let Γ be the set of all connected graphs, all with trivial colorings. Set G = {G/H | G, H ∈ Γ},
which is closed under �, by Proposition 1 and the fact that Cartesian products of connected graphs
are connected. Define a relation ∼ on G as F/G ∼ H/K if F�K = G�H. One immediately checks
that this relation is reflexive and symmetric, but transitivity is not so obvious.

Suppose F/G ∼ H/J and H/J ∼ K/L, so F�J = G�H and H�L = J�K, whence F�J�H�L
= G�H�J�K. We want to “cancel” the J�H to get F�L = G�K which would make F/G ∼ K/L.
The fact that the cancellation is justified follows from a theorem—proved by Sabidussi and Vizing
in the early 1960’s—stating that every connected graph has a unique prime factorization relative
to �. (A graph G is prime if G 6= I, and G = H�K implies H = I or K = I. Sabidussi and
Vizings’ theorem states that if a (uncolored) connected graph can be factored into prime graphs
as P1�P2� · · ·�Pm and Q1�Q2� · · ·�Qn, then m = n and the indices can be relabeled so that
Pi

∼= Qi for 1 ≤ i ≤ m. See Chapter 4 of [1] or [2, 3] for proofs of this theorem.) Sabidussi and
Vizings’ theorem implies that � has a cancellation property: If A�B = A�C for connected graphs
A, B and C, then B = C, for otherwise B and C have different prime factorizations, giving A�B
= A�C two distinct prime factorizations. Owing to this cancellation property, ∼ is transitive, and
therefore an equivalence relation. Let G∗ = G/ ∼ be the set of equivalence classes. Denote the
equivalence class containing a graph G/H as [G/H].

From the definition of ∼, the class [I] = [I/I] consists of all graphs of form G/G. In such a
graph, the fibers of color 1 and the fibers of color −1 are all isomorphic to G. Figure 4 shows an
example.
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Using Proposition 1, it is easy to check that there is a well-defined binary operation � on G∗

defined as [F/G]�[K/H] = [(F/G)�(K/H)]. Associativity and commutativity of � on G∗ are inher-
ited from associativity and commutativity of � on G (Lemma 1). Observe [I]�[G/H] = [I�(G/H)]
= [G/H], so [I] is an identity. Lastly, [G/H]�[H/G] = [(G/H)�(H/G)] = [(G�H)/(H�G)] =
[(G�H)/(G�H)] = [I], so any element [G/H] has an inverse [H/G]. (In fact, by Proposition 3,
[K]−1 = [K−1].) Therefore G∗ is an abelian group. As with the rational numbers, we drop the brack-
ets and let any fraction represent the equivalence class it belongs to. For example, G�G−1 = I,
though this is expressing equality of equivalence classes, not graphs.

Proposition 5. The group G∗ of fractional graphs is isomorphic to the group Q+ of positive
rational numbers.

Proof. Let P = {p1, p2, p3, . . .} be the set of all prime numbers. The fundamental theorem of
arithmetic implies any rational number unequal to 1 has a unique expression pn1

i1
pn2

i2
· · · pnk

ik
with

n1, n2, . . . , nk nonzero integers, whence Q+ is the free abelian group generated on P. Analogously,
if G = {P1, P2, P3, . . .} is the set of all connected prime graphs (with trivial colorings), then Sabidussi
and Vizing’s theorem implies any G/H 6= I has unique expression Pn1

i1
�Pn2

i2
� · · ·�Pnk

ik
, so G∗ is

the free abelian group generated on G . Then G∗ ∼= Q+, since |G | = |P| = ℵ0.

The author thanks the referee for a prompt and careful report.
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