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4.1 Introduction

The intuitive idea of complexity as an antonym of simplicity is an
inherent one for the people of the twenty-first century. We live in a complex
environment and deal with a complex technology. Every day we face the
challenging complexity of life at our work and at home. We enjoy the
complexities of our education and entertainment. Could, however, the fuzzy
idea of complexity be transformed into a rigorously defined scientific
notion? Could one quantitatively assess complexity and, if the answer is
“yes,” why is it needed?

In this chapter, we will try to shed some light on the above-mentioned
questions insofar as they refer to the realm of chemistry. However, the
approach we adopt is a general one and it could be applied to any system
having a “structure,” i.e., to any system composed of certain parts or
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158 Complexity in Chemistry

elements united in a single entity by certain relationships. Processes are
not excluded from our consideration provided they include mutually related
steps, catalytic chemical reactions being a typical example [1-3].

Consider a couple of chemically relevant cases. Two important classes
of industrially produced plastics are high-density polyethylene (HDPE)
and low-density polyethylene (LDPE). HDPE is composed mainly of linear
macromolecules, whereas in LDPE the macromolecules are highly branched
(Figure 4.1a). The two types of polyethylene have very different properties:
HDPE has good mechanical characteristics and can be used as construction
material, whereas LDPE has low toughness but excellent processability
and finds applications for packings. It is intuitively clear that the branched
LDPE structures are more complex than the linear HDPE ones. Thus,
complexity strongly influences the properties of this material.

Another example is provided by molecules containing the same number
of benzene rings connected in a ribbon, a two-dimensional array, and a
macro ring (Figure 4.1b). This sequence of benzenoid structures can be
extended even further to include three-dimensional shapes, such as spheres
(fullerenes), cylinders (nanotubes), etc. These classes of benzenoid structures
differ in their chemical reactivity and physical properties. Complexity
comparisons between these classes can no longer rely on intuition only; a
quantitative measure of complexity is required. Such a relevant measure
could be very useful in structure-property relationships, enabling the more
effective search for new materials.

4.2 The Notion of Entropy in Physics

Clausius introduced entropy in thermodynamics in the mid-nineteenth
century to characterize the changes occurring during irreversible processes
in systems that do not interact with their surroundings (isolated systems).
According to the Second Law of Thermodynamics, such processes
(common examples are heat exchange and diffusion) are always associated
with an increase in entropy. Half a century later, Bolzmann revealed the
statistical character of the Second Law. The only processes allowed to
occur spontaneously are those that increase the disorder in systems. Thus,
two gases mix irreversibly; they never separate without outside intervention.
Similarly, two gases with different temperatures spontaneously equalize
their temperature but the process cannot be reversed without some
compensation.

A key role in Boltzmann’s statistical thermodynamics is played by his
famous formula relating the entropy S to the thermodynamic probability W¥;
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Figure4.1: (a)Linear and branched macromolecules characterize high-density
polyethylene (HDPE) and respectively low-density polyethylene (LPDE); (b) A
ribbon, a two-dimensional array, and a macro ring of benzene rings in benzenoid
hydrocarbons.

S=kinW (4.1)

where k is a proportionality constant. Thermodynamic probability is equal
to the number of microstates in a system macrostate, characterized by a
constant total energy. For a system having N particles distributed such that
N, of them have energy E,, N, of ther]r\ll 'have energy E, etc.,

T N,IN,L..N,! (4.2)



160 Complexity in Chemistry

For large N, the Stirling transformation changes formula (4.2) into

k
In#W =NInN-) N, InN, (4.3)

i=1

4.3 Information Content of Structures

In 1949, Shannon [4] showed that the statistical concept of entropy can
be extended beyond thermodynamics and applied to the process of
transmitting information. Shannon’s information theory regards a message
transmitted through information channels as a specific set of symbols (an
“outcome”) selected from the ensemble of all £ such sets containing the
same total number of symbols N. Probabilities p , p., ..., p, are assigned to
each of the outcomes, and the probability of the ith outcome is proportional
to the number of symbols N, it contains (p, = N,/ N). Shannon’s entropy of
information H characterizes the uncertainty of the expected outcome. When
the transmission is totally random all outcomes are equally probably and
the entropy of information is the maximal one. Conversely, if there is a
single possible outcome, H = 0. In the intermediate real-life cases the
amount of information / transmitted is the difference between the maximum
entropy and the specific value that Shannon’s H function has for the system
of interest. Thus, information has the meaning of reduced uncertainty of
the final outcome.

The basic Shannon formula is obtained from equations (4.1) and (4.2),
after taking the proportionality constant £ =1/ In 2 to measure the entropy
of information in bits (binary digits).

k
H= NlogzN—ZN,. log, N,, bits (4.4)
i=1
Another form of Shannon’s equation determines the average entropy of
information per communication symbol:

H u LN N.
H =—=- log, p. =—) —tlog, —, bits/symbol
"= ;pl gD, Zl v log y (4.5)

One bit of information, /= 1 bit, is obtained in learning the outcome
of a situation in which there is a choice between two possible options.

One of the major consequences of Shannon’s theory was the radically
new idea of viewing a structure of any kind as a communication, which
carries a certain amount of information. Thus, the notion of the information
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content of a molecule emerged in the early 1950s (Dancoff and Quastler
[5], Linhitz [6], Rashevsky [7]), along with a generalization of the Second
Law Thermodynamics that included information (Brillouin [8]). The
Negentropy Principle of Information of Brillouin® regards information as
a negative component of entropy. In this way, the generalized Second Law
allows only such spontaneous processes in isolated systems that increase
entropy or/and decrease information. Information cannot increase in
irreversible processes; it can only diminish.

Mowshowitz [9] first presented in 1968 a rigorous reinterpretation of
Shannon’s H-function as information content but not entropy. He pointed
out that Shannon’s function does not measure the average uncertainty per
structure of a given ensemble of all structures having the same number of
elements, e.g., the selection of a molecule from the ensemble of all molecules
having the same number of atoms. Rather, it is the information content of
the structure relative to a system of symmetry transformations that leave
the system invariant. In 1979, Bonchev [10] added the argument that entropy
is transformed into information by the process of structure formation from
its constituent elements. This makes the information a bonded one; it is
conserved within the system until it is destroyed.

As could be anticipated from the preceding text, this chapter will not
represent a general review or comparative analysis of complexity measures
used in the realm of chemistry. Such an analysis is presented in the first
several chapters of this volume. Here, we focus on the important question
whether complexity measures based on Shannon’s information theory could
at all be adequate measures of structural complexity. Serious doubts about
the positive answer of this question were raised in our previous publications
[11-13]. It will be shown that the positive result is necessarily associated
with a reformulation of the original information-theoretic formalism.

4.4 Symmetry-Based Information-Theoretic Indices

The information content of a structure, as defined in Section 4.3, is
based on symmetry. The elements of the system are grouped into equivalence
classes, according to a certain equivalence criterion or symmetry operation(s)
that exchange the elements without violating the structure adjacency.
Mowshowitz [9] formalized the application of Shannon’s equations to finite
systems with symmetry elements. He introduced a probability scheme
applicable to any system having N elements partitioned into k classes
according to the equivalence criterion o :
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Equivalence classes 1,2, ..,k
Element partition N,N,, ..., N,
Probability distribution  p,, p,, ..., p,

Here, p, = N,/ N is the probability for a randomly chosen element to
belong to class i having N, elements, and =N, = N . Shannon’s equations
(4.4) and (4.5) can now be rewritten as equations for the information
content /() of the system, and for the average information content </ (o)
of a system element. The left superscript e stands for “equivalence” to
distinguish this type of information measure from those for “magnitude”
introduced in Section 4.5.

k
“I(a) = Nlog, N — ZNi log, N, (4.4a)
i=1
e 6[ o k k N N
Iav(a):% :_Zp’ 10g2 pi :—Zﬁlogzﬁ (453)
i=1

i=1

The values of both information indices thus introduced vary within the
following ranges:

0<“I(a) < N; 0<°I, (a)<1 (4.6)

The upper bound of these ranges is reached when each element forms a
separate class, N, = 1, i.e., when the system has no symmetry. The
information content is zero when all of its elements are equivalent, N, = N,
i.e., when the system has no structure, due to its very high symmetry. One
might infer that the information indices “I(a) and ‘7, (o) could be used as
complexity measures, which relate higher complexity to asymmetry and a
larger diversity of system elements. Low complexity (simplicity) is
characterized as uniformity or lack of diversity, resulting from high
symmetry.

4.4.1 Atomic Information Content

Interesting results are obtained when information theory is applied to
atoms and molecules on a quantum-mechanical level. When electrons are
regarded as distributed over spin orbitals, according to the Pauli exclusion
principle each electron must occupy a different orbital. Thus, all N,’s in
equations (4.4a) and (4.5a) are equal to 1, and the information content of
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the respective atom or molecule is the maximum one for the given number
of electrons. The Pauli principle was reinterpreted as a principle for the
maximum information content of atoms and molecules or, more generally,
of fermionic systems [ 14]. Conversely, photons or, more generally, bosonic
particles can populate the same quantum state in unlimited numbers. All
particles in this kind of system are equivalent, and the information content
is zero.

Other information-theoretic indices have been introduced for atoms
and molecules to distinguish those of them having the same number of
particles. Atomic information content has been introduced in various ways
depending on the distribution of electrons, protons and neutrons in the
electron shell and atomic nucleus [15,16]. As an example, consider the
electron distribution into atomic orbitals (AOs) for the sulfur atom.
According to the Pauli exclusion principle, only one or two electrons can
populate an atomic orbital. The sixteen sulfur electrons occupy seven AOs
with two electrons each, and two AOs with one electron each. Applying
equation (4.4a), one obtains /(S, 4A0) = 16 log, 16 — 7.2 log, 2 — 2.1 log,1
= 66 bits per atom, and /_ (S) = 66/16 = 4.125 bits per electron.

In assessing the complexity of atoms, information-theoretic indices have
found application by providing a new systematic of nuclides [15], a
reinterpretation of the Periodic Table of the chemical elements [17], and
predictions of the properties of transactinide elements 113—-118 [18]. A
trend has been found which shows that the atomic information content
increases the most when a new electron shell or s-, p-, d- and f-subshell
begins. This made it possible to predict the atomic number of the first g-
element [17].

4.4.2 Molecular Information Content

The information-theoretic formulas (4.4a) and (4.5a) have been used
to characterize molecular complexity in various ways, depending on the
structural elements taken as a basis, and the equivalence criterion used to
group these elements into classes. The most straightforward way is to
proceed from the chemical formula of the compound, which represents
the elements incorporated as well as the ratio in which the atoms of the
elements occur. Thus, Dancoff and Kastler [5] defined the information on
the chemical composition ¢/(cc) of a molecule in 1953 by using the nature
of'the chemical element as an equivalence criterion. As an example, consider
the molecule of potassium hydrogen phosphate, K.HPO,. The eight atoms
of this molecule are distributed into four elemental classes, and the formulas
(4.4Aa) and (4.5a) produce “I(cc) = 8 log,, 8 —4 log, 4 — 2 log, 2 - 2.1
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log, 1 = 14 bits per molecule and I (cc) = 14/8 = 1.75 bits per atom.
Information on the chemical composition of a molecule demonstrates the
potential of the information content of a system to characterize its complexity
regarded as the diversity of its elements. An illustration of this conclusion
is the series of halogen derivatives of methane. “/(cc) increases systematically
in the sequence of molecules CH,, CH,F, CH,FC1, CHFCIBr: 3.61, 6.86,
9.61, and 11.61 bits per molecule; respectively.

Unlike information on elemental composition, structural information
content can be characterized in a variety of ways, proceeding from the
molecular geometry or from the connectivity of atoms. Regarding atoms
as the simplest structural elements of a molecule, one may use symmetry
to group them into equivalence classes. When symmetry is characterized
by the corresponding point group of the molecule one defines the
information index on molecular symmetry," -

Alternatively, when only atom-atom connectedness is taken into
consideration but not specific molecular geometry, a molecule is represented
by a molecular graph. The simplest criterion for equivalence of the graph
vertices is their degree, i.e., the number of their nearest neighbors, and
this structural information index is termed the information on the vertex
degrees, “I(deg). Despite its simplicity this criterion is very relevant in
chemistry where it corresponds to the coordination number in crystals and
coordination compounds. It provides the classification of carbon atoms in
organic chemistry as primary, secondary, tertiary, and quaternary ones.

When the equivalence criterion is extended over all neighboring atoms,
the resulting vertex distribution determines the topological information
index of Rashevsky [7]. The most precise definition of vertex equivalence
was given by Trucco [20] and is based on the automorphism group of the
graph. Equivalent graph vertices are those that belong to the same orbit of
this group of symmetry. Due to the fact that many other topological
information indices have been proposed after Rashevsky, we prefer to call
this index the information on the vertex orbits, <I(orb) [21].

As an example for the above-mentioned types of structural information
content, consider the molecule of 2,2,3,3-tetramethyl pentane and its graph
(Figure 4.2). Let the molecule be taken in its most symmetric conformation
belonging to the C group. Atoms 1-5 are positioned in the horizontal xy-
plane, whereas the pairs of symmetric atoms 6,7 and 8,9 are in the vertical
xz-plane. The set of nine carbon atoms are then distributed into two classes
of two atoms and five classes of one atom each. Equations (4.4a) and
(4.5a) produce for this case "Isym = 24.53 bits per molecule and 3.17 bits
per atom. The distribution of the nine vertices in the molecular graph
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Figure4.2: (a) The point group symmetry of the 2,2,3,3-tetramethylpentane
molecule makes equivalent the pairs of atoms 6,7 and 8,9; (b) The automorphism
group of the molecular graph makes equivalent vertices 5,6,7 and 8,9.

according to their vertex degrees is two vertices of degree four, one vertex
of degree two, and six vertices of degree one. The resulting value of the
information on the vertex degrees is “/(deg) = 11.02 bits per molecule and
°l (deg) = 1.22 bits per atom. When graph vertices are grouped into the
graph orbits, vertices 1, 6, and 7 belong to the same orbit. Another orbit
includes vertices 8 and 9. The remaining four vertices are in an individual
orbit each. The distribution 9(3,2,1,1,1,1) determines the total information
on the graph orbits of this molecule to be “/(orb) = 21.77 bits, and the
average information is ¢/ (orb) = 2.42 bits per atom.

Up to here we have introduced three different criteria for determining
equivalent atoms in a molecule by regarding atoms as the simplest structural
elements. Graph edges can also be used as structural elements and the
orbits of the corresponding edge group of the graph can determine their
equivalence classes. Trucco mentioned this kind of information index [20].
We shall call it the information on the edge orbits of the graph, “/(edge
orb). There are eight edges in the molecular graph 1 of 2,2,3,3-
tetramethylpentane (Figure 4.2). According to their symmetry they form
five edge orbits: {12, 26, 27), {38, 39), (23}, {34}, and {45}. The
respective values of the information indices are °/(edge orb) = 8 log, 8 —3
log, 3 — 2log, 2 = 17.25 bits per molecule, and °/_(edge orb) = 2.16 bits
per edge.

The next more complex type of substructure after vertices and edges
are the subgraphs containing two adjacent edges. Gordon and Kennedy
[22] were the first to use this number as a branching index. Even earlier,
Platt [23] introduced a twice-larger index as the sum of the first bond
neighbors of each bond in the molecule. Bertz defined this type of
substructure more broadly as having a “pair of adjacent edges (connections)”
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and including multiple edges and loops [24]. One can also define the
automorphism group of graph connections. Its orbits determine the
information on connections orbits, °I (conn orb). There are twelve
connections in graph 1, and they are distributed into the following orbits:
{126, 127, 267}, {123, 623, 723}, {238, 239}, {438, 439}, {234}, and
{345}. The distribution 12 {3,3,2,2,1,1} yields ¢/ (conn orb) = 29.51 bits
per molecule and ¢/ (conn orb) = 2.46 bits per connection.

One might continue applying the Shannon equations to larger and larger
substructures. Instead, we will inspect several more indices of this class
based on different types of structural invariants. Two such indices have
been introduced by proceeding from the equivalence of distances in a
molecular graph, ¢/(dist) [25,26], and the equivalence of vertices being
equidistant to the graph center, “/(centric) [27,28]. The distance between
two vertices is the number of edges along the shortest path that connects
them; therefore, all graph distances are integers. Consider again as an
example graph 1 (Figure 4.2b). There are 36 distances in this graph: 8
distances of length 1, 13 distances of length 2, 12 distances of length 3,
and 3 distances of length 4. The distance distribution 36{8, 13,12, 3}
results in °/(dist) = 66.24 bits per molecule and °/ (dist) = 1.84 bits per
distance.

The centric information index, °I(centric) [27,28] is based on the
definition of the graph center [29]. The classical definition of Jordan,
given in the nineteenth century, specifies the center of trees (acyclic graphs)
with a procedure of consecutive pruning the tree by cutting off all of its
terminal vertices. The final result is a single center (a vertex) or a bicenter
(an edge). In 1969, Harary [26] proposed a rigorous definition that also
includes cyclic graphs. It introduced the notion of the vertex eccentricity
e(i) as the longest distance from a given vertex to any other vertex in the
graph. The graph center is the vertex with the minimum eccentricity:

e(i)=maxd(ij) ; e(i)=min (4.7)

The pitfall of this definition is that it often produces a group of
nonequivalent central vertices. Bonehev, Balaban and Mekenyan [27]
proposed a more detailed solution in which the centric vertices belong to
the same orbit of the automorphism group of the graph. The classical
definition (4.7) is regarded only as a first of several hierarchically applied
criteria, which gradually reduce the number of central vertices until only
a single vertex or two or more equivalent vertices remain. The second
criterion requires the central vertex to have the smallest sum of distances
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to all the remaining vertices in the graph. This sum is termed the vertex
distance, d(i) = X d(ij), or distasum [30]. If two or more nonequivalent
vertices have the same minimal eccentricity and the same vertex distance
then the third criterion, requiring a minimal occurrence of the largest
distance, n(i,j;max), is used:

d(i)= Y, d(i,) = min (4.8)

n(i, j;max) = min (4.9)

When the three criteria fail to produce equivalent centric vertices, an
Iterative Vertex-Edge Centricity (IVEC) algorithm is applied [31], which
always solves the problem with only one or two iterations.

In the example of graph 1 the first criterion suffices to determine vertex
3 as the graph center, due to its minimal eccentricity e(3) = 2 = min.
Vertices 2, 4, 8, and 9 have eccentricity 3, and vertices 1, 5, 6, and 7 have
eccentricity 4. Let us now order the graph vertices centrically, according
to their distance from the graph center. Two layers of equidistant vertices
are thus formed around the center with vertices 2, 4, 8, and 9 in the first
neighborhood layer, and vertices 1, 5, 6, and 7 in the second one. Thus,
the nine vertices of this graph have a centric distribution 9 {1, 4, 4), from
which I(centric) = 12.53 bits per molecule and ¢/, (centric) = 1.39 bits per
atom.

Several information indices have been developed by proceeding from
combined equivalence criteria. In fact, the first topological information
index of Rashevsky [7] combines two criteria of atom equivalence: in
order to be equivalent two atoms in a molecule should belong to the same
chemical element and have the same atomic neighborhoods up to the terminal
atoms. Basak et al. [32-34] used the same criteria but with separate terms
for the first, second, ..., k th neighborhood. Basak’s kth order neighborhood
complexity index in hydrogen-suppressed graphs is thus identical to
Rashevsky’s index, and for such graphs having no heteroatoms his first
order index coincides with the information on vertex degrees “/(deg). Basak
applied his neighborhood indices not only to hydrogen-suppressed
molecular graphs but also to molecular graphs that include hydrogen atoms
and heteroatoms, and his methodology was used with success in a wide
range of QSAR studies and assessments of environmental toxicities [34].

Other information indices based on a combination of structural criteria
have also been introduced [10,21,26,35]. Like the indices described above
(Table 4.1, vide infra), they reflect only some of the complexity features
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but fail for others. For this reason, we add here only the molecular
complexity index of Bertz [24, 36], BI, which satisfies most of the
requirements for a complexity measure. Bertz’s index combines the infor-
mation on graph connections with a size term N log, N, with N being the
total number of connections:

k
BI =2Nlog, N-Y_N,logN, (4.10)
i=l1

Adding the size term reduces the inherent pitfalls of symmetry-based
information complexity measures. The corrective term allows us to obtain
different nonzero values for highly symmetrical molecules like the
cycloakanes. It reflects to a certain extent molecular complexity features
like branching and cyclicity. Thus, it increases the structural component
of the information measure and diminishes the simplifying effect of
symmetry.

It is essential to verify the extent to which the information-theoretic
indices introduced so far, proceeding from the differently defined
equivalence classes of structural invariants, satisfy the intuitive idea of
complexity. Experts generally agree that path (or linear) graphs P are the
simplest connected graphs and the complete graphs K are the most complex
ones. There is also general agreement that for the same number of vertices
the star graphs S and monocyclic graphs C are more complex than path
graphs and less complex than complete graphs. Bertz and Zamfirescu [37]
formalized these criteria in the form of inequalities which a complexity
measure must satisfy.

We extend this series of four graphs with two more, the first being
totally disconnected, and the second being bicyclic. Indeed, the intuitive
expectation is that the disconnected graph will be less complex than any
connected graph including P . Similarly, the bicyclic graph should be more
complex than the monocyclic one. Figure 4.3 shows the selected six graphs
each having five vertices. The values of the calculated information indices
are shown in Table 4.1. Since the first four indices are calculated from the

e F W

3

Figure4.3: Graphs with five vertices used as an illustration of increasing structural
complexity.
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Table 4.1:  Information indices based on the equivalence of vertices, edges,
connections, centrically ordered vertices, and distances cannot reproduce the
increasing structural complexity of the sequence of the five-vertex graphs 2-7

Index Graphs

2 3 4 5 6 7
¢I(vertex, deg) 0 7.61 361 0 486 0
I(vertex) 0 7.61  3.61 0 7.61 0
I(edge) 0 4 0 0 11.51 0
¢I(connection) 0 275 0 0 20.53 0
l(vertex, centric) 0 7.61  3.61 0 7.61 0
¢I(distance) 0 1847 9.71 10 9.71 0
BI (Bertz index) 0 275 1551 11.61 49.06 147.21

orbits of the respective automorphism groups, for brevity we omit the
abbreviation “orb”, and denote only the type of structural element used:
vertices, edges, connections, and centrically ordered vertices. The Basak
set of indices [32—34] were not included because for hydrogen-suppressed
graphs that have no heteroatoms they include /(deg) and I(vertex orbits).
Although the six graphs have the same number of vertices, the number
of edges increases from zero in 2; to four in 3 and 4, to five in 5, to six in
6, and to ten in 7. The number of connections increases even faster: from
zero in 2, to three in 3, to six in 4, to five in 5, to nine in 6, and to twenty
one in 7. Intuition implies that the structure is more complex when the
number of the interconnections of its elements increases. However, the
first five indices shown in Table 4.1 fail to distinguish between the
disconnected graph 2, the monocycle 5, and the complete graph 7; ascribing
zero information content to all of them. The information on the equivalence
of distances decreases with increasing branching and cyclicity. This is well
reflected by the values of star versus path graph, as well as in the sequence
monocyclic = bicyclic = complete graph. However, the equal complexity
of disconnected and complete graphs is a major failure of this index. Another
problem of most equivalence-based indices is their opposing complexity
trends to decrease with branching and cyclicity and increase with size.
One might conclude that replacement of the vertices, which are the
simplest subgraphs, with larger subgraphs containing two and respectively
three vertices, as well as the use of graph distances will not produce an
adequate complexity measure. The real meaning of these symmetry-based
indices is that they measure diversity. Diversity coincides with complexity
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when dealing with the chemical composition of molecules. However, as
manifested by the examples in Table 4.1, structural diversity and structural
complexity have little in common. Yet, the last line in Table 4.1 shows
that with a conveniently selected corrective term, the equivalence of some
more sensitive graph invariants, like the two-edge subgraphs used by Bertz,
could provide better complexity measures. Yet, as can be inferred from
the more detailed evaluation [38], the Bertz’ index [21] faced difficulties
when dealing with more subtle structural patterns, and the search for new
solutions continued.

4.5 Magnitude-Based Information Measures of Complexity

An extension of the Shannon information-theoretic approach to the
description of chemical structures was reported in 1977 by Bonchev and
Trinajsti¢ [25]. The finite probability scheme of Mowshowitz [8] was
expanded so as to include certain weights or magnitudes of the structure
elements. The scheme can be applied to any system having N elements
partitioned into k classes according to the element weight (or magnitude)
of type o :

Equivalence classes 1,2, ...,k

Element partition N,N,...,N,
Probability distribution  p, p,, ..., p,
Magnitudes (weights) W, W, e, W,

Probability M-distribution "p,, "p,, ..., "p,

Here, = Nw, = M, where M is the magnitude of the criterion (or
property) selected to partition the system elements, p, = w, /M is the
probability for a randomly chosen element to belong to class i having
magnitude w, and = ”p,= 1. Shannon’s equations (4.4) and (4.5) define in
this approach the magnitude-based information content "/( o ) of the system,
and the corresponding average information content "/ (o) per system
element:

k
"I(a) = Mlog, M — ZNl.wi log, w, (4.11)

i=1
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k
"I (@)=-3N, %k)gz % (4.12)

i=1

Information measures (4.11) and (4.12) are defined within the ranges
0<"I(o)< Mlog, M :0<"1 (o) <log, M (4.13)

where the lower bound corresponds to a system without a structure (w, =
M), and the upper bound can be attained by a system having a maximum
number of classes with a single element of unit weight in each class (k=N
= M).

The magnitude-based information indices were first introduced by
Benchev and Trinajsti¢ [25] for the distribution of distances in a molecular
graph, "I(distance) or "I, The total magnitude characterizing the structure
here is the Wiener number [39] W, which is the sum of all graph distances
(the total graph distance). The classes of distance are those of distances
d@i)=1,2,3, ..., d(max), and the number of distances in these classes is
N, N, ..., N, respectively, Thus the general formulas (4.11) and (4.12)
are transformed into

k
"I(dist) =W log, W - > N.d(i)log, d(i) (4.14)
i=1
n . Lod@),  d@)
Iav(dlSt):_;NiVIngW (4.15)

A second magnitude-based information measure is defined from the
decomposition of the sum of distances in the graph distance matrix (doubled
Wiener number) into contributions of different vertices, d. Termed the
distance degree of vertex i (or distasums), these quantities represent the
sum of the distances between the vertex and the remaining graph vertices.
Thus, the vertex decomposition of the total graph distance is presented by
the formulas:

N
"I(dist deg) = 2W log, 2W - d,log, d, (4.16)

i=1

9 10 Y 4.17
"I, (dist deg)=—-) —log, (4.17)
,Z:l:zW ow
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Graph vertices can be partitioned into magnitude-based classes in various
ways. Besides the distance degrees distribution introduced in the previous
paragraph, vertex distributions based on other criteria (or “degrees”) can
be used. In fact, each symmetry-based distribution can be transformed
into a magnitude-based one. The first case of vertex distribution discussed
in Section 4.4 dealt with the equivalence of vertex degrees, as inferred
from the adjacency matrix of the graph. The sum of the vertex degrees, a,
A =% a, is called the graph total adjacency [35]. This is the simplest
magnitude-type graph invariant that can be used to construct an information
descriptor. The vertex degree distribution 4 {a, a,, ... , a,} produces the
information index on vertex degree magnitudes [35], "I(vert deg):

N
"[(vert deg) = Alog, A — Zal. log, a, (4.18)
i=1
N
"1, (vert deg) = —Z%log2% (4.19)

i=1

The graph connections (subgraphs having three connected vertices) used
as the basis of the Bertz [24] index B, can also be used to construct a
vertex distribution C{C,, C,, ... C }, according to the number of
connections C, beginning in each vertex. Here C is the doubled number of
graph connections. The magnitude-based information index on the graph
connections, "/(conn deg), we propose here is thus defined as

N
"I(conn deg) = Clog,C - Y C,log,C, (4.20)
i=1
ye.oooC
"1, (conn deg) = —Z:E’log2 E’ (4.21)

i=1

In Table 4.2 we analyze the capability of the four magnitude-based
information indices, discussed in this section, to be used as complexity
measures. Several conclusions can be drawn. It is seen that the total
information indices show a considerably more consistent complexity trend
than the average ones. The two distance-based measures demonstrate a
very regular pattern of decreasing with the increase in graph complexity.
Therefore, these two indices are convenient complexity measures for
isomeric molecules. The opposing trend to increase with the system size,
however, prevents their use as complexity estimates of structures having
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Table 4.2:  Values of four magnitude-based information indices for graphs 2-7

Index Graphs
2 3 4 5 6 7

"[(distance) 0 6493 52.00 48.60 4530 33.22
"I (distance) 0 3.245 3250 3.240 3.236 3.322
"[(dist deg) 0 91.63 7339 69.66 64.86 46.44
"I (dist deg) 0 2298 2293 2322 2316 2322
"[(vert deg) 0 18.00 16.00 2322 27.51 46.44
"I (vert deg) 0 2250 2.000 2322 2293 2322
"[(conn deg) 0 1351 24.00 2322 64.60 139.32
"I (conn deg) 0 2250 2.000 2322 2936 2322

different size. Nevertheless, these indices have a good potential for QSPR/
QSAR applications when used jointly with a convenient size term. The
index on the vertex degrees distribution increases with both size and cyclicity
[40, 41] (cyclic complexity) but fails to show the same trend with branching
[25, 42—45] (acyclic complexity). Yet, the correct trend shown in cyclic
molecules indicates that the magnitude-based information indices could in
principle provide a good complexity measure if a more detailed structural

invariant was taken as a basis.

We investigated this idea by introducing the new ”/ (conn deg) index,
based on the distribution of graph connections over the vertices from which

oL o oo

20.00

9
24.46

rodoo ol oo

25.22

31.02

34.28

Figure4.4: Graphs of the five acyclic hexane molecules ordered according to
their increasing complexity, as assessed by the magnitude-based information

index on the vertex connection degrees, "/ (conn deg).
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oo o2, [po TN A

8 9.51 15.71 16 32 48

Figure 4.5: All four-vertex graphs ordered according to their increasng
complexity.

they emanate. As seen in Table 4.2, the idea is a promising one, the new
index showing a very regular increase with the increase in both branching
and cyclicity. It also increases with the size of the system as another
complexity component. Thus, its values for C3—C6 normal alkanes are 2,
8, 13.51, and 20 bits per molecule, and for C3—C6 cycloalkanes they are
9.51, 16, 23.22, and 31.02, respectively. The sensitivity toward subtler
branching patterns can be illustrated with the series of five isomeric acyclic
hexanes 8-12 (Figure 4.4). The new information index increases strongly
with factors such as the number of branches and the degree of the branched
vertex. A moderate increase is found when the branch is shifted toward a
more central position.

A similar, systematic increase in the "/ (conn deg) index values with the
increase in branching and cyclicity can be seen in Figure 4.5 for all graphs
having four vertices. Graphs 13—18 in Figure 4.5 are identical with graphs
VI-XI in Chapter 2, used there as a basis for comparison of a large set of
complexity measures. The ordering provided by our new index: VI = VII
= VIII = IX = X = XI does not coincide with any of the orderings
analyzed in that chapter. It is close to the ordering provided by the Minoli
index [47] and the number of spanning (or maximal) trees [3, 48-51],
which, however, cannot distinguish between isomeric trees (acyclic graphs).

Thus, the "I (conn deg) index mirrors the complexity trends in both
acyclic and cyclic molecules by proceeding from a general theoretical
scheme but without adding a corrective term to the symmetry-based index,
as is done in Bertz’ treatment of graph connections distributions. More
details on the new index will be given in a forthcoming publication [46].
We may conclude that information-theoretic indices based on magnitude
distributions provide a better basis for the complexity assessments of mole-
cules than the symmetry-based measures. However, only those magnitude-
based distributions of graph invariants that describe the structure in more
detail could be good measures of structural complexity. Graph connections
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are only the lowest level of a more complete description of a structure.
One could easily infer that in graphs whose vertices all have the same
degree (e.g., the graphs of the cubane molecule, (CH), and its isomers)
one would need to up one level and deal with distributions of three-edge
substructures. One might thus also suggest that it is not the specific
mathematical function used (Shannon’s entropy function) but rather the
detailed description of the structure that enables the construction of more
reliable complexity measures. Developments along these lines are discussed
in the next section.

4.6 Substructure-Based Information Measures of Complexity

A breakthrough in the methods of assessing the complexity of structures
has been achieved during the last five years. The novel concept of complexity
may be summarized by the sentence: “The more substructures in a system,
the more complex the system.” This concept is in agreement with our
intuitive understanding that while the size of a system contributes to its
complexity, it is the connectedness of the system elements that matters
more. A larger system with weak interrelations of its elements may be
regarded less complex that a smaller system with a high degree of internal
connectedness. The more connected the system, the higher the number of
substructures K in it. Then, why not simply count how many substructure
there are in a structure?

Bertz and Herndon [52] briefly mentioned such an idea in 1986 in
work devoted to measures of molecular similarity. In 1996-1998,
simultaneously and independently, Bertz [53, 54] and Bonehev [55-58]
developed this complexity concept in detail. Bone and Villar [59] used a
similar approach to characterize molecular diversity in detail. Bertz also
proposed to use the number of kinds of subgraph N as a measure of structural
diversity and applied his complexity measures to determine the “strategic”
bond, the creation of which in a synthetic reaction would increase the
complexity of the molecule the most. Bonchev developed a substructure-
based complexity concept by constructing a complexity vector g’

E
K'{’K,'K,’K,....,"K};  K(G)=)_°K (4.22)
e=0

This is an ordered sequence, the eth order complexity term, °K, in which
counts the subgraphs having e edges; E in equation (4.22) is the total
number of graph edges.
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In parallel with the idea of using all substructures, Riicker and Riicker
[60] proposed to use all walks in the graph. They have shown that the fotal
walk count twc is a measure of graph complexity that mirrors the basic
patterns of acyclic and cyclic complexity to a very high degree [38].

The substructure approach to complexity was developed further by the
present author into the concept of overall complexity indices [61-63]. The
idea is to ascribe a certain weight to each subgraph, select simple graph
invariants as weights, and then to find the overall value of this index for
the entire structure by summing up over all subgraphs. Proceeding from
vertex degrees and vertex-vertex distances, the graph invariants selected
for each subgraph i were the total adjacency 4, (the sum of the vertex
degrees a)) the total distance W, (the Wiener number) and the first and
second Zagreb indices [64, 65], Ml and M2, (the sum of all the squared
vertex degrees Za’ and the sum of the products of the vertex degrees,
Yaa,, over all edges {ij}, respectively). The complexity indices thus
defined were termed the overall connectivity [58, 61], OC, the overall
Wiener number [62], OW and the overall Zagreb indices [63], OM1 and
OM2, respectively. The overall connectivity was defined in two versions
TCl and TC (abbreviation for topological complexity). The vertex degrees
in TC are taken from the molecular graph G, whereas in TCl they are
taken from the corresponding subgraphs G.. All overall indices OI(G) are
also presented in vector form o7'(G) incorporating all eth order terms
¢OI(G) where I = C, W, M1 or M2 indicates the types of the overall index.
The current value e of the number of edges in the subgraph runs from zero
for zero-order complexity (complexity of vertices), to one for first-order
complexity (complexity of edges), etc., to e = E for the entire graph having
E edges.

E K
TC'(G) = TC{’TC,'TC,’TC,...," TC}; TC(G)=)_‘TC(G)=Y 4(G,cG)
e=0 i=1
(4.23)

OW'(G) = OW {°OW ,'OW ,>OW ..., FOW};0W (G) = Z“OW(G) ZW(GCG)
: (4.24)

E K
OM'(G) = OM{°OM,'OM,*OM,...,"OM};0OM(G) = Y “OM(G) = Y. M,(G, = G)
e=1 i=1
(4.25)
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In equations (4.23) and (4.25) we omit for brevity additional symbols
used to distinguish between the two overall connectivities 7C and 7C1,
and between the first and second Zagreb index, M1 and M2, respectively.

All of the three types of overall topological indices satisfy the requirement
for a complexity measure. They increase with both size and connectedness
of the structure, and are very sensitive toward subtle complexity patterns
in acyclic and cyclic structures. They increase with the number and size of
the branches and cycles, as well as with their more central location (a
topological feature called centrality), and with the closer branch/branch
or cycle/cycle location (features called branch adjacency and cycle
adjacency, respectively). Some of these complexity patterns are illustrated
in Figures 4.4 and 4.5 (vide infra), along with the information indices on
substructure distributions, which we will define below.

The partitioning of the overall topological indices into their substructural
components (equations 4.23—4.25) gives rise to a typical situation for
applying our magnitude-based information-theoretic approach. Each of
the three types of overall indices may thus be supplemented by an overall
information index, defined on the set of eth-order terms. Due to the detailed
description of the topological structure provided by these parent sets, one
might anticipate these to be the best structural complexity indices that a
Shannon-type function could produce. The overall connectivity information
indices,"I(TC) and "I(TC1), the overall Wiener information index, "I(OW),
and the overall Zagreb information indices, "I(OM1) and "I(OM?2) are
defined below along with the substructure count information index, "I(K):

E
"I(K)=Klog, K - ‘Klog, ’K; "I, (K)="I(K)/K (4.26)

e=0

B
"[(TC)=TClog, TC - Y_“TClog, ‘TC; "I, (IC)="I(TC)/TC (4.27)

e=0

E
"I(TC1) = TCllog, TC1- Y “TCllog, ‘TC1; "I, (TC1)="I(TC1)/TC1

av
e=1

(4.28)

The summation in equation (4.28) does not start from e = 0, because the
vertex degrees in 7C1 are those in the corresponding subgraphs, and for
isolated vertices a, = 0. Similarly, “OW = 0 in equation (4.29) below because
the distances between the isolated vertices are zero. The vertex degrees in
the overall Zagreb information indices (equations 4.30 and 4.31) are those
from the entire graph, and the second overall Zagreb index has a zero-
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Table4.3: Overall topological and overall information indices of the graphs
from Figure 4.6

Indices Graphs

3 4 5 6 19
K 15 17 20 54 57
"[(K) 3224 4332  64.16 13820 144.72
C1 40 64 110 310 326
"[(TC1) 78.84 11592 23299 68634 721.67
e 60 100 160 482 522
"[(TC) 135.81 209.22 23220 1136.39 1225.71
ow 56 80 190 510 483
"[(OW) 101.32 137.60 335.04 99451 975.92
OoM1 110 292 320 1228 1407
"[(OM1) 247.71 600.23 75271 2897.50 3301.05
OM2 60 68 342 2015 2025

"[(OM?2) 135.39 14391 709.11 4131.10 4409.24

cosoe b (7 €7 P

Figure 4.6: Five-vertex acyclic and cyclic graphs ordered according to their
increasing complexity.

order term introduced by analogy with the zero-order term of the overall
connectivity index 7C as the sum of all vertex degrees in the graph.

E
"I1(OW) = OW log, OW . “OW log, “OW; "I, (OW)="1(OW)/OW
e=1

(4.29)

E
"I(OM1) = OM1log, OM1-Y_ “OMllog, “OM1; "I, (OM1)="I(OM1)/OM1

e=0

(4.30)

E
"I1(OM2) = OM2log, OM2 - ‘OM2log, ‘OM2; "I, (OM2)="1(OM2)/OM2
e=0
(4.31)
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Table 4.3 summarizes the values of the overall topological indices K,
TC, TC1, OW, OM1, and OM2 for graphs 3—6 and 19 from Figure 4.6.
This is a modified Figure 4.3 with the totally disconnected graph 2 no
longer shown because of its zero values for all indices. The complete
graph 7 as the most complex graph having five vertices is characterized
with very high values of all substructure-based indices, and is also not
shown in Figure 4.6. Instead, the complexity of a new five-vertex graph
19 is analyzed with the expectation that it will be more complex than the
other bicyclic graph 6, because it has a branch as an additional complexity
factor.

The expected ordering of these five graphs with their complexity
increasing from the linear graph 3 to the star graph 4 to the monocyclic
graph 5 to the bicyclic graph 6 to the bicyclic branched graph 19 is:

324=5=6=19

As seen from Table 4.3, this ordering is confirmed by all indices
examined. The only exception is found for the overall Wiener index and
its information counterpart, which reorder graphs 6 and 19. The bicyclic
branched graph 19 has three subgraphs more than the unbranched bicyclic
graph 6. However, these are small size subgraphs having two and three
edges per subgraph, and the increase in the corresponding OW terms they
provide does not suffice to compensate for the larger number of longer
linear subgraphs with four and five edges in graph 6. Indeed, there is a
competition between the two complexity factors of branching and cycle
size in these two graphs. The overall Wiener index and the overall Wiener
information indices appear to be the only ones to favor branching over
cycle size.

A more detailed analysis of acyclic branching is made by comparing
the complexity of the five isomeric acyclic hexanes (Figure 4.4 and Table
4.4). The magnitude-based overall information indices, as well as their
parent overall topological indices, reflect the regular increase in complexity
in the sequence

8§=29=10=11 = 12

Several complexity factors are thus correctly reflected: the increase in
the number of branches (8 = 9,10 = 11,12), the branching at a vertex of
higher degree (11 = 12), and the shifting of a branch toward a more
central position (9 = 10). Notably, the change in the overall information
indices upon the action of centrality factor (the 9 = 10 transformation) is
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Table4.4: Overall topological and overall information indices of the five acyclic
graphs 8-12 (Figure 4.4)

Indices Graphs

8 9 10 11 12
K 21 24 25 28 30
"I[(K) 50.36 58.56 61.0 67.48 72.78
7C1 70 88 94 112 122
"[(TC1) 159.55 195.47 206.01 239.83  258.03
TC 100 127 136 164 181
"[(TC) 251.61 311.84 329.63  388.48  422.82
ow 126 154 161 188 197
"[(OW) 263.92 315.14 328.32  373.74  392.74
oM1 188 277 300 404 505
"[(OM1) 471.24 675.13 720.40  947.92 1165.91
OoM?2 130 149 161 172 168
"[(OM?2) 321.65 358.18 383.02 399.97  389.94

larger than that in the corresponding parent overall topological indices.
This illustrates the high sensitivity of the newly introduced information
indices toward subtle complexity patterns.

The ordering of the five hexanes coincides with the ordering produced
by other symmetry-independent indices, whereas not a single symmetry-
based index (including their best representative, the Bertz index [24]) is
able to mirror all of the three branching patterns identified in this series of
graphs [38]. The only partial reordering that is produced by the twelve
overall topological and information indices deals with graphs 11 and 12.
The second overall Zagreb index OM2 and its information analogue
"[(OM?2) fail to show graph 12 as more complex than graph 11. The reason
for this result can be traced to the smaller index increment produced by
the OM?2 function for two neighboring vertices of degree four and two, as
compared to two neighbors of degree three (3x 3> 4 x2). Thus, the OM2
and "/(OM?2) indices cannot always reflect the greater contribution to
molecular complexity coming from branching at an atom of higher valence.

4.7 Concluding Remarks

This study revises the earlier criticism of the present author [11-13,
55] toward the use of the Shannon information function as a complexity
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measure. The findings in our previous studies were that the information
content of a molecule, calculated by the standard symmetry- or equivalence-
based scheme, is a good measure for molecular diversity, particularly for
the atomic composition of molecules. At the same time, it was concluded
that no information-theoretic index constructed on such a basis could
measure the structural complexity of a molecule or any other system. The
only complexity index of this type with relatively good performance is the
Bertz index [24] based on graph connections. However, as shown in this
chapter, the parent symmetry-based information index on the graph
connections is a very poor complexity measure. The success of the Bertz
index is due to the very essential addition of a “size term,” which in most
cases compensates for the weaknesses inherent for the information-theoretic
technique employed. The correction incorporated is not based on a rigorous
theory and has only practical importance. Yet, even this index faces
difficulties in reflecting some subtle complexity patterns in acyclic and
cyclic systems.

The second information-theoretic scheme, developed by Bonchev and
Trinajsti¢ [25] in 1977, is based on the partitioning of certain magnitudes
or weights of the system into the contributions of its elements, and is thus
not related to the symmetry of the system. The magnitude-based information
indices on graph distances, "I(distance), introduced in that study mirror to
a high extent molecular complexity patterns in isomeric acyclic and cyclic
systems. When combined with another index to account for the size of the
system, this index has found application in structure-property and structure-
activity relationships (QSPR, QSAR) studies [66, 67]. However, the
"[(distance) index does not yield a good complexity measure for systems
of different size, owing to the opposing trends of increasing with size and
decreasing with branching and cyclicity. For this reason, the conclusion
was drawn in our previous work [11-13, 55] that the Shannon information
function could not be a measure of structural complexity.

In the present study, these rumors of the premature death of information-
theoretic complexity measures were found to be strongly exaggerated,
though they have gained further ground specifically for the symmetry-
based information indices. The revision refers to the magnitude-based
information complexity measures, provided the graph invariant used to
construct the magnitude distribution is selected so as fo increase with both
size and structural complexity factors. We have proposed in this chapter
several such indices, beginning with the "/(conn deg) index. It is based on
the distribution of graph vertices according to the number of connections
(two-edge subgraphs) that emanate from each vertex. Indeed, the number
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of graph connections is not a universal graph invariant, and cannot serve
as a basis for a universal information-theoretic complexity measure. It
cannot, for example, distinguish graphs in which all vertices belong to a
single orbit. This indicated that the distributions of more complex subgraphs
having three or more edges should be addressed as well. Instead of these
potentially useful but only partial solutions to the problem, we turned to
the complete structural characterization of a graph by the magnitude-type
distribution of all subgraphs in the graph, as well as by a similar distribution
provided by the recently developed overall topological indices [58, 61—
63]. The latter ascribe certain weights or magnitudes to each of the
subgraphs, such as the subgraph total adjacency, [58, 61] its total distance,
[62] and the vertex-degree-based Zagreb indices [63]. The overall
information indices thus constructed and, particularly, the two information
overall connectivity indices and that on the total substructure count would
seem to satisfy to a high degree the requirements for a good measure of
structural complexity.
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