Linear Algebra (Math 2890) Practice Problems 1

Topics for Midterm I:1.1-1.5, 1.7, 1.8

1. Show that $A=\left[\begin{array}{ccccc}1 & 2 & -2 & 0 & 7 \\ -2 & -3 & 1 & -1 & -5 \\ -3 & -4 & 0 & -2 & -3 \\ 3 & 6 & -6 & 5 & 1\end{array}\right]$ is row equivalent to $\left[\begin{array}{ccccc}1 & 0 & 4 & 0 & -3 \\ 0 & 1 & -3 & 0 & 5 \\ 0 & 0 & 0 & 1 & -4 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$.
2. Determine if the following systems are consistent and if so give all solutions in parametric vector form.
(a)

$$
\begin{array}{rll}
x_{1} & -2 x_{2} & =3 \\
2 x_{1} & -7 x_{2} & =0 \\
-5 x_{1} & +8 x_{2} & =5
\end{array}
$$

(b)

$$
\begin{array}{lllll}
x_{1} & +2 x_{2} & -3 x_{3} & +x_{4}=1 \\
-x_{1} & -2 x_{2} & +4 x_{3} & -x_{4}=6 \\
-2 x_{1} & -4 x_{2} & +7 x_{3} & -x_{4}=1
\end{array}
$$

3. Let $A=\left[\begin{array}{cccc}1 & 3 & -4 & 7 \\ 2 & 6 & 5 & 1 \\ 3 & 9 & 4 & 5\end{array}\right]$.
(a) Find all the solutions of the non-homogeneous system $A x=b$, and write them in parametric form, where $b=\left[\begin{array}{l}-1 \\ -2 \\ -3\end{array}\right]$
(b) Find all the solutions of the homogeneous system $A x=0$, and write them in parametric form.
(c) Are the columns of the matrix A linearly independent? Write down a linear relation between the columns of A if they are dependent.
4. Let $S=\operatorname{Span}\left\{\left[\begin{array}{c}1 \\ -2 \\ 3 \\ 1\end{array}\right],\left[\begin{array}{c}0 \\ 1 \\ 1 \\ -2\end{array}\right],\left[\begin{array}{c}1 \\ -3 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{c}0 \\ 1 \\ 1 \\ -3\end{array}\right]\right\}$.
(a) Find all the vectors $u=\left[\begin{array}{l}a \\ b \\ c \\ d\end{array}\right]$ such that the u is in S. Write these u in parametric form. Justify your answer.
(b) Is $v=\left[\begin{array}{c}-1 \\ 3 \\ -2 \\ 1\end{array}\right]$ in S.
(c) Is $w=\left[\begin{array}{c}1 \\ 3 \\ -2 \\ 1\end{array}\right]$ in S.
5. Consider a linear system whose augmented matrix is of the form

$$
\left[\begin{array}{lll|l}
1 & 1 & 1 & 2 \\
1 & 2 & 1 & b \\
3 & 5 & a & 1
\end{array}\right]
$$

(a) For what values of a will the system have a unique solution? What is the solution? (your answer may involve a and b)
(b) For what values of a and b will the system have infinitely many solutions?
(c) For what values of a and b will the system be inconsistent?
6. Determine if the columns of the matrix form a linearly independent set. Justify your answer.
$\left[\begin{array}{cc}-2 & 1 \\ 4 & -2 \\ 0 & 0 \\ -6 & 3\end{array}\right],\left[\begin{array}{cc}-2 & 1 \\ 4 & -2 \\ 2 & 2\end{array}\right],\left[\begin{array}{ccc}1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 0\end{array}\right],\left[\begin{array}{ccc}1 & 1 & 3 \\ 0 & 1 & 2 \\ 1 & -1 & -1 \\ 1 & 0 & 1\end{array}\right],\left[\begin{array}{ccccc}-4 & -3 & 1 & 5 & 1 \\ 2 & -1 & 4 & -1 & 2 \\ 1 & 2 & 3 & 6 & -3 \\ 5 & 4 & 6 & -3 & 2\end{array}\right]$.
7. $M=\left[\begin{array}{ccc}1 & 1 & 2 \\ 1 & a+1 & 3 \\ 1 & a & a+1\end{array}\right]$.
(a) Describe the values of a so that the column vectors of M are linearly independent.
(b) Describe the values of a so that the column vectors of M are linearly dependent.
8. Let $e_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], e_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$ and $e_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$. Suppose $T: R^{3} \mapsto R^{2}$ is a linear transformation such that $T\left(e_{1}+e_{2}\right)=\left[\begin{array}{c}1 \\ -1\end{array}\right], T\left(e_{1}-e_{2}\right)=\left[\begin{array}{l}2 \\ 3\end{array}\right]$ and $T\left(e_{1}+e_{2}+e_{3}\right)=\left[\begin{array}{c}1 \\ -2\end{array}\right]$. What is $T\left(\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]\right)$?

