CSET 3600: Software Engineering

Homework 3

Logging Framework

For this assignment, you will be creating a logging framework to perform simple
logging for Java Applications. In addition to logging to the console (System.out), you
should add support for logging to a file. For simplicity, you can default to writing a
file named “application.log” in the current directory (the directory in which the
current Java program is running) for the file logger. Note that these requirements
imply at least two classes. Your framework should support the following log levels
for messages:

* Debug

* Info

* Warning
* Error

When a program calls the logger, your logger should display a message to standard
out with the following information:

* The log level of the message,

* the time when it happened, and

* the log message itself.

For example:

ERROR 2010-09-02 17:43:21 - The flux capacitor is unavailable, unable to
travel in time.

The interface should be simple. The interface SHOULD NOT require that the user
pass in any extra parameters to the methods (e.g., the time)

We want to be able to specify whether we want an application to use the console
logger or the file logger. For this, we need to create an instance of the logger that we
want to use and pass that to our application. Our application won’t and shouldn’t
know whether it is logging to a file or the console after the logger instance has been
created!

What you will submit:
* The source code to your java files
* The output generated when you run your LogRunner file
* The contents of the “application.log” file after the LogRunner has been run
* A one-page paper explaining your design. Remember that part of software
engineering is communicating design effectively.

Running the Logger

You must create a LogRunner class that shows both a console logger and a file
logger working. Your “main” method should create two instances of a logger, one
being the console logger and one being the file logger. It should send the same log
messages to both logger instances (do not duplicate code, however).

Here is an example of what that class might look like:
class LogRunner{
public static void main(String[] args){
Logger 11 = new ConsolelLogger();
testlLogger(ll);

Logger 12 = new FilelLogger();
testlLogger(12);

}

public static void testlLogger(Logger logger){
logger.debug("Hello World");
logger.debug("Foo Bar");

logger.info("Something");
logger.info("Something else");

logger.warn("Something bad");
logger.warn("another bad thing");

logger.error("Something really bad!!!");
logger.error("FIX ME...Something bad is happening.!!!");

Make sure that your class is named LogRunner and that it is in a file named
“LogRunner.java”. You should

Additional Instructions

You should make use of good Object-Oriented design principles (Interfaces, abstract
classes etc.). Points will be deducted for duplicated code (e.g., the same code
copy and pasted somewhere else); this includes in the LogRunner!

Do NOT specify a package for your classes. If you use an IDE, make sure that your
java classes compile from the command-line. You can test it from the command-line
on your own.

[will compile your code using the following command:

javac *.java

[will then run your programs using the following command:
java LogRunner

