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Introduction

 

Initial evidence for the effects of genetic factors on a quant-

itative or qualitative trait usually comes from a genetically

informative epidemiological study of twins or adoptees.

 

1,2

 

Subsequently, identification of the specific genetic factors

involved may be attempted using one or both of two main

strategies. First, linkage studies may reveal positional candid-

ates, by establishing evidence for linkage in specific regions

of the genome. Such findings may be compared to informa-

tion on known genes in the region (available from the human

genome project) to establish specific candidate loci. Second,

functional candidates may be identified through knowledge

of the biochemical or neurological systems involved in the

phenotype under study. Functional candidates are often tested

using association studies, but they are subject to false positive

findings caused by population stratification or insufficient

correction for multiple testing.

 

3

 

Evidence for linkage is unlikely to arise by chance, because

of the high significance levels typically used in this type of

study. Essentially the method works by correlating the degree

to which relatives share alleles identical-by-descent (IBD) at

an hypothesized position on a chromosome with their degree

of phenotypic similarity. Approaches such as Haseman–Elston

regression

 

4

 

 have led to covariance structure models

 

5–8,9

 

 which

are more flexible for multivariate analysis.

However, relatively modest amounts of genetic heterogen-

eity can cause enormous variability in the location of the peak

 

10

 

.

Even without heterogeneity the peak lod score is subject to

sufficient stochastic variation that 95% confidence intervals

on the peak location could encompass a region with many

genes. Therefore, methods for fine mapping are highly desirable.

Joint linkage and association analysis

 

11–13

 

 appears to offer

several advantages. This method is really a marriage of the

use of identity-by-descent information gathered from exam-

ination of a set of linked loci with mean differences associated

with specific alleles. It has been shown

 

11

 

 that the linkage signal

decreases while the association signal increases when the alleles

being tested are in linkage disequilibrium with (or are at) the

trait locus. In this article I describe how Mx

 

14

 

 may be used

to fit this combined linkage and association model, by using

either the graphical path diagram representation or the script

language. A valuable benefit of this implementation is that it

is readily extended to the multivariate and multilocus cases.

 

Method

 

Mx statistical model

 

Mx has a general interface for the analysis of raw ordinal or

continuous data by normal theory maximum likelihood.
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Abstract

 

Evidence for genetic linkage, obtained from a correlation between phenotypic

similarity and genetic similarity at a specific chromosomal location typically yields

a broad genomic region in which a candidate locus might be found. Evidence for

association is usually gathered from case control studies and is subject to false

positives from phenomena such as population stratification. Data from relatives

may be used to distinguish population stratification from genuine allelic effects in

an association context. Of special interest is joint linkage and association which

may be used for fine mapping because evidence for linkage will be reduced in the

presence of evidence for association. This article describes the implementation of

these methods using Mx, in both path diagram and script formats, and discusses

a number of possible extensions to the model.
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Usually, raw numeric data are read using a rectangular Ascii

format. Variables may be used to select cases (e.g. select if

sex = 1), and a subset of the variables read may be selected

for analysis (e.g. 

 

select siblweight sib2weight pihat allelelsibl

. . . allele5sib2

 

). Of the variables selected for analysis, a

further sub-setting is possible using the 

 

definition_variables

 

command. Variables listed in a 

 

definition_variables

 

 com-

mand are not selected for analysis, but they may be inserted

to modify the elements of any matrix used to define the

statistical model. This modification occurs on a case-by-case

basis so that the statistical model may be different for every

case in the sample. It is this feature that makes it simple

to specify random or fixed effects in what is often termed

a mixed model.

 

15,16

 

 Hierarchical linear models

 

17,18

 

 are also

subsumed in this methodology.

In Mx, models may be specified using either the script

language or by drawing a path diagram in the graphical user

interface which then automatically converts the diagram to

a script, executes it, and displays the output parameter estim-

ates and fit statistics in the diagram. Central to both these

approaches is a matrix algebra interpreter. It allows the user

to declare matrices and to manipulate them using matrix

algebra formulae. Predicted means and covariances, case

weights, and frequencies may be specified using arbitrarily

complex matrix algebra formulae. The normal theory likeli-

hood function 

 

L

 

i

 

 of

 

 

 

the 

 

i

 

th data vector is computed as a

frequency-weighted product of a finite mixture

 

19

 

 of 

 

m

 

 models:

 

L

 

i

 

 = 

 

f

 

i

 

 

 

w

 

ij

 

g

 

(

 

x

 

i

 

, 

 

µ

 

ij

 

, 

 

Σ

 

ij

 

)

where 

 

f

 

i

 

 is the frequency, 

 

w

 

j

 

 is

 

 the weight of model 

 

j

 

, and

 

g

 

(

 

x

 

i

 

, 

 

µ

 

ij

 

, 

 

Σ

 

ij

 

) is the multivariate normal probability density

function evaluated at the observed vector 

 

x

 

i

 

 for a particular

predicted mean vector 

 

µ

 

ij

 

 and covariance matrix 

 

Σ

 

ij

 

. Mx allows

the frequencies, the weights, the predicted means and the

predicted covariances to be a function of definition variables

in each data vector 

 

i

 

.

 

Model for the means

 

Table 1 shows predicted sibling means and half the pair sum

and difference for all possible pairs of siblings classified

using a diallelic locus. The homozygote 

 

A

 

1

 

A

 

1

 

 has a mean of

 

a

 

, the heterozygote has a mean of 0, and the 

 

A

 

2

 

A

 

2

 

 homo-

zygote has a mean of –

 

a

 

. We wish to investigate not only

whether the genotypes differ in their means (which is simply

a test for the significance of 

 

a

 

) but also whether this is as

true within sib pairs (who belong to the same stratum) as

it is between individuals in different families. Therefore, the

model is parameterized separately in terms of the pair means

and pair differences, using the symbols 

 

a

 

b

 

 for the effect of

the 

 

A

 

 locus between families, and 

 

a

 

w

 

 for its effect within sib

pairs. By reading the genotype of siblings into Mx and

declaring them as definition variables it is possible to select

the appropriate coefficients for 

 

a

 

b

 

 and 

 

a

 

w

 

 from columns five

and six of Table 1. The Mx script implements this model

using the script language.

Many researchers find path diagrams a useful way to rep-

resent models of covariance structure. When drawn correctly,

path diagrams provide a mathematically complete description

of a model, which makes it possible to specify diagrams using

path diagram drawing software such as the Mx graphical

user interface (GUI)

 

14

 

. Path diagrams consist of circles that

represent latent variables, and squares that represent observed

variables. These variables are related to each other by causal

relations, drawn as single-headed arrows, and by correlational

relations drawn as double-headed arrows. It is also possible

to construct a model for the means using triangles, which

represent constants that do not contribute to the variance of

a variable, but only to its mean. One final construct in a path

diagram is the placement of an observed, individual-level

variable on a path, which is shown as a variable name inside

a diamond shape (

 

e

 

). It is this feature, unique to Mx soft-

ware at this time, that allows specification of separate models

for every sibling pair in the sample. We allow 

 

3

 

i

 

 to differ

between pairs in the covariance of the QTL latent variables,

and the observed alleles to differ between pairs according to

which alleles they have at the locus.

Figure 1 shows a path diagram for a joint linkage and

association model. The upper half is the model for the

means, which depends on the specific values of the APOE1

and APOE2 definition variables. These variables are the

2

j 1=

m

∏

Table 1 Expected sib-pair means and differences at a single additive two-allele locus

Genotype Individual mean Pair statistics Stratified means

 Sib 1 Sib 2 Sib 1 Sib 2 Sum/2 Difference/2 Sib 1 Sib 2

A1A1 A1A1 a a a 0 b b

A1A1 A1A2 a 0 a/2 a/2 b/2 + w/2 b/2 – w/2

A1A1 A2A2 a –a 0 a w –w

A1A2 A1A1 0 a a/2 –a/2 b/2 – w/2 b/2 + w/2

A1A2 A1A2 0 0 0 0 0 0

A1A2 A2A2 0 –a –a/2 a/2 –b/2 + w/2 –b/2 – w/2

A2A2 A1A1 –a a 0 –a –w w

A2A2 A1A2 –a 0 –a/2 –a/2 –b/2 – w/2 –b/2 + w/2

A2A2 A2A2 –a –a –a 0 –b –b/w
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measured genotypes of an individual, scored –1, 0 or 1

according to whether they have zero, one or two alleles of

a particular type† at the locus. The mean of an individual

is computed by tracing back from their phenotype (LDL1 or

LDL2 in Fig. 1) to the constant M in the triangle at the top

of the page. The values on the paths (1, b, w, etc.) are multi-

plied together for each possible pathway from the pheno-

type to the constant M. The predicted mean level is given by

the sum of the possible pathways. It is easy to verify that the

predicted means of LDLl and LDL2 agree with those in the

two right-hand columns of Table 1.

The lower half of Figure 1 shows the covariance model.

This model is limited to three sources of covariation, as

would be appropriate for a study of sibling pairs. E1 and E2

represent residual variance components specific to each indi-

vidual, which include environmental factors not shared with

a sibling and error of measurement. Q1 and Q2 represent the

effects of one or more quantitative trait loci that are linked

to the location at which the proportion of alleles identical-

by-descent (IBD) is computed (usually the locus used in the

means model above). The correlation between Q1 and Q2

is set to equal 3 = p(IBD = 2) + 0.5p(IBD = 1). F1 and F2

represent familial factors, both genetic and environmental,

shared by siblings, btit which exclude the effects of the locus

in the means model and other loci linked to it.

Relevant statistical tests for association are obtained by

comparing the log-likelihood of the full model (with parameters

w, b, f, q and e free) against a reduced model. Under certain

regularity conditions and the assumption of conditional nor-

mality, twice the difference in log-likelihood between the full

model and a nested submodel is asymptotically distributed

as χ2 with degrees of freedom (d.f.) equal to the difference in

degrees of freedom between the two models. A one-d.f. test

for population stratification is given by equating the between-

and within-family components w and b. A conservative test

for allelic effects is the one-d.f. test of w = 0 against the full

model, and a more powerful test may be given by b = w = 0

which assumes no stratification. Under some circumstances,

this test can be less powerful, if for example stratification

exists but it counteracts the effect of the alleles.

Statistical tests for linkage are provided by testing for the

significance of the parameter q in the model. If there are

genuine effects of the locus being used to model the means,

eliminating the allelic effects on the means would normally

increase the size of parameter q, because the linkage signal

would include the allele effects. It is this comparison which

facilitates fine mapping. The availability of single nucleotide

polymorphisms, which are by nature diallelic, makes this

approach especially attractive.

Extensions to the method

Perhaps the greatest advantage of the Mx implementation

of the Fulker–Cherny joint linkage and association model is

that it is very simple to extend to a variety of multivariate

cases20. The simplest such extension is a common factor

model, in which a variety of traits correlate because they

share a source of variance in common. Using the method

described above, it is straightforward to make the observed

variables LDL1 and LDL2 into latent factors, and to specify

causal paths to a set of observed measures for each subject.

This ‘common pathway’ or ‘psychometric factor’ model is a

natural extension of the common factor model widely used

in psychometrics, econometrics and many other fields. Espe-

cially notable in the joint linkage and association model

is that the model is specified with a factor mean, which in

†It is convenient to count the number of ‘increasing’ alleles, but for multi-

variate analysis this is not always possible. It is also worth noting that for 

a locus with many alleles it is possible to compare one allele against all 

others with no modification to the method.

Figure 1 Path diagram of model for joint linkage and association in 

sib pairs, allowing for possible population stratification. S represents 

half the sum of the sibling pair’s genotypic effects, and D represents 

its distance. These parameters contribute to between-pair (B) and 

within-pair (W) effects via parameters b and w, respectively.



......................................................................................................................................................................................................
4 Use of Mx for association and linkage analysis M. C. Neale GeneScreen

© 2000 Blackwell Science Ltd. GeneScreen 1, 000–000

turn influences the means of the observed scores. In fact

this model makes strong predictions about the degree of

influence of the locus on the observed scores, namely that

the mean differences between individuals with different geno-

types will be proportionate to the size of the loading on the

common factor. Such a prediction may or may not be borne

out by the data. The association part of the model (in the

means) would be accounting for both variation within and

covariation between the various traits, and would lead to a

reduction in both residual variation and covariation gener-

ated by parameters qi that model the linkage effect on each

of the i traits. Multivariate tests of this sort are often more

powerful than univariate tests, because covariance as well as

variance is explained by the model.

A second straightforward extension is to the multiple locus

case, as I described in the volume arising from the first Inter-

national Meeting on the Genetic Epidemiology of Complex

Traits9. In practice, linkage studies in humans are unlikely to

be of sufficient size to detect epistatic interactions between

loci. If they do, it is even more unlikely that it will be pos-

sible to discriminate between the different possible types

of interaction, namely additive × additive, dominance ×
dominance and dominance × additive. However, detection

of such interactions becomes quite powerful in the context

of an association study, where the two interacting loci have

been measured. Population stratification notwithstanding,

the power for detecting interactions between two diallelic

loci should be very similar to a two-way analysis of variance

with three levels.

Genetic epidemiology is often much more complicated

than the analysis of a single trait together with some genetic

marker data or other genetically informative research design

such as twins or adoptees. Frequently we seek to understand

the action and interaction of risk factors that are associated

with outcomes. In many cases we do not have a single indic-

ator of disease status, but must rely on different sources of

information about an individual’s liability to disease. In child

psychiatry it is common to use ratings of children, which

may be made by the children themselves, their teachers,

parents or other relatives. Some traits show substantial rater

bias such that the reports made appear to reflect as much

about the individual making the rating as about the one

being rated21. In such cases it would be especially important

to partition variation in the measures into bias and true score

components and to focus the genetic model on the true score

rather than the bias. Similarly, co-morbidity between dis-

orders may arise for a number of reasons22 and the choice

of an appropriate model could enhance the detection of trait

loci. Conversely, correct modelling of the gene action on

multiple disorders could enhance the understanding of the

sources of co-morbidity.

Gene–environment interactions and correlations provide

another area of substantial complexity for genetic epidemiology.

G–E interaction occurs when the same genes have different

effects on the phenotype depending on the environment in

which they are expressed. In a traditional twin study context

such effects might be detected by separating each twin group

into three subsets (concordant exposed, discordant exposed,

concordant non-exposed) according to some dichotomous

environmental factor and testing for differences in the herit-

ability between groups. In a linkage/association context the

same basic approach could be used to detect interactions at

the locus or region in question. It is worthwhile noting that

the definition_variable technology allows a more flexible

analogue of this approach that can handle continuous as

well as binary environmental indices.

In summary, one could take any model from a genetic

epidemiology textbook such as Neale & Cardon23 and aug-

ment it with both mean allelic and IBD-based QTL effects.

These methods form a bridge between three areas: linkage

and association studies; traditional genetic epidemiological

studies of twins and families; and non-genetic studies of co-

morbidity and risk factors. As such, they should prove to be

fertile ground indeed for future health research.
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