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By Kevin A. Webster, B.S. 

A thesis submitted in partial fulfillment of the requirements for the degree of Master of 

Science at Virginia Commonwealth University. 

Virginia Commonwealth University, 2012 

Major Director:   
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 The 129S2 inbred mouse strain is often used as a background strain in the 

production of genetically altered mice (i.e. knockout and transgenic mice). It is important 

to establish the behavioral phenotype of wild-type mice before making comparisons to 

genetically altered mice. Also, those comparisons can assist in the evaluation and 

interpretation of the in vivo effects of drugs. The drug discrimination assay measures the 

subjective effects of drugs and provides a measure of underlying neuropharmacological 

mechanisms responsible for the discriminative stimulus properties of drugs. The present 

study established the atypical antipsychotic drug clozapine as a discriminative stimulus in 

male 129S2 inbred mice and compared clozapine‘s discriminative stimulus properties in 

129S2 mice to C57BL/6 and DBA/2 inbred mice.  By comparing the discriminative 

stimulus properties between inbred strains of mice we hope to obtain a fuller picture of 

the underlying neuropharmacological mechanisms of antipsychotic drugs. 
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Behavioral Phenotyping of the Discriminative Stimulus Properties of the Atypical 

Antipsychotic Drug Clozapine in 129S2/HSV mice. 

Schizophrenia is a severe and complex psychological disorder. It has been 

historically reported to affect approximately 1% of the world's population and onset 

typically occurs during late adolescence or early young adulthood in the early to mid-20s. 

The prognosis for a patient that develops schizophrenia is grim as most carry the disease 

with them their entire life. The early 1950s saw a revolution in the treatment of 

schizophrenic patients with the introduction of antipsychotic drugs; however, the disease 

has eluded a cure due in part to a murky etiology. While studies have shown a clear 

genetic component for schizophrenia, monozygotic twins only have a 50% concurrence 

rate for the disease implying that other factors such as neurodevelopmental events and/or 

environmental influences also play a strong role in the etiology of schizophrenia (Brown, 

2011). 

Etymology of schizophrenia 

The term schizophrenia was first coined by Swiss physician Paul Eugen Bleuler at 

the 1908 meeting of the German Psychiatric Association in Berlin (Fusar-Poli & Politi, 

2008). Bleuler introduced the term as more precise nomenclature for a series of 

symptoms that at the time was called dementia praecox, or young dementia. The term 

dementia praecox had been popularized by Emile Kraepelin, but Bleuler believed that the 

symptoms he had noticed were not a form of ―dementia‖ but something more. 

Schizophrenia, Bleuler felt, was a more accurate word for the disorganization of thoughts 

that was prevalent with patients suffering from the disorder. However Beuler's choice has 
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led to modern day confusion among a majority of lay and medical professionals alike. 

The Grecian roots for the word skhizein and phren translate to ―split mind‖. Many 

unfamiliar with the field associate the word with someone who is suffering from a 

disorder now known as dissociative identity disorder, or split personality. 

Symptomatology 

The DSM-IV-TR (APA, 2000) characterizes schizophrenia with five main 

symptoms: delusions, hallucinations, disorganized speech, grossly abnormal psychomotor 

behavior, and negative symptoms. These symptoms can cause social skills and relations 

to deteriorate in the patient and may be noticed by trouble at work or with other 

interpersonal relationships. In childhood and adolescent patients the inability to acquire 

fully functional social skills can be an early indicator for schizophrenia. Other symptoms 

have been identified, however, and symptoms of schizophrenia are often classified in one 

of three categories: positive symptoms, negative symptoms, or cognitive deficits (APA, 

2000).  

Positive symptoms are characterized by a manifestation of behaviors not present 

in unaffected patients. Positive symptoms are the more recognizable manifestation of 

schizophrenia and when schizophrenics are portrayed in the media and popular culture 

the positive symptoms are most often emphasized. Hallucinations and delusions are the 

archetypal positive symptoms; however, disorganized thought, incoherent speech, and 

disorganized thinking also inhabit this class. Hallucinations are often auditory (e.g.  the 

schizophrenic hears voices whispering constantly in their ear),  but visual hallucinations 
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have also been reported, especially in children (David et al., 2011). Delusions are one of 

the other common positive symptoms of schizophrenia and can appear in different forms. 

Delusions of grandeur may lead the affected to believe that they are the reincarnation of a 

great leader, figure from history, or some form of powerful and omnipotent being. 

Delusions of persecution manifest with thoughts that someone is watching the 

schizophrenic constantly, be it a secret government agent, a shadowy organization, or 

even beings of a religious/supernatural nature. Disorganized thinking is considered 

another positive symptom of schizophrenia, and often manifests itself through 

disorganized speech sometimes referred to as ―word salad‖. Noam Chomsky's famous 

phrase ―Colorless green ideas sleep furiously‖ exemplifies the concept of word salad, 

while the sentence follows proper syntax for sentence construction it holds no logical 

weight. Finally other strange motor anomalies are classified as positive symptoms in the 

schizophrenic, including tracing patterns in the air or on a surface, holding a single pose 

for extended periods of time, or random frantic movement (APA 2000).  

Negative symptoms of schizophrenia are not as prevalent in popular depictions of 

the disorder. This set of symptoms is characterized by a lack of behavior in the 

schizophrenic that is present in the unaffected population. Poverty of speech (alogia) and 

flat affect (a lack of emotional response), are two stereotypical negative symptoms. 

Apathy and avolition are two symptoms that define a patient‘s lack of motivation, 

avolition being distinct from apathy by a schizophrenic‘s desire to do a task but lacking 

the motivation to begin or initiate it. Asociality, an inability to empathize with other 

people, is one of the symptoms of schizophrenia that leads to a rapid deterioration of 



` 

4 

 

social, familial, and work life for those who develop the disease. Finally anhedonia is 

used to describe the lack of pleasure schizophrenics feel when doing activities that 

normally bring them joy.  

There has been some debate in the psychiatric community as to whether cognitive 

deficits should be included as a symptom of schizophrenia. Studies have shown that there 

is a correlation between decreased cognitive function and the schizophrenic's functional 

prognosis, yet the variety of factors that determine cognitive functioning leave the line 

between the two murky (Green, Kern, Braff, & Mintz, 2000). There is a strong body of 

research and reviews calling for cognitive impairment to be included in the Diagnostics 

and Statistics Manual Edition Five, the North American standard for classifying 

psychological disorders. Two of the main arguments for this distinction would be to raise 

awareness of cognitive dysfunction (Keefe & Fenton, 2007) hopefully leading to better 

treatment methods, and that the inclusion of cognitive deficits would help to distinguish 

schizophrenia from mood disorders (Keefe, 2008). However opponents of the inclusion 

of cognitive dysfunction claim that there is simply too much variability in that data to 

clearly associate specific cognitive symptoms with schizophrenia (Gold 2008).  

Incidence and Prevalence 

 While what causes schizophrenia is still clouded in mystery, hypotheses range 

from genetic vulnerability to seasonality of birth. By studying the incidence, how many 

new cases are reported in a given time span, and prevalence, the proportion of the general 

population that have the disorder, researchers can start to identify areas to focus their 
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work to help develop treatment methods and discover the underlying cause of the 

disorder. Onset occurs most commonly in young adulthood and while those affected will 

struggle with the disease for the rest of their lives, recovery of a functional life is 

obtainable for many schizophrenics. Unfortunately, the burden of psychosis is too much 

for some to handle and suicide among schizophrenics is not uncommon, especially 

among those dealing with their first episode of the disorder (Caldwell & Gottesman, 

1990).  

 While traditional estimates of the prevalence of schizophrenia have been reported 

to be 1% worldwide, recent research has suggested that this may be overestimating the 

number of people who have the disorder. In a review article of 158 studies incidence of 

schizophrenia was calculated to be 15.2 new cases annually per 100,000 people, less than 

.02% of the population. However this was the median rate of incidence with 10% and 

90% quartiles ranging from 7.7 to 43.0 new cases annually per 100,000 people with 

studies more frequently reporting incidence rates above the median range (McGrath et al., 

2004). However even at its highest estimate .04% of the population becoming 

schizophrenics is a relatively low rate, but with a life time struggle ahead for the majority 

of those diagnosed it is reasonable to see how prevalence rates can begin to compound. 

 Another review article analyzing prevalence of schizophrenia in 188 studies 

determined that the lifetime morbid risk, the number of people who will develop 

schizophrenia in their life time, was 7.2 per 1000 people, putting medial percentage of 

schizophrenia in the population at 0.72%, lower than the historically reported value of 

1.0% prevalence. While median values for point, period, and life time prevalence varied 
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they were not significantly different from each other (Saha, Chant, Welham, & McGrath, 

2005).  

 These studies on the incidence, how many new cases are reported in a given time 

span, and prevalence, the proportion of the general population that have the disorder, also 

reveal interesting demographic data on who in the population develops schizophrenia. 

Men have a higher incidence of the disorder, approximately 1.4 men will develop 

schizophrenia for every woman that does (McGarth et al. 2004). Interestingly there is no 

statistical difference in the prevalence of schizophrenia between the sexes, a median ratio 

of 1.11 men have this disorder for each woman that has it, possibly hinting at a difference 

in the course of the disease (Saha et al., 2005). Data were inconclusive or non-significant 

for differences between urban and rural dwelling schizophrenics. The review also reports 

a significantly increased incidence and prevalence of schizophrenia in migrant 

populations, median incidence in the migrant population is 4.6 new cases for every new 

case in native born population, and median prevalence reveals a ratio of 1.84 migrant 

schizophrenics for every native born schizophrenic (McGrath et al., 2004). The 

prevalence of schizophrenia also seems to be lower in less developed countries, with 

median rates of 2.62 per 1000 people. While rates in emerging economic countries are 

higher (median rates 4.69 per 1000 people) than developed countries (median 3.30 per 

1000 people) the two are not significantly different (Saha et al., 2005). 

Suicide among schizophrenics is another hidden problem with the disorder. While 

estimates for the prevalence of suicide have been reported as high as 10% (Phillips, 

Yang, Li, & Li, 2004) and 19.56% in affected patients 18-30 (Osborn, Levy, Nazareth, & 
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King, 2008) a life time risk of approximately 5% is the most accepted figure (Hor & 

Taylor, 2010). Unsurprisingly some of the major risk factors for suicide in schizophrenics 

is similar to those in the general population including mood disorder, recent loss, drug 

misuse, and previous attempts at suicide (Hawton, Sutton, Haw, Sinclair, & Deeks, 

2005). More recently, a literature review also identified several illness related factors 

strongly associated with schizophrenia including depression, signs of physical illness, and 

increased positive symptoms of schizophrenia specifically hallucinations and delusions 

(Hor & Taylor, 2010). 

Causes 

What causes schizophrenia has been a point of interest ever since the discovery of 

the affliction. High concurrence rates in monozygotic twins as well as higher concurrence 

rates for closer relatives point to a genetic component of the disorder. However, 

fascinating case studies such as the Genain Quadruplets, four identical twins who all 

developed schizophrenia but in different severities (Mirsky & Quinn, 1988), show that 

development and environment still play a major role in a patient‘s prognosis.   

 Twin studies play an integral role in studying the genetic and environmental 

influences of schizophrenia. Monozygotic twins show a 45-60% concurrence rate for 

developing schizophrenia, compared to the 10-15% for dizygotic twins (Brown, 2011). 

Combined with the steady concurrence for the population worldwide it would seem that 

schizophrenia would be a prime candidate to be considered a genetic disorder. Most twin 

studies seem to support this idea; Borgwardt et al. (2010) reported that between 
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concordant and discordant monozygotic twins those with schizophrenia had similar 

decreases in grey matter volume, a trait common among all schizophrenics. A meta-

analysis of twin studies reports that heredity (how much variation between subjects can 

be attributed to genomic differences)  accounts for 73-90% of the variance of whether or 

not a patient develops schizophrenia while environment only accounts for 3%-19% 

(Sullivan, Kendler, & Neale, 2003); however, Brown et al. (2011) state that this estimate 

of the effect of environment is not completely correct and may downplay the influence of 

the environment.   

 Nonetheless, genetics remains an integral part of the question of who will develop 

schizophrenia and how severe it will be. With the advances in genetic screening and 

molecular genetics the search for specific genetic markers has swept the research 

community into a fervor. The vast number of potential subjects and vast amount of 

genetic variation in the world should make it easy to find a common genetic marker for 

many common psychological disorders; however, this ―common disease, common 

variant‖ hypothesis has failed to produce convincing evidence that there is a single 

marker for schizophrenia (Gershon, Alliey-Rodriguez, & Liu, 2011) or other common 

psychological disorders. Still, genetic models and markers exist for schizophrenia, the 

leader being Disrupted in Schizophrenia 1 (DISC1). The DISC1 gene encodes for a 

protein of the same name and appears to be important for many aspects of neuronal 

development. Translocation of this gene is what causes its disruption, and it is this 

disruption that is thought to cause predisposition to schizophrenia and other ―common‖ 

psychological diseases. Transgenic animal models of DISC1 have shown phenotypic 
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effects similar to those seen in human subjects in terms of cognitive and behavioral 

functioning as well as brain anatomy (Johnstone et al., 2011).  

 Schizophrenia seems to not only affect cognitive and social functioning but 

produces changes in brain structure as well.  One important focus is the relationship 

between brain abnormalities and schizophrenia; do the abnormalities predispose someone 

to schizophrenia or does schizophrenia cause the brain to deteriorate as the patient 

continues to live? Studies have shown that magnetic resonance imaging (MRI) of first-

episode schizophrenic patients shows similar brain abnormalities, specifically: enlarged 

ventricles, loss of overall brain volume, and decreased hippocampal mass (Vita, De Peri, 

Silenzi, & Dieci, 2006). While Vita et al. failed to show significant reduction in amygdala 

volume in first-episode patients, other studies (Lawrie & Abukmeil, 1998; Wright et al., 

2000)  have shown significant reductions in amygdala volume in chronic schizophrenic 

patients. Although more research needs to be done in the field, these findings suggest that 

some aspects of abnormal brain morphology are inherit to those who are predisposed to 

schizophrenia, while other changes in brain morphology may appear as a result of the 

disease. The idea of brain abnormalities in predisposed twins, regardless of actual 

affliction, are presented in a study that showed a phenotypic reduction in brain size across 

discordant twins affected with schizophrenia (van Haren et al., 2004) and decreases in 

grey matter volume across discordant twins (Borgwardt et al., 2010).  

 An interesting correlation has been drawn between prevalence of schizophrenia 

and the season of a patient‘s birth. A review article looking at 86 studies of birth season 

of schizophrenics identified a correlation between those born in the Winter-Spring, 
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specifically January-April, and an increased prevalence of schizophrenia (Torrey, Miller, 

Rawlings, & Yolken, 1997). Not only are birth rates of those who will develop 

schizophrenia higher in those months but this review also found there was a decrease in 

the number of births of schizophrenics in the opposing seasons (summer-fall). The 

winter-spring excess of schizophrenics also occurs in the southern hemisphere, even 

though the months for these seasons are reverse from the northern hemisphere. What 

causes this increased incidence of schizophrenia for the winter-spring months is still 

unclear.  While theories range from seasonal variations of infection and external toxins to 

procreation habits of parents of schizophrenics, research for each hypothesis seems to be 

contradictive or nonsignificant. The more likely story, as with most things, is that there 

are multiple factors at play, which will exacerbate other factors eventually leading to the 

excess birth rates during these months (Torrey et al., 1997). 

 Exposure to specific viral infections has also been suspected as a possible risk 

factor for schizophrenia. Prenatal infection of many diseases has been shown to cause 

brain abnormalities, mental retardation, and learning disabilities (Brown & Derkits, 2010) 

making investigation for schizophrenia a relatively easy choice. Recently research in this 

area has shifted from studying prevalence in the wake of infection epidemics to birth-

cohort longitudinal studies. Influenza, toxoplasma gondii, herpes simplex type 2, and 

certain cytokines have been shown to increase the prevalence of schizophrenia as 

compared to nonaffected controls. Again, the question is raised whether each disease has 

a specific causal link between infection and development of schizophrenia or are there 

more common factors involved, i.e. does prenatal infection simply lead to a more 
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vulnerable fetus? Preclinical studies looking at animal models of prenatal infection have 

shown that pregnant mice infected with influenza have shown abnormal behavior in a 

variety of assays commonly used as animal models of schizophrenic behaviors (Shi, 

Fatemi, Sidwell, & Patterson, 2003) similar results have been shown with agents that 

mimic viral infection without actually causing an infection (Brown & Derkits, 2010). 

Gene-environment interactions may also play a role in infectious disease and 

schizophrenia though no clear causal link has been identified. 

 Today many researchers believe that schizophrenia has a ‗two-hit‘ model of 

infection. First proposed in Bayer (1999) this ‗two-hit‘ model suggests that neither 

genetic vulnerability nor environmental factors alone are enough to bring about the 

disease. A genetic predisposition or prenatal environmental event disrupts neural 

development in some way, the ‗first-hit‘, which establishes an increased vulnerability for 

a second hit later in life (Maynard et al. 2001). The idea that both genetics and 

environment play a summative role has been reported in clinical data and presented in 

animal models. Further examination of this ‗two hit‘ model in animals can also 

differentiate the influence of different genes of interest in human schizophrenia. If two 

genes produce different behavioral phenotypes under the same environmental influence 

then they may have different importance for schizophrenia.  

Treatment History  

While Kraepelin and Bleuler pioneered the definition of schizophrenia, historical 

medical texts and accounts can trace disorders that have symptoms similar to 
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schizophrenia across multiple cultures and time periods. Even as far back as 1500 B.C.E. 

the Book of Hearts, part of an ancient Egyptian medical scroll the Ebers Papyrus, 

describes cognitive dysfunction similar to that of schizophrenia (Kyziridis, 2005). Most 

of these early descriptions draw the cause of mental anguish back to some supernatural 

cause, possession by a daemon or the wrath of a displeased god, and treatments ranged 

from prayer and sacrifices, an attempt to appease the wronged god, to more dangerous 

methods such as drilling holes in the patients head to exorcise the trapped daemon.  

 Supernatural influences maintained a firm grasp on the origin and explanation of 

mental disorders throughout the middle ages. This did not completely hinder the 

development of diagnosis and treatment of mental disorder though, as early medical 

scholars and physicians began to distinguish mental disease from bodily disease as early 

as the 6
th

 century C.E. (Kyziridis, 2005). By the end of the middle ages mental disorders, 

usually under the broad term insanity, were a distinct class of disease. However treatment 

was far from what it is today. In the early 14
th

 century the first insane asylums began to 

appear in Europe but most asylums at this time were simply places to hold patients, not 

treat them. The ―treatments‖ that were practiced in these asylums were often crude, 

ineffective, and dangerous; ranging from being restrained in a chair for days on end to 

more farfetched procedures like trepanning, an ancient surgical technique where a hole 

was drilled in the patients head to exorcise the daemons trapped within. By the late 1700s 

a movement had started, as William Battie noted in Treatise on Madness ―Madness, 

therefore, like most other morbid cases, rejects all general methods, e.g. bleeding, 

blisters, caustics, rough cathartics, the gumms and faetid anti-hysterics, opium, mineral 

waters, cold bathing and vomits‖ (Morris, 2008). What had become standard practice for 



` 

13 

 

treatment of disease, mental or otherwise, was not working and a new protocol was 

needed. In the late 18
th

 century pioneers of psychiatric treatment had begun to emerge 

and called for better management of the mentally ill. Phillipe Pinel, William Tuke, and 

others began to open reform asylums that used more humane methods to manage the 

mentally ill. The success of these methods caught on quickly and by the mid-19
th

 century 

asylums began to celebrate institutions free of the restraints and barbaric treatments of the 

past (Kyziridis, 2005) 

 In the early 1950s a monumental breakthrough in the management of 

schizophrenia came with the first pharmacological treatment- chlorpromazine. Originally 

developed for use as an anesthetic during surgery, French surgeon Henri Laborit  was 

among the first to notice how the drug produced tranquilizing effects without sedation; 

and he began to postulate about its antipsychotic application (Stip, 2002). While these 

behavioral effects were being noticed the underlying pharmacological mechanism was 

still a complete mystery to the early prescribers of neuroleptics. It would take over ten 

years before results were published showing that blockade of dopamine receptors was the 

main mechanism of action for what became the first generation antipsychotics (Carlsson 

& Lindqvist, 1963). Chlorpromazine is classified as a typical or first generation, 

antipsychotic and shares this nomenclature with other early antipsychotics such as 

haloperidol and thioridazine. As with chlorpromazine, these drugs‘ main mechanism of 

action is through blockade of dopamine receptors, specifically D2 and D3 receptors 

(Tajima, Fernandez, Lopez-Ibor, Carrasco, & Diaz-Marsa, 2009). While these first 

generation antipsychotics represented a major advancement for the treatment and 

management of schizophrenia, they were not without their drawbacks. In general, typical  
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antipsychotic drugs work well to reduce the positive symptoms of schizophrenia, but they 

are marginally effective, at best, at alleviating negative symptoms and cognitive deficits 

that are common in schizophrenics (Tajima et al., 2009). These drugs also have a long list 

of side effects, the most prevalent among them being extrapyramidal motor side effects 

(EPS), which are classified as Parkinsonian like tremors and other small, repetitive motor 

movements. These EPS effects were thought to be predictive of clinical efficacy in the 

early days of treatment- the stronger or more pronounced the EPS the more effective the 

drug was thought to be. This theory turned out to not only be wrong but dangerous, since 

strong EPS became a desired quality when dosing early generation antipsychotics 

(Weiden, 2007).  

In the same decade that chlorpromazine came on the market another drug that 

would again revolutionize the treatment of schizophrenia came out of the laboratory 

setting. Clozapine, sometimes hailed as the gold standard of ―atypical‖ antipsychotics, 

was first synthesized in 1958 by a small Swiss laboratory (Wander Laboratories). While 

early testing of clozapine was meet with mixed results, including a lack of motor side 

effects, in 1966 Hanns Hippius continued the clinical trials started by Wander just 7 years 

earlier and found that clozapine effectively treated psychotic symptoms without the 

expected EPS effects (Ramachandraiah, Subramaniam, & Tancer, 2009). Clozapine‘s 

efficacy at alleviating the positive and negative symptoms, combined with its lack of EPS 

effects, helped clozapine gain momentum until misfortune struck in the mid-1970s. In 

1975 Griffith and Saameli reported in Lancet that sixteen Finnish patients who had been 

given clozapine had developed agranulocytosis, an acute drop in white blood cell count, 

resulting in nine deaths (Griffith & Saameli, 1975). This caused the Finnish government 
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to quickly pull clozapine from the market, and other European countries soon followed 

suit. Although it had been pulled from most markets, research on this new antipsychotic 

continued. In 1988 a study was published showing that patients who did not respond well 

to typical antipsychotic drugs showed a significant improvement after treatment with 

clozapine. Patients who had been given clozapine treatment displayed significant 

improvements in Clinical Global Impressions, Brief Psychiatric Rating Scale, Nurses' 

Observation Scale for Inpatient Evaluation - all scales that measure the severity of a 

patient‘s symptoms or quality of life (Kane, Honigfeld, Singer, & Meltzer, 1988). A 

number of clozapine ―clones‖, drugs with similar binding profiles or chemical structures, 

began to appear in the 1990s. Drugs such as olanzapine, quetiapine, and risperidone were 

more efficacious and caused less side effects, especially EPS, than their typical 

predecessors; although, except for clozapine, none of the newer drugs seemed to be  more 

efficacious than any other (Ramachandraiah et al., 2009). While clozapine is still 

reserved for use in patients resistant to other forms of treatment, its superior efficacy for 

treating the symptoms of schizophrenia and decreased motor side effects leaves it as one 

of the most effective treatments for schizophrenia.  

Clozapine  

Clozapine began a new era of pharmacological treatment in schizophrenia. The 

drugs that would later fill out the ranks of the atypical antipsychotics mimic, in some 

way, its structure and receptor binding profile. While classification of antipsychotics is 

often characterized by presence or severity of EPS effects (Meltzer, 2000), most atypical 

antipsychotics share a mechanism of action that differs from the mechanism of most 
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typical antipsychotics. Most typical antipsychotics work through antagonism of D2/D3 

receptors with strong receptor binding affinity  (Creese, Burt, & Snyder, 1976). This 

dopamine receptor antagonism is also thought to be the pharmacological source of many 

of the side effects in first generation drugs (Meltzer & Stahl, 1976). Atypical 

antipsychotics bind to dopamine D2 and D3 receptors, although their affinity for D2 and 

D3 receptors is lowered as compared typical antipsychotics, while the ratio of binding to 

5-HT2 receptor subtypes relative to dopamine binding is greater than in typical 

antipsychotics (Meltzer, Matsubara, & Lee, 1989). Specifically it is thought that the 

inverse agonist action of 5-HT2A in combination with weak D2/D3 antagonism as well as 

5-HT2A antagonism causes atypical antipsychotics to be more efficacious and more 

tolerable than typical antipsychotic drugs. (Meltzer & Massey, 2011).  

Behavioral Phenotyping 

 Behavioral phenotyping is the study of how genetic differences between 

organisms affect the organisms‘ behavior. While integral to finding behavioral 

differences between genetically altered animals and their background control strains, it 

can also be used to examine differences between inbreed strains of the same species. 

Behavioral phenotyping can also be used to draw similarities from studies using different 

strains of the same species. Although the C57/BL6 mouse has become the ―poster child‖ 

for rodents, specifically mice, used in behavioral research it is not perfect for all 

behavioral models. Testing done with other popular strains, including DBA/2 and 129 

substrains (129S, 129T, 129P) can draw correlates to other research done with C57BL/6 

mice. The C57BL/6 and 129 strains are commonly used as background strains when 

producing knockout mice. Examining how each of these strains performs on a specific 
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task, as well as the B6129 hybrid strain, can give important insights into the behavior of 

any knockout mice produced using C57 and 129 inbred strains as the parent or 

background strain by providing a behavioral baseline free of genetic manipulation. 

Review articles have examined a large number of inbred mouse strain using a variety of 

different behavioral measures, however the battery of behavioral assays and strains or 

genes of interest change from area to area (Crawley et al., 1997; Hossain, Wong, & 

Simpson, 2004). Also, behavior is highly susceptible to subtle environmental changes 

from lab to lab leading some to question the validity of some results found through 

behavioral phenotyping (Crabbe, Wahlsten, & Dudek, 1999). 

 Behavioral phenotyping of inbred strains can also highlight the importance of 

genetics, metabolism, and receptor expression on behavior. In particular drug 

discrimination studies with clozapine using different inbred strains and knockout animals 

can lead to insights about the underlying receptor mechanisms that account for the 

discriminative stimulus properties of a drug. Clozapine discrimination has already been 

established in C57BL/6 mice and DBA/2 mice. Both strains were able to acquire the 

discrimination with a training dose of 2.5 mg/kg and ED50 values for clozapine were 

similar in both strains, (ED50 = 1.19 mg/kg (95% CI = 1.09-1.30 mg/kg) for C57BL/6 

(Philibin et al., 2009) and ED50 = 1.30 (95% CI = 1.178-1.443 mg/kg) for DBA/2 (Porter, 

Walentiny, Philibin, Vunck, & Crabbe, 2008)). While antagonism of α1 and 5-HT2 

receptors are important in the discriminative stimulus properties of clozapine in C57BL/6 

mice, none of the tested selective antagonists substituted for clozapine in the DBA/2 

strain, implying a compound cue in the DBA/2 strain (Porter et al., 2008) (see Table 1).  
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Drug Discrimination with Antipsychotic Drugs 

Drug discrimination is a preclinical assay where animals are trained to make a 

specific operant response depending on the presession treatment condition the animal 

received. Drug discrimination with antipsychotics has been established in a variety of 

species including pigeons (Hoenicke, Vanecek, & Woods, 1992), rodents (Goudie, Smith, 

Taylor, Taylor, & Tricklebank, 1998; Philibin, Prus, Pehrson, & Porter, 2005), and non-

human primates (Carey & Bergman, 1997). Drug discrimination studies with 

antipsychotics have also been shown to be resistant to small methodological changes, as 

response to training drugs and test drugs are fairly consistent despite differences in pre-

session injection times, schedule of reinforcement, type of reinforcer, and route of 

injections across studies (Porter & Prus, 2009).    

Drug discrimination is used to determine which neurochemical mechanisms play 

an important role in the discriminative properties of the training drug. The idea that 

action at a specific neurotransmitter receptor can produce discernible changes in how the 

animal feels (i.e. subjective effects) is central to the drug discrimination procedure. Drug 

discrimination allows researchers to explore the pharmacological effects of drugs in vivo 

and can uncover important behavioral effects that molecular assays are unable to detect. 
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Table 1  

 

Comparison of selective ligands tested in C57BL/6 and DBA/2 animals in a clozapine 

drug discrimination assay. 

 

 Shows substitution testing of selective ligands tested in both C57 and DBA inbreed 

strains of mice trained to discriminate 2.5mg/kg clozapine from vehicle. FULL: Full 

substitution with percent drug lever responding ≥ 80%, PARTIAL: Partial with 

substitution percent drug lever responding ≥ 60%, NO: No substitution with percent drug 

lever 

responding < 60%. Data presented is compiled from (Philibin et al., 2009; Porter et al., 

2008) 

 

 

 

 

 

  

Selective Ligands Tested C57BL/6 mice DBA/2 mice 

Ritanserin (5-HT2A/2B/2C antagonist) FULL NO 

Scopolamine (muscarinic antagonist) PARTIAL PARTIAL 

Prazosin (α1 adrenergic antagonist) FULL NO 

Pyrilamine (H1 antagonist) NO NO 

Amphetamine (dopamine agonist) NO NO 
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Nearly a decade after chlorpromazine was introduced the first drug discrimination 

studies using antipsychotics began to appear. Chlorpromazine was used as a training drug 

for many of these early studies and while training doses, types of reward, and subsequent 

results varied between these early studies, the studies showed that antipsychotic drugs 

could be established as discriminative stimuli in this procedure. Stewart (1962)  using 4.0 

mg/kg chlorpromazine versus vehicle, showed that stimulus control could be established 

and maintained in a three-compartment shock avoidance chamber. Twelve years later 

chlorpromazine (1.0 mg/kg) versus vehicle was again established in rats using a two-

lever operant task, in which the animals received a food reinforcer for correct responses 

and a shock for incorrect responses (Barry, Steenberg, Manian, & Buckley, 1974).  

Compared to atypical antipsychotics most typical antipsychotics have a relatively 

limited binding profile. High affinity at the dopamine D2 receptor family is one of the 

main similarities of receptor binding in typical antipsychotics. Atypical antipsychotics 

have a higher affinity at 5-HT2A receptors relative to D2 receptors. D2 receptor blockade 

is thought to be important for the therapeutic action of both typical and atypical 

antipsychotics (Seeman & Tallerico, 1999), while action at 5-HT2A receptors is believed 

to be responsible for the lowered risk of EPS seen in atypical antipsychotics as the ratio 

of D2 and 5-HT2A binding is higher in atypical antipsychotics while maintaining  D2 

receptor affinity is similar (Meltzer, 2002). Although binding data can give us insight to 

binding affinity of specific receptor subtypes, it does not tell us about agonism or 

antagonism; thus, knowing the binding of a drug alone can only give us clues to the 

mechanisms of action of a drug.  
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Clozapine is the prototypical atypical antipsychotic, which makes it a prime target 

for drug discrimination studies. With a superior clinical efficacy and diverse binding 

profile understanding the discriminative stimulus properties of clozapine may provide 

important information about the psychopharmacology of schizophrenia and its treatment. 

While clozapine‘s discriminative cue has been established in different animal models 

what mediates its cue differs from species to species and even within strain. The 

discriminative cue in pigeons is mediated by 5-HT2A/2C antagonism (Hoenicke et al., 

1992). While antagonism of 5-HT receptors plays a role in clozapine‘s discriminative 

stimulus for C57BL/6 mice, 5-HT2A along with α-1 adrenoceptors are the main 

mechanisms responsible for clozapine‘s cue in that mouse strain (Philibin et al., 2005; 

Philibin et al., 2009) but not in DBA/2 mice who did not  demonstrate substitution for 

any selected ligands (Porter et al., 2008). Interestingly multiple studies have identified 

cholinergic antagonism of M1 receptors as the primary cue mediating clozapine‘s 

discriminative cue in Wistar and Sprague-Dawley rats  (Goudie et al., 1998; Kelley & 

Porter, 1997; Nielsen, 1988) . 

Mutant Mice – Knock Out and Transgenic mice 

 With the undeniable evidence that schizophrenia has a genetic component to it, 

the development of mutant animal models has allowed for the study of the genetic 

variability in both the treatment and prevention of schizophrenia by allowing how 

specific genetic manipulations change development of schizophrenic like symptoms and 

what drugs can be used to treat these behavioral abnormalities. While no one single gene 

has been identified as causing schizophrenia, a number of candidate genes have been 

identified and it is likely that a number of genes play a small, summative role in the 
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development of the disorder (Picchioni & Murray, 2007). Mutant animal models have 

also helped in preclinical trials for new treatment drugs by giving researchers animals 

that have cognitive deficits or neurological morphology closer to what is seen in humans 

with schizophrenia.  

 The ability to genetically manipulate the mouse genome to delete genes of interest 

was done first by a trio of cancer researchers Mario R. Capecchi, Martin J. Evans, and 

Oliver Smithies, in 1989 for which they were awarded the 2007 Nobel Prize in medicine 

(Beckman, 2008). Since then an entire industry for the production and distribution of 

genetically altered mice has been developed, placing specific models of behavior and the 

ability to study genes of interest in the hands of researchers. Two genes in particular have 

garnered great attention from the research community in the study and understanding of 

schizophrenia: NGR1, and DISC1. 

DISC1 (disrupted in schizophrenia 1) was originally found in a large Scottish 

family in 1970 and has since been shown to play a role in the development of multiple 

mood disorders, including schizophrenia (Blackwood et al., 2001). Researchers found 

that DISC1 knockout animals display animal analogs of schizophrenic behavior (Hikida 

et al., 2007)  as well as changes in brain morphology similar to those seen in human 

patients (Ellison-Wright, Glahn, Laird, Thelen, & Bullmore, 2008). Bolstered by 

similarities in both human and animal studies DISC1 is one of the genetic targets of 

schizophrenia that has received a large deal of attention from the research community.   

 NRG1 (neuregulin 1) is a gene that in humans is heavily involved with 

neurodevelopment, particularly in aspects that have been tied to the brain abnormalities 

seen in schizophrenia specifically serotonin and dopamine receptor expression and 
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monoamine transporters (Mei & Xiong, 2008). While complete knockout of the NRG1 

gene is lethal (animals that are homozygous knockouts cannot survive without this gene), 

+/- heterozygous knockouts have increased levels of dopamine receptors in the prefrontal 

cortex (Stefansson et al., 2002). Research has shown a strong positive correlation with 

polymorphisms of NRG1 and susceptibility to schizophrenia (Li, Collier, & He 2006) and 

while this research helps to unify a number of different leads on the cause of 

schizophrenia, including dysregulation of multiple neurotransmitter systems, it is far from 

the final answer to a genetic cause of schizophrenia.    

 

Rationale 

 Clozapine is the prototypical second generation (atypical) antipsychotic. Its 

unique and diverse binding profile paired with its clinical superiority over other atypical 

and typical antipsychotics could lead to better understanding of the neuropharmacological 

mechanisms important for the treatment of schizophrenia and how to improve the quality 

of life for those afflicted through management of the disease. With alleviation of both 

positive and negative symptoms in schizophrenia, a severely reduced presence of EPS, 

and the ability to alleviate symptoms in patients who have shown resistance to other 

antipsychotics clozapine‘s clinical superiority as an antipsychotic is clear.    

Drug discrimination is a powerful behavioral assay that allows researchers to 

examine the in vivo subjective effects of a drug and to determine what receptor 

mechanisms in vivo mediate a drug‘s discriminative stimulus properties. Examining the 

difference in discriminative cues between species and strains can help to explain how 

differences in brain morphology, receptor availability, metabolism, and other factors can 
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change the discriminative cue of a drug and may help lead to more specific treatments for 

those who have schizophrenia.  

The present study used drug discrimination to examine mechanisms of action of 

clozapine in 129S2/HSv mice and how these mechanisms differ from C57BL/6 and 

DBA/2 inbred mouse strains. Clozapine is a second generation, atypical antipsychotic 

drug developed in 1958. To date no drug discrimination studies have used clozapine as a 

training drug in the 129S2 strain. As such, this research is an original preclinical study in 

the effort to investigate the discriminative stimulus properties of clozapine in 129S2 

inbred mice. 

 There are four objective of this study: first, to establish clozapine as a 

discriminative stimulus in a standard two-lever drug discrimination procedure in 

129S2/HSv mice; second, to test typical and atypical antipsychotic drugs to see if they 

share any discriminative stimulus properties with clozapine; third to test selective ligands 

to determine the underlying pharmacological mechanisms mediating the discriminative 

stimulus properties of clozapine in 129S2/HSv mice; and fourth, to compare these 

findings to previous studies that used C57BL/6 and DBA2 mice to determine how 

clozapine‘s discriminative cue compares between these three inbred strains of mice.  

Methods 

Subjects 

 Seventeen adult male 129S2/SvHsd inbred mice weighing between 20-30 g 

(Harlan Laboratories, Indianapolis, IN) were used for this study. Mice were individually 
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housed in clear plastic cages (18 x 29 x 13 cm) with fitted steel wire tops and cornhusk 

bedding. They were moved daily (6 to 7 days each week) from a temperature controlled 

vivarium (22-24° C) under a 12h light/dark cycle (0600/1800 hours) to the laboratory 

where testing occurred. All research was conducted in accordance with the Institutional 

Animal Care and use Committee at Virginia Commonwealth University, which approved 

all procedures. After a one week habituation period animals were food restricted and 

maintained at 85-90% free feeding body weight on standard rodent chow (Harlan Teklad 

Lab Diets, Teklad LM-485). Water was available ad libitum in home cages. 

Apparatus 

 Drug discrimination experiments were conducted in six standard computer-

interfaced mouse operant conditioning chambers (Model ENV-307A; Med Associates, 

St. Albans, VT, USA), with two retractable levers positioned on the left and right 

positions equidistantly (8 cm apart) on the front wall. The levers extended 0.8 cm into the 

chamber and were positioned 2.5 cm above a grid floor constructed of parallel stainless 

steel bars, measuring 0.3 cm in diameter. A recessed well in which a liquid dipper would 

deliver 0.02 ml of sweetened milk (by volume 150 ml sugar, 150 ml powdered non-fat 

milk, and 500 ml water) was positioned between the two levers-. The inner area of the 

test chamber measured 15 x 11.5 x 17.5 cm and was surrounded by an aluminum chassis 

box with a Plexiglas back wall, 2 aluminum side walls, and a single Plexiglas door. Test 

chambers were housed in a sound attenuated cubicle (Model ENV-022; Med Associates).   

Experimental events and data collection during these experiments were controlled by 

Med-PC for Windows software (Med Associates Inc. version 1.0). Unless otherwise 
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noted the dipper that delivered the milk was raised and available to the animal in the 

operant chamber for three seconds before descending back into the trough where the 

sweetened milk liquid reinforcer was kept. 

Drugs 

 Clozapine (gift from Novartis, Hanover, NJ, USA), haloperidol, scopolamine and 

pyrilamine (Sigma, St. Louis, MO, USA), olanzapine (gift from Eli Lilly, Indianapolis, 

Indiana, USA), ritanserin (Research Biochemicals International, Natick, Mississippi, 

USA), iloperidone (gift from HY Meltzer), aripiprazole ( and M100907 (gift from 

Lundbeck, Copenhagen, Denmark) were dissolved in distilled water with two to three 

drops of lactic acid and pH balanced with sodium hydroxide (all drugs had a pH balance 

close to 7.0). Chlorpromazine, amphetamine, prazosin (Sigma), thioridazine (Novartis), 

and ziprasidone (ziprasidone mesylate, Roerig, Division of Pfizer, New York, USA) were 

dissolved in deionized water and pH balanced with sodium hydroxide (all drugs had a pH 

balance close to 7.0). Drugs were administrated subcutaneously (s.c.) at a volume of 10 

ml/kg body weight with a 30-min presession injection time. All doses refer to the salt 

(HCl) form of the drugs.  

Procedures 

 Magazine training. The mice were placed in an operant chamber for fifteen 

minutes. No levers were extended and mice were given access to a sweetened milk liquid 

reinforcer every 10 sec; the reinforcer would be available for 5 sec. During magazine 

training reinforcers were presented regardless of the animals‘ behavior.  
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 FR training. After 3 days of magazine training, mice began single lever fixed 

ratio (FR) training. Only the vehicle lever was presented and animals were given access 

to a liquid reinforcer every time they pressed the lever, i.e. a FR 1 schedule of 

reinforcement. Training sessions (15 min) were conducted daily, six days a week. The FR 

requirement was gradually increased over 18 sessions until a stable response rate at FR 

10 was achieved. On average the mice achieved FR 10 after 12.2 days (Range 11-18).  

 Errorless training. Once all mice had reached a stable response rate at FR 10 

they began errorless vehicle training. Animals received an injection of vehicle (deionized 

water with 3 drops of lactic acid (~.01 ml) per 50 ml deionized water, pH balanced to 7.0 

with sodium hydroxide). Test sessions were 15 minutes long with only the vehicle lever 

available. All animals received 6 days of errorless vehicle training before moving to 

errorless drug training. During errorless drug training, the mice were given an injection of 

the training dose of clozapine and placed in the operant chamber for a 15 minute session. 

Only the drug lever was presented and animals were again under the FR 10 schedule of 

reinforcement. The drug and vehicle lever positions were counterbalanced between 

groups to control for olfactory cues (Extance and Goudie 1981). In order to provide a 

comparison to clozapine drug discrimination in C57BL/6 mice (Philibin et al. 2005), a 

2.5 mg/kg training dose of clozapine was initially used; however this dose was 

abandoned after 8 sessions due to continued, severe rate suppressant effects in the mice. 

The training dose was lowered to 1.25 mg/kg and response rates for all animals increased 

to acceptable levels. Errorless clozapine training continued for an average of 9.7 days 

(range 8-15 days).  
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 Two lever acquisition training. All animals were placed on a double alternation 

injection schedule with two days of vehicle followed by two days of clozapine and 

repeated (VEH, VEH, CLZ, CLZ, VEH, VEH etc.). Both levers were present during this 

stage of the procedure; however, only responses on the condition-appropriate lever were 

reinforced. Any response made on the opposite lever reset the FR 10 counter to 0. In 

order for a mouse to pass a training day it had to meet three criteria: (1) complete the first 

FR on the condition-appropriate lever, (2) at least 80% of total responses made were on 

the condition appropriate lever, and (3) at least ten responses per minute were made. 

Animals were required to meet training criteria for 5 of 6 days to pass the acquisition 

phase of the study. All animals meet training criteria in an average of 21.2 days (range 6 

to 33 days).  

 Testing.  Once animals meet the training criteria, generalization and substitution 

testing began. Drug testing was conducted approximately two times per week with at 

least two training days in between. In order to be eligible for testing mice were required 

to pass both a clozapine and vehicle training day consecutively; however, they could be 

passed in either order. Before the clozapine generalization curve and subsequent dose 

response curves were conducted, clozapine and vehicle control tests had to be passed. 

During these control tests animals received an injection of 1.25 mg/kg clozapine or 

vehicle and both levers were reinforced on the FR 10 schedule (switching levers prior to 

completing the FR 10 requirement reset the counter for the opposite lever). To pass a 

control test animals were required to meet the training criteria (correct first FR, 80% or 

greater condition-appropriate responding, and response rates equal to or greater than 10 

responses per minute). If an animal failed a control test, it was placed back on the double 
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alternation training schedule and the next time it was available to test it would be retested 

at that control point.  

 Data analysis. The number of lever presses on the drug lever divided by the total 

number of lever presses (% Drug Lever Responding), the average number of responses 

per minute, and the lever that the animal pressed ten times consecutively (First Fixed 

Ratio) were recorded for each session. ED50 values were calculated for each drug dose 

effect curve that fully substituted (average percent drug lever responding >80%) for the 

training drug clozapine. ED50 values were calculated using the least squares method of 

linear regression with the linear portion of the dose effect curve. A repeated measures 

analysis of variance (ANOVA) comparing mean response rates for each dose was 

performed for each drug (GB-STAT software; Dynamic Microsystems, Inc., Silver 

Spring, MD).  Significant ANOVAs were followed by a Dunnett‘s post-hoc test (p < 

0.05). Animals were required to receive one reinforcer or have response rates equal to or 

greater than 2.0 responses per minute to have percent drug lever responding (%DLR) 

included in the group data.  

 

Results 

Acquisition 

 The results of the acquisition training for the mice successfully trained to 

discriminate 1.25 mg/kg clozapine from vehicle are shown in Figure 1. Seventeen of the 

nineteen mice reached training criteria in an average of 21.2 days (SEM + 8.5) with a 

range of 6-33 days. One mouse became ill during single lever training and another animal 
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failed to develop tolerance to the rate suppressant effects of clozapine and both were 

removed from the study.  

Clozapine Generalization Curve  

 Mean percent drug lever responding (+ SEM) and mean responses per minute (+ 

SEM) for the clozapine generalization curve (1.25 mg/kg training dose) are shown in 

Figure 2. Generalization testing yielded an ED50 = 0.5026 mg/kg (95% C. I. 0.3812 – 

0.6627 mg/kg). Full generalization to clozapine‘s discriminative cue was attained at 1.25 

mg/kg, 1.77 mg/kg, and 2.5 mg/kg with a significant suppression (F7, 105 = 6.86, p < .001) 

of response rates at the 2.5 mg/kg dose (the %DLR data were not included for 1 mouse 

whose RPM fell below 2.0 RPM. Four mice were tested at a dose of 5.0 mg/kg clozapine; 

however, this dose was abandoned as responding was completely suppressed for all 4 

animals.  

Clozapine Time Course  

 Time course data shown in Figure 3 demonstrated that the 1.25 mg/kg training 

dose of clozapine produced full responding on the drug-paired lever only at the 30 minute 

post s.c. injection time point. Partial clozapine substitution was seen at 15 minutes post 

s.c. injection (average drug lever responding = 66.1%). At 60 minutes post s.c. injection 

drug-lever responding dropped to 39.1% and at 120 minutes post injection drug-lever 

responding decreased to vehicle-level responding with only 6.2% drug-lever responding. 

Mean response rates were stable across all time points.  
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Figure 1. Acquisition of Clozapine Discrimination 

Acquisition of two-lever drug discrimination is shown for 1.25 mg/kg clozapine training 

dose. Mean percent drug lever responses ( + SEM) are presented separately for drug 

injections (closed circles) and vehicle injections (open circles). The dashed line at 80% 

indicates drug-appropriate responding and the dashed line at 20% indicated vehicle-

appropriate responding. As the mice met the training criteria, they were removed from 

the curves (the numbers in parenthesis indicate the number of remaining mice). 
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Figure 2. Clozapine Generalization Curve  

Mean percent drug lever responding (+ SEM) and mean responses per minute (+ SEM) 

are shown for the atypical antipsychotic clozapine generalization curve (1.25 mg/kg 

clozapine training dose) in a two-lever drug discrimination procedure. The dashed line at 

80% drug lever responding (DLR) indicates full generalization to the training drug. Prior 

to generalization testing, control test sessions were conducted with both clozapine (1.25 

mg/kg) and vehicle. The data for mice with response rates lower than two responses per 

minute were not included in the %DLR data. For the response rate data, significant 

differences from vehicle are indicated by asterisks (* P < 0.05, **P < 0.01)
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Figure 3. Clozapine Discrimination Time Course 

 Time course data are shown for 0, 15, 30, 60, and 120 min presession s.c. injection times 

for the 1.25 mg/kg training dose of clozapine. For percent drug lever responding, 

significant differences from the presession injection time (30 min) are indicated by 

asterisks (** P<.001). There were no significant differences for response rates. 
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Olanzapine Substitution 

 The atypical antipsychotic olanzapine produced full substitution for clozapine 

(Figure 4) at 0.25 mg/kg (95.6% DLR) with a significant reduction in response rates at 

both the 0.125 and 0.25 mg/kg doses (F 5,30 = 37.11, P <.001)  Generalization testing with 

olanzapine yielded an ED50 =  0.03774 mg/kg (95% CI 0.02553 – 0.05580 mg/kg). 

Aripiprazole Substitution 

 The atypical antipsychotic aripiprazole (Figure 5) did not substitute for clozapine 

at any of the tested doses (1.25 – 10.0 mg/kg) and maximum %DLR was seen at the 5.0 

mg/kg dose (44.5% DLR). All doses of aripiprazole produced significant rate suppression 

(F4,20 = 6.14, p = .002). 

Ziprasidone Substitution 

 The atypical antipsychotic ziprasidone (Figure 6) did not produce substitution to 

clozapine at any of the tested doses (0.25 – 8.0 mg/kg) with maximum clozapine-

appropriate responding at 8.0 mg/kg (47.9% DLR). Ziprasidone did not produce any 

significant changes in response rates (F6,30 = 1.57, p = .191) 
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Figure 4. Olanzapine Substitution Curve  

 Mean percent drug lever responding (+ SEM) and mean responses per minute (+ SEM) 

are shown for the atypical antipsychotic olanzapine substitution curve. All other details 

are the same as Figure 2. 
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Figure 5 Aripiprazole Substitution Curve  

Mean percentage drug-lever responding (+ SEM) and mean responses per minute (+ 

SEM) are shown for the atypical antipsychotic aripiprazole substitution curve. All other 

details are the same as Figure 2. 
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Figure 6 Ziprasidone Substitution Curve  

Mean percentage drug-lever responding (+ SEM) and mean responses per minute (+ 

SEM) are shown for the atypical antipsychotic ziprasidone substitution curve. All other 

details are the same as Figure 2. 
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Iloperidone Substitution 

 The atypical antipsychotic iloperidone (Figure 7) produced full substitution at 0.2 

mg/kg (84.6% DLR) and high partial substitution at 0.4 mg/kg (75.8% DLR). 

Generalization testing revealed an ED50 = 0.0947 mg/kg (95% CI = 0.0608 – 0.1456 

mg/kg). While both 0.2 and 0.4 mg/kg doses produced significant rate suppression as 

compared to vehicle (F5,35 = 27.23, p <.001), the effects at 0.4 mg/kg were stronger as 

only 3 of the 7 animals had response rates over 2.0 RPM.  

Haloperidol Substitution 

 The typical antipsychotic haloperidol did not fully substitute for clozapine (see 

Figure 8) at any of the tested doses. Partial substitution was seen at 0.2 mg/kg (66.0% 

DLR) and 0.4 mg/kg (66.4% DLR) doses of haloperidol. Rates were significantly 

suppressed at by the 0.1, 0.2 and 0.4 mg/kg doses (F(5,245) = 1944.6, p < .001) 

Chlorpromazine Substitution 

 The typical antipsychotic chlorpromazine (Figure 9) produced partial substitution 

at 0.25 mg/kg (72.5% DLR), but no substitution at 0.125 or 0.5 mg/kg. The 0.25mg/kg 

dose produced a significant suppression of response rates (F3,24 = 6.56, p = .003). Three 

mice were tested at 1.0 mg/kg, but responding was completely suppressed so testing of 

that dose was abandoned. 
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Figure 7 Iloperidone Substitution Curve  

 Mean percentage drug-lever responding (+ SEM) and mean responses per minute (+ 

SEM) are shown for the atypical antipsychotic iloperidone substitution curve. All other 

details are the same as Figure 2. 

 

 

 

 

 



` 

40 

 

Haloperidol
 (N=6)

0

20

40

60

80

100

0

20

40

50

60

70

CLZ VEH 0.05 0.1 0.2 0.40.025

10

30

% DLR
RSP/MIN

** **
**

Dose (mg/kg)

%
D

ru
g

 L
e
v

e
r 

R
e
s
p

o
n

d
in

g R
e
s
p

o
n

s
e
s
 P

e
r M

in
u

te

 

Figure 8. Haloperidol Substitution Curve 

Mean percent drug-lever responding (+ SEM) and mean responses per minute (+ SEM) 

are shown for the typical antipsychotic haloperidol substitution curve. All other details 

are the same as Figure 2 
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Figure 9 Chlorpromazine Substitution Curve  

Mean percentage drug-lever responding (+ SEM) and mean responses per minute (+ 

SEM) are shown for the typical antipsychotic chlorpromazine substitution curve. All 

other details are the same as Figure 2. 
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Thioridazine Substitution 

 The typical antipsychotic thioridazine (Figure 10) produced full substitution for 

clozapine at 16.0 mg/kg (93.7% DLR) and generalization testing revealed an ED50 = 2.71 

mg/kg (95% CI 1.65 - 4.46 mg/kg). The 8.0 and 16.0 mg/kg doses produced a small, but 

significant suppression of response rates as compared to vehicle (F4,20 = 5.21, p = .005) 

Pyrilamine Substitution 

 The histaminergic H1 antagonist pyrilamine (Figure 11) did not substitute for 

clozapine at any of the tested doses (5.0 mg/kg – 28.3 mg/kg) never generating more than 

16.8% drug-lever responding. Response rates were significantly reduced by the 28.3 

mg/kg dose of pyrilamine (F 4,20 = 6.84, p = .001). Four animals were tested at 40.0 

mg/kg pyrilamine however all animals were completely rate suppressed and testing at this 

dose was abandoned.  

Prazosin Substitution 

 The adrenergic α1 antagonist prazosin (Figure 12) fully substituted for clozapine 

at the 10.0 mg/kg dose (83.4% DLR). Generalization testing yielded an ED50 = 1.1427 

mg/kg (95% CI 0.70669 – 1.84784 mg/kg). Response rates were significantly reduced at 

1.0, 3.0, and 10.0 mg/kg doses, as compared to vehicle (F6,42 = 11.63, p < .001). 
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Figure 10 Thioridizine Substitution Curve  

Mean percentage drug-lever responding (+ SEM) and mean responses per minute (+ 

SEM) are shown for the typical antipsychotic thioridazine substitution curve. All other 

details are the same as Figure 2. 
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Figure 11. Pyrilamine Substitution Curve  

Mean percent drug-lever responding (+ SEM) and mean responses per minute (+ SEM) 

are shown for the histaminergic (H1) antagonist pyrilamine substitution curve. All other 

details are the same as Figure 2. 
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Figure 12. Prazosin Substitution Curve  

Mean percentage drug-lever responding (+ SEM) and mean responses per minute (+ 

SEM) are shown for the adrenergic α1 antagonist prazosin substitution curve. All other 

details are the same as Figure 2. 
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Scopolamine Substitution 

 The cholinergic muscarinic antagonist scopolamine (Figure 13) did not fully 

substitute for clozapine; however, partial substitution was achieved at 8.0 mg/kg (68.0% 

DLR). Significant rate suppression was seen at the 8.0 mg/kg dose (F5,35 = 4.55, p = 

.003). 

Amphetamine Substitution  

 The dopamine agonist amphetamine (Figure 14) did not substitute for clozapine at 

any of the tested doses (0.25 – 2.0 mg/kg) with maximum clozapine-lever responding 

reaching 20.53%. All doses produced significant rate suppression (F4,20 = 16.18, p < 

.001) as compared to vehicle rates of response.  

Ritanserin Substitution 

 The 5-HT2 antagonist ritanserin (Figure 15) did not substitute for clozapine at any 

of the tested doses (1.0 – 16.0 mg/kg) with maximum clozapine lever responding 

reaching 57.4%. Ritanserin did not produce any significant changes in response rates.  

M100907 Substitution 

 The selective 5-HT2A antagonist M100907 (Figure 16) did not produce full 

substitution for clozapine, although partial substitution was evident at the 3.0 and 5.6 

mg/kg doses (69.1% DLR and 69.3% DLR, respectively). M100907 did not produce any 

significant changes in response rates (F5,30 = 1.60, p =.190). 10.0 mg/kg M100907 was 

tested in three animals but all were completely rate suppressed and testing at this dose 

was abandoned. 
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Figure 13 Scopolamine Substitution Curve  

 Mean percentage drug-lever responding (+ SEM) and mean responses per minute (+ 

SEM) are shown for the cholinergic muscarinic antagonist scoplamine substitution curve. 

All other details are the same as Figure 2. 
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Figure 14 Amphetamine Substitution Curve  

 Mean percentage drug-lever responding (+ SEM) and mean responses per minute (+ 

SEM) are shown for the dopamine agonist amphetamine substitution curve. All other 

details are the same as Figure 2. 
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Figure 15 Ritanserin Substitution Curve  

Mean percentage drug-lever responding (+ SEM) and mean responses per minute (+ 

SEM) are shown for the 5-HT2 antagonist ritanserin substitution curve. All other details 

are the same as Figure 2. 
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Figure 16 M100-907 Substitution Curve  

Mean percentage drug-lever responding (+ SEM) and mean responses per minute (+ 

SEM) are shown for the 5-HT2A antagonist M100907 substitution curve. All other details 

are the same as Figure 2. 
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Discussion 

Clozapine as a discriminative stimulus in 129S2/SvHsd mice 

 The current study demonstrated that clozapine can successfully be trained in the 

129S2/SvHsd inbred mouse strain, continuing to expand on the data characterizing the 

robust discriminative stimulus properties of clozapine, and how differences in genotype 

and receptor expression can affect this cue. Clozapine‘s discriminative stimulus has been 

established in several species of animals; including rats (Kelley & Porter, 1997; Millan et 

al., 1999; Prus, Philibin, Pehrson, & Porter, 2005), pigeons (Hoenicke et al., 1992), 

squirrel monkeys (Carey & Bergman, 1997), C57BL/6 inbred mice (Philibin et al., 2005; 

Philibin et al., 2009) and DBA/2 inbred mice (Porter et al., 2008). While 129S2 mice 

readily acquired the discriminative stimulus cue of clozapine, the average number of 

training sessions for an animal to successfully pass 5 of 6 training days was significantly 

longer than for C57 and DBA mice. Also the 129 mice did not initially develop tolerance 

to 2.5 mg/kg of clozapine (used as the training dose in C57BL/6 and DBA/2 mice) 

requiring the training dose to be lowered to 1.25 mg/kg.  

Clozapine Tolerance  

 The first and most surprising behavioral difference seen in 129S2 mice was the 

delayed development of tolerance to clozapine‘s rate suppressant effects. 129S2 mice did 

not initially develop tolerance to 2.5 mg/kg clozapine, showing complete rate suppression 

after 8 days of chronic administration. Although clozapine (as well as other antipsychotic 

drugs) is known to have rate suppressant effects, tolerance to the suppressant effects of 
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clozapine develops relatively rapidly after chronic administration (Varvel, Vann, Wise, 

Philibin, & Porter, 2002). After a one-week washout period 1.25 mg/kg clozapine was 

administered and the 129S2 mice were able to develop tolerance to the rate suppressant 

effects of clozapine at this dose. Interestingly, when mice were tested with 2.5 mg/kg 

clozapine in the clozapine generalization curve rate suppressant effects had somewhat 

recovered, although response rates were still significantly less than vehicle rates (see 

figure 2). This shows that the 129S2 inbred strain was able to develop some tolerance to 

the rate suppressant effects of clozapine, but at a delayed rate.  

Differences in how mouse strains metabolize clozapine could help to explain 

these differences in development of tolerance. P450 cytochrome is a family of 

endogenous enzymes that is the largest contributor of drug metabolism and bioactivation 

(Guengerich, 2008).  Examining differences in enzyme expression between mouse strains 

could help to explain the differences between the 129, C57, and DBA inbred mouse 

strains. Clozapine is mainly metabolized by the liver enzyme CYP1A2 while CYP2C19, 

CYP2D6 and CYP3A4 play a lesser role in its metabolism (Urichuk, Prior, Dursun, & 

Baker, 2008). Examination of liver enzyme expression in 5 inbred mouse strains, 

C57BL/6 and 129/SvJ included, found no significant difference between strains in 

expression or activity of cytochrome P450 enzyme family, including phenacetin O-

deethylation which was used as a marker for CYP1A2 activity (Löfgren, Hagbjörk, 

Ekman, Fransson-Steen, & Terelius, 2004). The lack of differences in the metabolizing 

enzymes for clozapine should yield similar time courses between C57BL/6 and 129S2.  

However, the time course for 1.25 mg/kg clozapine in 129S2 mice (see figure 3) showed 

that the mice only fully substituted at the 30 minute presession injection time (the 
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injection time the animals were trained at). By 60 minutes enough of the drug had left the 

animal‘s system that drug lever responding was significantly reduced. This stands in 

contrast to clozapine‘s time course in C57BL/6 mice that showed clozapine-like 

responding at 15, 30, and 60 minutes post injection time (Philibin et al., 2005). These 

data suggest that differences in metabolism of clozapine cannot be used to explain the 

reduced tolerance to clozapine seen in the 129S2 inbred mouse strain.    

5HT Antagonism 

 While it is not the only factor that differentiates atypical from typical 

antipsychotic drugs, atypical antipsychotics possess a higher ratio of 5-HT2A binding to 

DA2 binding as compared to typical antipsychotics with the exception of aripiprazole 

(Meltzer et al., 1989) (see table 2) and amisulpride (Schoemaker et al., 1997) . Of the 

atypical antipsychotics tested in the present study olanzapine and iloperidone engendered 

clozapine-like responding while ziprasidone did not. Antagonism at 5-HT receptors has 

been shown to be important for clozapine‘s discriminative cue in pigeons (Hoenicke et 

al., 1992) and in C57BL/6 mice (Philibin et al., 2005; Philibin et al., 2009). The mixed 

5HT2A/2B/2C antagonist ritanserin did not substitute for clozapine in the present study and 

the selective 5-HT2A antagonist M100907 only engendered partial substitution for 

clozapine. These data suggest that antagonism of 5-HT2 receptors is not as important for 

the discriminative stimulus properties of clozapine in 129S2 mice as it is in C57BL/6 

mice. While M100907 has not been tested in DBA/2 mice, the mixed 5HT2A/2B/2C 

antagonist ritanserin did not substitute (maximal clozapine drug lever responding of only 

18.49%) and examination of individual animal data showed that no mice displayed partial 
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substitution (>60% drug lever responding) (Porter et al., 2008) further supporting the idea 

that for DBA/2 and 129S2 mice, antagonism of 5-HT receptors is not important for 

clozapine‘s discriminative cue.  

Cholinergic Muscarinic Antagonism 

 The muscarinic antagonist scopolamine produced partial substation for clozapine 

in the 129S2 inbred strain. While partial substitution with scopolamine was evident in 

both C57 and DBA mice, partial substation for clozapine in 129S2 mice was not seen 

until a much higher dose of scopolamine (8.0 mg/kg) was tested (as compared to 2.0 

mg/kg and 1.0 mg/kg respectively in the C57 and DBA mice). Ki binding data (See table 

2) for iloperidone and ziprasidone shows a relatively weak affinity for muscarinic 

receptors and their substitution for clozapine coupled with the inability of the selective 

muscarinic antagonist scopolamine to substitute suggests that antagonism of muscarinic 

receptors does not play an important role in the discriminative cue of clozapine in 129S2 

mice.  

Alpha Adrenergic Antagonism 

 The selective alpha adrenergic antagonist prazosin produced full substitution for 

clozapine although, like scopolamine, the dose that engendered full substitution in 129S2 

mice (10.0 mg/kg) was much higher than the dose that fully substituted for clozapine in 

C57BL/6 mice (2.8 mg/kg) (Philibin et al., 2009). Ki values (see table 2) for iloperidone 

reveal a stronger binding affinity for alpha adrenergic receptors than for ziprasidone
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Table 2.  

Dissociation rate constants for typical and atypical antipsychotic drugs 

Dissociation Rate Constants (Ki, nM) are shown for antipsychotic drugs at selected neurotransmitter receptor subtypes (from Schotte et al. 

1996 except where indicated). These values should be used for general comparisons only since the species, conditions, tissues and assays 

varied among the studies. 

 

Species (except where indicated):  RAT           RAT  RAT  RAT        GUINEA 

              PIG 

Tissue (except where indicated):   Frontal Cortex        Striatum           Striatum       Total Cortex    Cerebellum 

  

ATYPICAL APDs   5-HT2A  D2  M  1  H1__ _____ 

Clozapine    3.3            150.0  34  23.0     2.1 

Olanzapine    1.9    17.0  26  60.0     3.5 

Ziprasidone    0.31     9.7         5,000  12.0             110.0                            

Iloperidone
1
    0.2     3.3         6,000            0.31   12.3                    

Aripiprazole
2
    8.7                      3.3         6,780 (M1)         25.7 (α1A)  25.1 

 

TYPICAL APDs________________________________________________________________________________ 

Haloperidol              25.0   1.4  4,670  19.0           730.0 

Chlorpromazine   3.3
5
   1.2

6
   378

7
  14.0

7
    9.0

4
 

Thioridazine    6.3
6  

 7.9
6
    18

4
              5.0

4
  16.0

4 

5-HT2A = serotonin 5-HT2A receptors; D2 = dopamine D2 receptors; M = cholinergic muscarinic receptors; α1 = α1-adrenoceptors,     H1 = 

histamine H1 receptors; Ki = equilibrium dissociation constant of the competitive inhibitor; KD = dissociation equilibrium constant 

1
Richelson and Souder 2000 (human brain, KD);

 2
Shapiro et al. 2003 (human cloned); 

4
Richelson and Nelson 1984 (human brain, KD); 

5
Leysen et al.. 1982 (rat cortex); 

6
Roth et al. 1995 (rat brain); 

7
Hals et al. 1986 (rat brain);  
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suggesting that antagonism of these receptors may be responsible, at least in part, for 

clozapine‘s discriminative stimulus properties in 129S2 mice.   

Training Dose 

 The ED50 values for all drugs that produced full substitution for clozapine were 

lower in 129S2 mice than C57 and DBA mice (see table 3). The most obvious 

explanation for this finding is the lower clozapine training dose used in the 129 mice, as 

decreased training dose has been shown to lower ED50 values for substituting drugs 

(Stolerman, Childs, Ford, & Grant, 2011). The ED50 values for the atypical antipsychotics 

that fully substituted for clozapine (clozapine, olanzapine, and iloperidone) were roughly 

half the ED50 values for those drugs than what was seen in the C57 and DBA mice 

(iloperidone was not tested in DBA mice). An interesting contrast to this idea, however, 

lies in the drugs that did not fully substitute for clozapine.  

 All three strains of mice showed partial substitution for scopolamine although 

129S2 mice did not show substitution until a much higher dose (C57 at 2.0 mg/kg, DBA 

at 1.0 mg/kg, and 129 at 8.0 mg/kg). One possible explanation for this increased dose for 

drugs substituting for clozapine may be receptor expression; however with little to no 

published articles on receptor population or expression in 129S2 mice inferences from 

behavioral data must be made.  Scopolamine is known to disrupt attention in the Five-

Choice Serial Reaction Time Test (5CSRTT) as well as increase omissions and response 

latency at higher doses. However, scopolamine produces lower response latencies and a 

lower number of omissions in 5CSRTT in 129S2 mice than in DBA and C57 mice,  

suggesting that 129S2 mice are less sensitive to the cognitive disruption that scopolamine 
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produces in the task (Pattij et al., 2007). It has also been shown that M1 receptor knock-

out mice (M1R -/-) have a hyperactive phenotype as compared to their wild type 

littermates (Miyakawa, Yamada, Duttaroy, & Wess, 2001). In our lab 129S2 mice 

displayed significantly lower level of locomotor activity compared to C57, DBA, and 

Balb/c inbred mouse strains (unpublished data) and Rogers et al. (1999) reported 

hypoactivity in 129 mice as compared to C57 and DBA. These findings imply that M1 

receptor expression in 129S2 may be higher than the C57 and DBA inbred strains; this 

could also help to explain why 129 mice in the present study were not as susceptible to 

scopolamine‘s rate suppressant effects.  

The only atypical antipsychotic with discordant substitution and levels of rate 

suppression between the three strains was ziprasidone. Both DBA and C57 produced 

significant rate suppression at 2.0 mg/kg scopolamine while 129S2 mice were tested up 

to 8.0 mg/kg without any significant rate suppression. C57BL/6 mice showed full 

substitution for clozapine with ziprasidone while DBA/2 mice produced partial 

substitution and 129S/2 mice did not substitute (See Table 3). Ziprasidone‘s diverse 

binding profile makes it harder to pinpoint exactly why this is although Ki data suggest a 

weaker affinity for muscarinic and H1 histaminergic receptors (as compared to atypical 

antipsychotics  that substitute for clozapine) that may play a role in this discordant 

substitution and rate suppression profile.  

Interspecies/Intraspecies Comparisons 

While differences in clozapine‘s discriminative stimulus properties between species have 

been established, differences within species and between strains may tell us
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Table 3. Comparison of 129S2, C57BL/6, and DBA/2 substitution and generalization tests in clozapine drug discrimination 

 

Results of generalization and substitution testing in C57BL/6, DBA/2, and 129S2/Hsv mice trained to discriminate clozapine from 

vehicle in two-lever drug discrimination from the present study, Philibin et al (2005), Philibin et al (2009), and Porter et al (2008). 

ED50 values are shown for those drugs that fully substituted for clozapine (i.e. > 80% clozapine-lever responding; dashes indicate that 

the drug did not fully substitute for clozapine). The maximum % clozapine-lever responding is shown for all drugs tested. All drugs 

were administered s.c. 

Drug      ED50 (mg/kg)/Max % DLR ED50 (mg/kg)/Max % DLR     ED50 (mg/kg)/Max % DLR  

                   129S2    C57BL/6      DBA/2                   

Atypical Antipsychotic Drugs  

CLOZAPINE               0.50 /  96.8%                     1.19  /  97.4%   1.30  /  99.5% 

ARIPIPRAZOLE                                ---    /  44.5%          ---     /  41.2%   ---     /  37.5% 

ILOPERIDONE                   0.09  /  84.6%          0.19  /  89.8%   Not Tested 

OLANZAPINE                     0.04  /  95.6%          0.24  /  87.3%   0.74  /  84.2% 

ZIPRASIDONE                     ---    /  47.9%          0.27  /  93.6%   ---     /  62.8%   

Typical Antipsychotic Drugs 

CHLORPROMAZINE               ---   /  72.5%         1.37   /  94.5%   1.51  /  82.0% 

HALOPERIDOL                                  ---   /  66.0%          ---      /  51.6%   ---     /  68.2% 

THIORIDAZINE                     2.71  /  93.7%         5.85   /  97.5%   6.81  /  90.8% 

Selective Ligands 

AMPHETAMINE (DA agonist)           ---    /  20.5%         ---      /    8.1%   ---     /    5.5% 

M100907 (5-HT2A antagonist)                            ---    /  69.3%          1.95   /  87.6%   Not Tested 

PRAZOSIN (1-adrenoceptor antagonist)             1.14  /  83.4%         1.68   /  92.0%   ---     /  20.5% 

PYRILAMINE (H1 histaminergic antagonist)        ---    /  16.8%         ---      /  38.9%   ---     /  50.0% 

RITANSERIN (5-HT2A/2B/2C antagonist)
  

         ---    /  57.4%         2.08   /  94.5%    ---     /  18.5% 

SCOPOLAMINE (muscarinic antagonist)
 
          ---    /  68.0%            ---      /  62.3%   ---     /   69.2% 

Full substitution for clozapine = > 80% clozapine-lever responding                                                                                                    

Partial substitution for clozapine = > 60% to < 80% clozapine-lever responding                                                                                     

No substitution for clozapine = < 60% clozapine-lever responding 
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more about the importance of different mechanisms for the discriminative stimulus 

properties of clozapine and other antipsychotic drugs. While many studies examining 

clozapine discrimination with rats report muscarinic antagonism as the main mechanism 

of action for the discriminative cue (Goudie et al., 1998; Kelley & Porter, 1997; Millan et 

al., 1999) , studies with pigeons and C57BL/6 mice suggest that 5-HT2A antagonism is 

important for clozapine‘s discriminative stimulus properties (Hoenicke et al., 1992; 

Philibin et al., 2005) and that antagonism of alpha 1 adrenoceptors also plays a role in 

clozapine‘s discriminative cue in C57 and 129 mice. Even though the testing of selective 

antagonists have suggested neuropharmacological mechanisms that are important for 

clozapine‘s discriminative cue, a complete and definitive answer to the underlying 

mechanism(s) of action for clozapine discriminative stimulus properties remains elusive 

(see reviews by (Goudie & Smith, 1999; Porter & Prus, 2009) and a compound 

discriminative cue is the most likely scenario.  

The data from (Porter et al., 2008) looking at clozapine discrimination in DBA/2 

mice seems to embody this idea of a compound discriminative cue, as none of the 

selective ligands tested fully substituted for clozapine. Stolerman and colleges 

(Stolerman, Rauch, & Norris, 1987) examined the discriminative stimulus properties of a 

compound cue by using a mixture of two pharmacologically independent agents as the 

training drug.  Rats were trained to discriminate a mixture of 0.2 mg/kg nicotine and 0.4 

midazolam. Generalization curves were obtained with both nicotine and midazolam and 

each produced high drug lever responding for the compound mixture. While they 

reported that each component of the mixture was likely perceived separately, as 

antagonism of nicotine and midazalam separately did not block the cue and neither drug 
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substituted for the other. However the data from DBA/2 discrimination of clozapine does 

not follow this pattern. The drugs used in (Stolerman et al, 1987) were a mixture of 

different pharmacological agents, and in that study rats substituted the individual 

components of the drug. Clozapine, while having a diverse binding profile, is not 

considered a ―mixture‖ of the different receptors antagonists but a single compound 

affecting different systems. If clozapine were to be thought of as a ―mixture‖ of different 

receptor antagonists then one of the selective antagonists should have produced 

substitution. Thus DBA/2‘s discriminative cue is either mediated by a receptor antagonist 

that was not tested in the study or it is a complex cue, mediated by a specific mix of 

receptor antagonists and not, as Stolerman saw in his rats, parts of a whole.  

Training dose of the drug may also change what is important for the 

pharmacological mechanisms that mediate clozapine‘s discriminative stimulus. While 

antagonism of muscarinic receptors has been shown to be important in rats trained to 

discriminate clozapine from vehicle (Goudie et al., 1998; Kelley & Porter, 1997; Nielsen, 

1988) a study by Prus, Philibin, Pehrson, and Porter (2006) in which rats trained to 

discriminate 5.0 mg/kg and 1.25 mg/kg clozapine from vehicle in a three lever drug 

discrimination procedure showed that scopolamine, a muscarinic antagonist, only 

produced partial substitution on the 5.0 mg/kg clozapine lever and did not substitute for 

clozapine on the 1.25 mg/kg lever. However, if the percent clozapine-lever responding on 

both drug levers were combined, scopolamine engendered full substitution for clozapine. 

The lack of substitution on a single clozapine dose lever may suggest that the 

mechanisms mediating clozapine-like responding may be different between the two 

doses. In the present study, the 129S2 mice were trained at a lower training dose than was 
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used in previous studies for C57 and DBA mice. This difference in training dose may 

account for some of the differences observed between these strains.  

Future Studies 

 Studying the response of inbred strains of mice in the drug discrimination 

paradigm helps to establish an important behavioral phenotyping baseline from which we 

can compare transgenic and knockout strains. Using knockout mouse strains can help to 

further pinpoint the importance of different receptor systems for clozapine‘s 

discriminative cue and for other antipsychotic drugs. For example, a 5-HT2A knockout 

mouse in a C57BL/6 background could help to determine the importance of 5-HT2A 

antagonism in clozapine‘s cue. If 5-HT2A knockout mice are able to be trained to 

discriminate clozapine from vehicle that would suggest that alpha adrenergic antagonism 

is sufficient for establishing and maintaining clozapine‘s discriminative stimulus in the 

absence of 5-HT2A antagonism. Testing other selective ligands as well as other 

antipsychotic drugs may also help to identify other putative targets for clozapine‘s 

discriminative cue. Examining the phenotypic response to these drugs and further 

knowledge of differences in receptor expression between mouse strains can help to 

uncover the mechanism(s) of action of antipsychotic drugs and give us further insight to 

the neuropharmacological mechanisms for drugs used in the treatment of schizophrenia.    

Conclusion 

 Continued examination of the phenotypic expression of clozapine‘s drug 

discrimination can help to determine the neuropharmacological underpinnings of 
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antipsychotic drugs and help us to make inferences about the mechanisms of action for 

the development of drugs used to treat schizophrenia. Clozapine drug discrimination 

continues to be an important preclinical assay for novel antipsychotic drugs that have 

similar mechanisms as clozapine and that lack EPS effects. By building on the knowledge 

of how both inbred and genetically manipulated mouse strains differ we can also develop 

better models to screen and explore the mechanisms of novel antipsychotic drugs as well 

as other drugs. While the discriminative stimulus properties of clozapine are robust in 

both mice and rats, its relationship to the therapeutic efficacy or adverse side effects of 

clozapine remain to be determined. 
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