Adverse Transfusion Outcomes

J. D. Landmark, M.D. Department of Pathology & Microbiology

Transfusion Safety

- Complications of transfusion occur in less than 3% of transfusions.
- Mortality: annually, 30-35 transfusionrelated deaths are reported to the FDA¹
- Human error (ABO incompatible transfusions) caused 45% of transfusion fatalities¹. How?
 - Misidentified sample
 - Lab error
 - Failure to identity of patient before transfusing

1. Sazama K, Transfusion 1990; 30:583-590

Serious Hazards of Transfusion Initiative (Great Britain)

- Documents all deaths or major complications from transfusion
- Of 366 total reports, 191 (52%) involved incorrect blood transfused, and 55 (15%) were acute hemolytic reactions. Thus, in 67% of all the reports human error was the major issue.
- In only 12 of the reports (3%), transfusiontransmitted infection was the complication

Where Do ABO errors occur?

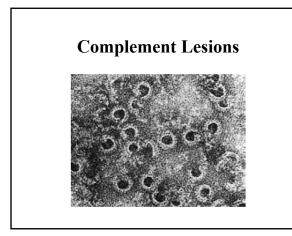
- Patient's blood sample for crossmatch had wrong identifying information written on the label at sample collection time.
- Wrong unit of red cells transfused (failure to check blood recipient's identity).
- Laboratory testing error is least likely cause.

Prevention of ABO errors

Identification procedures performed properly are the single most important way to prevent deaths.

Transfusion: Adverse Outcomes

- Immune reactions
- Transfusion-transmitted infection
- Physiological/metabolic overload


Immune Transfusion Reactions					
TYPE	RISK	MORTALITY			
Acute hemolysis	1:12,100	21-40%			
 Delayed hemolysis 	1:2,500?	Low			
Acute lung injury	1:10,000	5%			
 Allergic reaction urticaria anaphylaxis 	1:1,000 1:150,000	0 20%			
Febrile, non-hemolytic	1:200	Low			
• GVHD	Rare	100%			

Acute Hemolytic Reaction

- Mechanism: Classical Complement cascade activation by IgM or IgG binding to red cell surface antigens.
 - Assembly of multiple copies of the "final attack complex" perforating the membrane.
 - Soluble complement fragments, C3a and C5a, affect smooth muscle, mast cells, endothelial, and phagocytic cells.
 - Activation of high molecular weight kininogen.

Acute Hemolysis Effects

- Rapid onset of red cell destruction, within minutes after the start of transfusion.
- Nearby red cells which LACK the offending antigen may also be lysed as "innocent bystanders" due to the non-specific binding of C3b.

Acute Hemolysis Effects 2

- Acute hemolysis rapidly releases K⁺, hemoglobin, activated complement fragments, and membrane phospholipid into the entire vascular space, damaging organs "downstream."
- Complement may activate clotting, the kininogen system (bradykinin produced), and the fibrinolytic pathway.
- Release of cytokine IL-8 is triggered

Clinical Presentation

- Onset: within minutes to a few hours
- Possible symptoms and signs
 - fever almost always present, but chills and rigors also occur frequently
 - flank pain, dark brown or red urine
 - shortness of breath, chest pain, cyanosis
 - abdominal pain, nausea, emesis, diarrhea
 - flushing, diaphoresis

Acute Hemolysis Lab Effects

- Most common laboratory findings:
 - positive direct antiglobulin test,
 - low serum haptoglobin,
 - sometimes visible plasma hemoglobin.

Acute Hemolysis Outcomes

- Possible Consequences
 - Shock due to high levels of bradykinin or histamine.
 - Direct glomerular damage due to immune complexes/stroma deposited in glomerulus
 - Renal tubular damage secondary to shock
 - Direct cardiac effects of hyperkalemia
 - DIC
 - Death

Acute Hemolytic Reaction

Fever (>2 degrees F.) in 100% of patients Hypotension in 25% (subsequent excessive bleeding in 2/3) Oliguria (34% of patients) Anuria (13%) with 83% mortality Death in 21-40%

Clinical Management of Acute Hemolysis

- Shock: correct volume deficits, use dopamine infusion to raise pressure
- Renal damage:
 - immediate: push output with fluids and furosemide diuresis: monitor output!
 - oliguric/anuric: limit fluids, watch K⁺ level very closely--if elevated, start dialysis ASAP

Delayed Hemolysis

- Hemolysis is gradual (days to weeks).
- Minimal signs and symptoms.... usually.
- Signs and symptoms may be severe in a susceptible patient (as in hemolytic disease of the newborn).

Delayed Hemolysis 2

- Mechanism: IgG antibody binds to its target antigen exposing a phagocyte receptor binding site on the IgG molecule.
- Phagocytic cells destroy the red cell in an intracellular vacuole.

Delayed Hemolysis Effects

- Gradually increasing anemia, and slight (if any) elevations in bilirubin.
- Systemic complications are rare.
- Most common findings: mild fever, mild anemia, positive DAT.
- Complications: usually none
 - if complement activation occurs (very rare) then complications will be those of acute hemolysis.

Delayed Hemolysis 3

- Frequency: 1:2,500 transfusions.
- This reaction is usually not clinically detected, but is found by hospital lab during subsequent testing.

Febrile, Non-Hemolytic Reaction

- Two mechanisms:
 - Recipient anti-leukocyte antibodies triggering pyrogen release from blood donor WBC's in the transfused product.
 - Pyrogenic response due to cytokines (especially IL-6 and TNF_{α}) elaborated in storage by leukocytes. 60% of febrile reactions.

Febrile, Non-Hemolytic Reaction 2

- Frequency: 1:200 transfusions (most common form of transfusion reaction)
- Most common findings: Fever, chills, muscle pain.
- Less commonly: tachycardia, shortness of breath, blood pressure changes.
- Complications: usually none, but can be dangerous in elderly patients.

Management of Febrile Reactions

- · Administration of anti-pyretics
- Leukocyte-reduction filters will be effective for prevention in some patients
- For severe symptoms in the elderly, a small dose (100 mg) of hydrocortisone I.V. may stop the reaction

Allergic Reactions

 Mechanism: Poorly understood. Most likely donor protein-recipient protein interaction triggering tissue mast cells to release histamine, either localized in skin (urticaria) or systemic (anaphylaxis).

Allergic Reactions 2

- Frequency: Urticaria= 1:1000 transfusions. Anaphylaxis=1:150,000 transfusions.
- Most common findings: Urticaria , but very rarely, anaphylaxis (laryngeal spasm, dyspnea, hypotension) can occur.
- Outcomes: urticaria = none; anaphylaxis can be fatal.

Management of Anaphylaxis

- I.V. (preferred) or subcutaneous epinephrine ASAP
- Oxygen by mask
- Antihistamine I.V. or orally
- Pressor agents if BP fails to respond

Acute Lung Injury

- Mechanism: Uncertain--? activation of the alternate pathway of complement by donor leukoagglutinating antibodies.
- Recipient granulocytes adhere to each other in masses.
- Aggregates lodge in lungs causing severe hypoxia. pO₂ and O₂ saturation are low.

Acute Lung Injury 2

- Frequency: 1:10,000 transfusions.
- Signs/symptoms:
 - abrupt (minutes to several hours) onset of cyanosis, rapid breathing, rapid pulse (NO sign of airway obstruction)
 - hypotension occurs in severe cases
 - fever may or may not be present
- Complications: Respiratory distress syndrome, death.

Clinical Management of Acute Lung Injury

- Oxygen, high percentage via mask, or if needed, intubate and respiratory support with PEEP
- Monitor BP and O₂ saturation
- I.V. bolus high-dose steroids (1-2 grams methylprednisolone) ASAP
- Pressor agents if needed

Acute Post-transfusion Graft versus Host Disease

- Mechanism: donor lymphocytes engraft in a recipient that is unable to reject them, usually because of some underlying immune deficiency state (congenital, bone marrow transplant).
- Cytotoxic rejection response which affects skin, gut, liver, and bone marrow.
- Most common findings: skin rash, liver damage, diarrhea, pancytopenia.

Acute Post-transfusion Graft versus Host Disease 2

- Frequency: unknown, but extremely rare in the U.S.
- Complications: death. Posttransfusion GvH disease, unlike marrow transplant-associated GvHD, is almost always fatal.
- Prevention: Gamma Irradiation of components. 2500 centiGray dose

Questions?