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Abstract

In this paper we propose a high performance parallel file

system over iSCSI (iPVFS) for cluster computing. iPVFS

provides a cost-effective solution for heterogeneous cluster

environment by dividing a set of I/O servers into two groups,

one group with higher performance servers as I/O nodes,

while another group with relatively lower performance ma-

chines serves as storage target nodes. This combination

provides a higher aggregate performance because of the co-

operative cache among different target nodes. We have de-

veloped a model to analyze iPVFS. Our simulation results

show that using same number of total nodes, iPVFS out-

performs PVFS for both small requests and large requests

under different workloads.

1 Introduction

Cluster computing [15] has become one of the most pop-

ular platforms for high-performance computing today, be-

cause of its high performance-cost ratio. Similar to the tra-

ditional parallel computing systems, the I/O sub-system is a

bottleneck to improve overall performance. The most effi-

cient way to alleviate the I/O bottleneck is to deploy a par-

allel file system, which can utilize the aggregate bandwidth

and capability of exiting I/O resources on each cluster node,

to provide high performance and scalable storage service

for cluster computing platforms.

The Parallel Virtual File System (PVFS) [3], developed

at the Clemson University and Argonne National Lab, pro-

vides a starting point for I/O solutions in Linux cluster com-

puting. Several recent works have studied how to improve

parallel I/O performance of PVFS. A kernel level caching is

implemented and deployed in [14] to reduce response time.

In [9, 12], several scheduling schemes are introduced in I/O

nodes to re-order the service of requests to reduce the disk

seeking time. A better interface and related implementa-

tion is presented in [4] to optimize the non-contiguous I/O

access performance. CEFT-PVFS [17] increases availabil-

ity of PVFS, while still being able to deliver a considerably

high throughput.

One way of improving aggregate I/O performance of

cluster computing platforms is to improve I/O performance

of each storage node. In PVFS, file data is stored in local

disks of I/O nodes. If performance of local disks is im-

proved, the overall performance of PVFS is also improved.

In [8], software and hardware RAIDs are adopted in PVFS

I/O nodes to achieve higher aggregate I/O bandwidth.

In this paper, we propose a parallel file system, iPVFS,

which is based on PVFS and iSCSI, for cluster computing

platform. We have designed the iPVFS and developed a

model to simulate it. We compare the I/O response time of

iPVFS with original PVFS under different configurations,

and the results show dramatic performance gain of iPVFS

over PVFS.

The rest of this paper is organized as follows. Back-

ground is presented in Section 2. Section 3 gives the ar-

chitecture of iPVFS. In Section 4, we describe a queuing

model for iPVFS. Simulation and I/O response time analy-

sis are presented in Section 5. We examine related work in

Section 6. Section 7 concludes the paper.

2 Background review

2.1 PVFS

PVFS is a popular parallel file system for Linux cluster

computing. It provides high-speed access to file data for
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Figure 1. PVFS system diagram. Number of
I/O nodes is ✂ , and total number of storage
nodes is ✂ .

parallel applications. Fig. 1 [3] shows typical PVFS ar-

chitecture and main components. There are three types of

nodes in PVFS. The metadata node maintains information

on files and directories stored in a PVFS file system. I/O

nodes store PVFS file data, by creating files on local file

systems, such as an existing ext2fs partition. Clients, or

compute nodes, are nodes where application tasks run, con-

tact the metadata server when they want to manipulate files

and contact I/O servers in order to store and retrieve PVFS

file data.

2.2 iSCSI and iRAID

iSCSI [1, 11], also known as Internet SCSI or SCSI

over IP, is a newly emerging protocol with the goal of im-

plementing the SAN technology over the better-understood

and mature network infrastructure: the Internet (TCP/IP).

iSCSI encapsulates SCSI commands/data within TCP/IP

connections using Ethernet, which brings economy and

convenience as SANs now can be implemented using less

expensive, easily manageable components. iSCSI may pro-

vide greater flexibility because it provides a block level data

interface which is independent to any file systems. Theo-

retically iSCSI storage is treated by operating systems as

a local block level device over any TCP/IP network infras-

tructure.

iRAID[7] is introduced to improve the performance and

reliability of iSCSI storage systems by organizing the iSCSI

storage targets similar to RAID using striping and rotated

parity techniques. In iRAID, each iSCSI storage target is

a basic storage unit in the array, and it serves as a storage

node. All the nodes in the array are connected to each other

through a high-speed switch to form a local area network.

iRAID provides a direct and immediate solution to boost

iSCSI performance and improve reliability. Parallelism in
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Figure 2. iPVFS Architecture. Number of I/O
nodes is ✂☎✄✝✆ , number of target nodes of each
iRAID group is ✂✟✞ , and total number of stor­
age nodes is still ✂✡✠☛✂☎✄☞✆✍✌✏✎✒✑✓✂✔✞✏✕ .

iRAID leads to performance gain while using the RAID par-

ity technique improves the reliability.

3 Architecture of iPVFS

In cluster environment, nodes can be treated as block-

level storage providers and be grouped together to form

distributed RAID [13]. Combining iRAID and PVFS im-

proves parallel I/O performance since PVFS concentrates

in file system level, while iRAID focuses on block level.

Above observations motivate us to propose iPVFS to im-

prove aggregate bandwidth by utilizing iRAID as the local

storage system of I/O servers of PVFS. In iPVFS, each I/O

server also acts as an iSCSI Initiator, which is supported

by several target nodes to form iRAID storage as shown

in Fig. 2. With iRAID, the I/O servers stripe PVFS data

through multiple target nodes, thus local I/O performance

is improved and the higher overall aggregate bandwidth is

obtained. In iPVFS, all nodes, except compute nodes and

metadata node, are divided in two groups. The nodes in

first group act as I/O servers of PVFS, which provide file

level services for cluster computing platforms. Others are

treated as target nodes of iRAID system, which provide the

block level services for PVFS.

4 A queuing model for iPVFS

In a cluster environment, if the number of servers is

given, the utilization of servers of PVFS and iPVFS is dif-

ferent. In PVFS, except metadata server, all servers are

designated as I/O nodes to improve I/O bandwidth, but in

iPVFS, as we mentioned in Section 3, some servers act as

target nodes to speed up performance of I/O nodes, and at

the same time, compared with a pure PVFS system, the
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Figure 3. Queuing Model for iPVFS.

number of I/O nodes is reduced. With given number of ma-

chines, which design is better?

To answer this question, we develop a queuing model

to compare performance of PVFS and iPVFS in terms of

average I/O response time, as shown in Fig. 3. Our model

differs from the queuing model of [6] in that we have two

level network queues: one for I/O nodes and the other for

target nodes. We also use some assumptions made by [6].

The number of I/O requests follows a Poisson process; with

a mean arrival rate of ✖ , and the load on an I/O node in
PVFS storage server group and on a target node in iRAID

server group are all balanced.

We assume that there are ✂ storage nodes in a cluster.
The number of I/O nodes and target nodes serving for each

I/O node are ✂ ✄✝✆ and ✂ ✞ , respectively. In PVFS, ✂✗✠✘✂ ✄✝✆ ,
while in iPVFS, ✂✙✠✘✂ ✄☞✆ ✌✏✎✚✑✓✂ ✞ ✕ . For each I/O node, the
arrival rate is ✛ ✄ ✖ , where ✛ ✄ is probability that the request
is directed to I/O node ✜ . When the request data size ✢✣✄✥✤
is less or equal to striping size ✦ , ✛✧✄ is equal to ✎✩★✪✂☎✄✝✆ .
When the request data size is larger than ✂✫✄☞✆✬✦ , the request
is directed to every I/O node and ✛✧✄ is equal to ✎ . Thus, the
typical range of ✛✧✄ is ✭✮✎✩★✯✂✟✄✝✆✩✰✬✎✬✱ , and we calculate ✛✲✄ by
✛✳✄✴✠✶✵✷✜✹✸✺✌✼✻ ✽✿✾❁❀✬❂❄❃❆❅❇ ✾✮❈ ✰✬✎✩✕ . If not satisfied by I/O node cache,
the request is directed to iRAID initiator hosted in the I/O

node, and the effective arrival rate to each iRAID system is

✖ ✄ ✠❉✌❊✎✺❋❍● ✄✝✆❄■ ✕❑❏✧✛ ✄ ❏▲✖ , where ● ✄✝✆❄■ is cache hit percentage
for an I/O node.

After requests arrive iRAID system, the initiator directs

them to target nodes. For each target node, the arrival rate is

✛✳✄✥▼✩✖◆✄ , where ✛✲✄✥▼ is probability that the request is directed
to target node ❖ , which belongs to the iRAID system of I/O
node ✜ . Similar to probability that requests are directed to
I/O nodes, the typical range of ✛ ✄✥▼ is ✭P✎◗★✪✂ ✞ ✰✬✎✬✱ , and we cal-
culate ✛✲✄❁▼ by ✛✲✄✥▼✫✠❉✵❘✜✹✸✺✌ ✻ ✽ ✾✮❙ ❂❄❃❆❅❇✳❚ ✰❯✎❱✕ , where ✢✒✄☞❲ is request
data size from I/O node to target node. If not satisfied by tar-

get node cache, the request is directed to local disk, and the

effective arrival rate to each disk is ✖ ✄❁▼ ✠❳✌✏✎◆❋✟● ✞❨■ ✕❯❏❩✛ ✄✥▼ ❏❩✖ ✄ ,
where ● ✞❨■ is cache hit percentage for a target node.
Request delays are mainly caused by network transporta-

tion and memory cache services, no matter cache hit or

miss. We assume that the network service time and the

cache service time are exponentially distributed [6] with the

average time ❬ ✄✝✆❪❭✍❫✹✞ and ❬ ✄✝✆❪■ , respectively.
❬ ✄✝✆❪❭✍❫✹✞ ✠ ✢ ✄❁✤ ★✪✂ ✄☞✆

✦☎❴❵❭✍❫✹✞
❬❛✄✝✆❪■✚✠ ✢✒✄❁✤❜★✪✂☎✄☞✆

✦☎❴ ■❞❝✯■❞❡✩❫
where ✦✫❴❵❭✍❫✹✞ and ✦☎❴❢■❞❝✯■❞❡✩❫ are bandwidth of network

and memory cache, respectively. Therefore, request res-

idence time in the network and cache is modeled using

M/M/1 queuing model [6], and the average residence time

of request in network and cache of I/O node is modeled as:

❴ ✄✝✆❊❭✍❫❞✞ ✠ ❬ ✄☞✆❪❭✍❫✹✞
✎❣❋❢✛✲✄◆❏✣✖✫❏✒❬❤✄✝✆❪❭✍❫✹✞

❴❵✄☞✆❄■✒✠ ❬❛✄☞✆❄■
✎❣❋❢✛ ✄ ❏✣✖✫❏✒❬ ✄✝✆❄■

If a request is not satisfied by memory cache, it has to be

handled by iRAID system, in the probability of ✎✔❋☛●❑✄✝✆❄■ .
Thus, the average response time of iPVFS system is ex-

pressed as:

❬☛✠✐❴ ✄✝✆❊❭❜❫✹✞ ✑❥❴ ✄☞✆❄■ ✑✘✌✏✎✴❋❦● ✄☞✆❄■ ✕❆❏✣❴ ✄☞❧❛♠❛♥♣♦ ✑q❬ ❭✍✆❄r✪❫
Where ❴❵✄✮❧❛♠❛♥♣♦ is request residence time in iRAID sys-

tem, and ❬ ❭✍✆❄r✪❫ is processing time of each node.
In iRAID, additional overheads are introduced when re-

quests travel through network between I/O nodes and target

nodes, and are serviced by memory caches of target nodes.

We also assume that the network service time and the cache

service time are exponentially distributed with the average

time ❬ ✞s❭✍❫❞✞ and ❬ ✞❨■ , respectively.
❬ ✞s❭✍❫✹✞ ✠ ✢ ✄✮❲ ★✪✂ ✞

✦✫❴❍❭❜❫✹✞
❬❤✞❨■✒✠ ✢✒✄✮❲✩★✪✂✟✞

✦☎❴ ■❞❝✯■❞❡✩❫
3



Request residence time in the network and cache are also

modeled using M/M/1 queuing model. So the average res-

idence time of request in network and cache of iRAID is

represented as:

❴t✞s❭✍❫❞✞▲✠ ❬ ✞s❭✍❫❞✞
✎❣❋❢✛ ✄❁▼ ❏✣✖ ✄ ❏✒❬ ✞s❭✍❫✹✞

❴ ✞❨■ ✠ ❬ ✞❨■
✎❣❋❢✛✲✄❁▼✣❏✣✖◆✄◆❏✒❬❤✞❨■

If a cache miss occurs, the request is directed to a hard

disk, in the probability of ✎✉❋✈● ✞❨■ . According to [10], the
real disk service times is generally distributed, so we adopt

the M/G/1 model to analyze response time of disk in target

node.

❴ r♣✄✝✇✏① ✠ ✖ ✄❁▼ ❏✚②③✌s❬✴④r♣✄☞✇❊① ✾ ✆ ✕⑤ ❏✉✌❊✎⑥❋q✖✿✄✥▼✚❏✚②⑦✌s❬❆r♣✄✝✇✏① ✾ ✆❯✕❊✕ ✑✓②⑦✌s❬ r♣✄✝✇✏① ✾ ✆ ✕
Where ②⑦✌❨❬❆r♣✄☞✇✏① ✾ ✆✬✕ is average disk access time for a re-

quest. Thus, the average response time of iRAID system is

expressed as:

❴ ✄☞❧❛♠❛♥♣♦ ✠✐❴ ✞s❭✍❫✹✞ ✑✓❴ ✞❨■ ✑☛✌❊✎❣❋❦● ✞❨■ ✕❆❏✣❴ r♣✄✝✇✏① ✑⑧❬ ❭❜✆❪r✪❫
5 I/O response time analysis

Based on above queuing model, we simulate and com-

pare response times of iPVFS and pure PVFS under various

workload and application environment. Some parameters

are as follows: the available network bandwidth is about⑨✼⑩✍❶ ✦❷★✼❸ and the memory access rate is about ⑩✼❹❜❹❜❶ ✦❷★✼❸ .❺✼❻❜❼ ✦ data striping size is chosen for both PVFS and
iRAID. The disks are model ST318452LW, with

⑩ ✎ ❶ ✦✫★✍❸
data transfer rate, ❽❩❾ ❿✼✵➀❸ average seek time, ⑤ ✵➀❸ average
latency, and ✎❯❿ ❻❜➁ ⑨

cylinders. The number of storage nodes

in our simulation is ✎❯❿ unless otherwise specified.
In our simulation, we measure the I/O response time for

both fixed cache hit rate and dynamic cache hit rate. iPVFS

outperforms PVFS in both situations.

5.1 I/O response time for fixed cache hit rate

We assume that the cache hit rates of both I/O nodes and

target nodes are fixed, and that read request percentage is❹ ❾ ❺ and write request percentage is ❹ ❾ ❻ , which is typical for
office/engineering applications.

For pure PVFS, all ✎❯❿ servers act as I/O nodes ✌❨✂➂✠
✂✟✄✝✆⑥✠➃✎❯❿➄✕ , while for iPVFS, we may have various choices.
In this section, we use

❺
nodes as PVFS I/O nodes, and for

each I/O node,
⑤
target nodes form an iRAID group ✌❨✂➅✠

✎❯❿ , ✂ ✄☞✆ ✠ ❺
, ✂ ✞ ✠ ⑤ ✕ . Other choices are discussed in

Section 5.1.3.

5.1.1 Small I/O request

Small requests are equal to or less than striping block size❺✼❻➄❼ ✦ , so that each request is satisfied by a single node.
We assume that the request data size is equal to

❺✍❻❜❼ ✦ . For
iPVFS, arrival rate to a I/O node and a target node are ✖❑★✯✂ ✄✝✆
and ✖❤★➆✌❨✂☎✄✝✆✯✂✔✞✏✕ , respectively; and for pure PVFS, arrival
rate to a I/O node is ✖❑★✯✂ .
Fig. 4 compares performance between iPVFS and pure

PVFS. It shows that average I/O response time increases

steadily with the increase of request rate, and how different

cache hit rates influence the response time. It is obvious

that response time of iPVFS is much smaller than PVFS,

especially when the system is heavy loaded. At the point

where pure PVFS is saturate by the large request, the iPVFS

still provides acceptable services. We believe it is cache

that makes the difference, since compared to network and

cache, disk access time accounts most for the total response

time. In pure PVFS, when cache misses occur in I/O nodes,

requests have to be directed to disks, which needs much

more time. In iPVFS, in case of cache misses in I/O nodes,

the requests are first be directed to target nodes, in which

they may be satisfied by target nodes caches.

5.1.2 Large I/O request

If the request data size is much larger than striping block

size
❺✼❻❜❼ ✦ , each request is striped over several nodes. The

extreme case is that the request is large enough that it is

striped over all nodes. For iPVFS, the arrival rate to a I/O

node and to a target node are all ✖ ; for pure PVFS, it is ✖
too. Fig. 5 compares performance of iPVFS and pure PVFS

in various cache hit rates for
❺✼❻ ❹ ❼ ✦ request size.

Comparing Fig. 4 and 5, we find that, the gain of iPVFS

in large I/O request case is much smaller than that in small

I/O request case. In large I/O request situation, each node

receives much more requests, which saturate cache quickly,

thus, most requests have to be directed to disks. So the sys-

tem is more likely to be saturated, for both iPVFS and pure

PVFS. Because of another level cache of target node, iPVFS

obtains some gains, but the heavy loads make the gain triv-

ial, unless the cache hit rate improves significantly, which

is showed in Fig. 5(c).

5.1.3 Performance of various iPVFS configurations

When the number of storage node is fixed for iPVFS, how

should we organize our system to achieve maximum I/O

performance? We may have various configurations because

selection of ✂☎✄✝✆ and ✂✟✞ is not unique, as long as equation
✂➇✠❳✂☎✄☞✆✍✌✏✎❣✑➈✂✔✞✏✕ is satisfied. For ✂➅✠✶✎❯❿ , we may have
three different configurations depending on different com-

binations of ✂ ✄✝✆ and ✂ ✞ . They are: ❺
I/O nodes, ✎ ⑤

target

nodes (
⑤
target nodes for each iRAID group); ❽ I/O nodes,

4
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(a) Cache hit ratio is ➉❱➊ ➋
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(b) Cache hit ratio is ➉❱➊ ➌
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(c) Cache hit ratio is ➉❱➊ ➍

Figure 4. I/O response time with various
cache hit rate for small request.
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(a) Cache hit ratio is ➉❱➊ ➋
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(b) Cache hit ratio is ➉❱➊ ➌
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(c) Cache hit ratio is ➉❱➊ ➍
Figure 5. I/O response time with various

cache hit rate for large request.
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(a) Small request
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(b) Large request

Figure 6. I/O response time for various iPVFS

configurations under fixed cache hit rate.

✎ ⑩ target nodes ( ⑩ target nodes for each iRAID group); ⑤
I/O nodes, ✎ ❺ target nodes ( ❿ target nodes for each iRAID
group). Results of these three configurations for both small

requests and large requests are shown in Fig. 6. It is obvi-

ous that the larger number of I/O nodes provides better per-

formance, since request rate of a I/O node decreases with

increasing number of I/O nodes.

5.2 I/O Response time for dynamic cache hit rate

In real application environment, cache hit rate of storage

nodes is a variable which is influenced by many factors such

as server memory size, request load, and so on. To obtain

more accurate performance comparisons, it is necessary to

predict cache hit rate dynamically for iPVFS and PVFS.

5.2.1 Cache hit rate prediction

We use the model developed by Dan and Towsley [5] to dy-

namically predict LRU cache hit rate. In our simulation, the

number of partitions
❼
is set to

⑤
, which means files have

two partitions with different access probabilities. Cache hit

rate is predicted as a function of cache size and the request

file size, if file size S is much larger than total memory cache

size of all nodes, requests may cause cache misses.

As long as same storage servers are provided for both

pure PVFS and iPVFS, the number of I/O nodes in iPVFS

is always less than pure PVFS since some nodes are used

as targets, so the lower cache hit rate can be predicted for

I/O nodes in iPVFS when same memory size of each node

is provided for both pure PVFS and iPVFS. An economical

way to improve iPVFS performance is to add more memory

to I/O nodes to compensate its relatively less number of I/O

nodes since DRAM is very cheap nowadays.

In our simulation, all ✎❯❿ nodes are I/O nodes for PVFS,
while for iPVFS,

❺
nodes are I/O nodes, and

⑤
nodes act as

target nodes for each iRAID group, which means ✎ ⑤ nodes
are target nodes (other choices are discussed shortly in sec-

tion 5.2.2). Request size is limited to
❺✼❻➄❼ ✦ to simulate

small I/O request.

All nodes in PVFS are equipped with
⑤ ⑩ ❺ ❶ ✦ memory

caches, but in iPVFS, cache sizes of I/O nodes and target

nodes are different. First, we increase memory size of I/O

nodes in iPVFS to
❺ ⑩ ❺ ❶ ✦ , but reduce memory size of tar-

get nodes to ✎ ⑩ ❺ ❶ . To ensure cache misses for I/O nodes
and target nodes,

❺ ✎ ❻❜❻ ❶ ✦ large file is used. The response
time is presented in Fig. 7(a). We find that in this situ-

ation, iPVFS has better performance, but the difference is

relatively trivial. Then, we increase the memory size of tar-

get node to ✎ ➁❜❺ ❶ ✦ but keep other parameter unchanged,
and the result is given in Fig. 7(b). We find that iPVFS

is much better than pure PVFS. The same performance im-

provements is found in Fig. 7(c), when memory size of I/O

nodes is increased to
⑨ ⑤✼❻ ❶ ✦ .

From above simulation, it is reasonable to conclude that

iPVFS improves I/O system performance compared to pure

PVFS. When the number of storage nodes is fixed in PVFS,

performance is improved by adding more memory to each

node, but in our solution, if iPVFS is deployed, performance

is improved by only increasingmemory of I/O nodes, which

are often small parts of total storage servers. Furthermore,

memory size of target nodes can be reduced to decrease the

whole cost, while maintain performance improvement.

5.2.2 Performance of various iPVFS configurations

We have discussed in Section 5.1.3 about performance of

various iPVFS configurations. Based on fixed cache hit rate

simulations, we conclude that the more I/O nodes, the bet-

ter performance. We also do the same simulation for dy-
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(a) ➎✪➏✪➎✯➐➀➑ memory each I/O node and ➒❊➏✪➎✯➐➀➑ memory
each target node for iPVFS
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(b) ➎✪➏✪➎✯➐➀➑ memory each I/O node and ➒❊➓✪➎✯➐➀➑ memory
each target node for iPVFS
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(c) ➔♣➋♣→✬➐➀➑ memory each I/O node and ➒❊➏✪➎✯➐➀➑ memory
each target node for iPVFS

Figure 7. I/O response time for various mem­

ory configurations of iPVFS with dynamic

cache hit rate.
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Figure 8. I/O response time for various iPVFS
configurations under dynamic cache hit rate.

namic cache hit rate. There are three configurations, as

what we have done for fixed cache hit rate:
❺
I/O nodes,

✎ ⑤ target nodes ( ⑤ target nodes for each iRAID group); ❽
I/O nodes, ✎ ⑩ target nodes ( ⑩ target nodes for each iRAID
group); and

⑤
I/O nodes, ✎ ❺ target nodes ( ❿ target nodes for

each iRAID group). Memory size of I/O nodes and target

nodes in iPVFS are
⑨ ⑤✼❻ ❶ ✦ and ✎ ⑩ ❺ ❶ , respectively, and❺ ✎ ❻✍❻ ❶ ✦ large file is used. The result is showed in Fig. 8.

Six I/O nodes configuration is still the winner. The larger

✂✟✄✝✆ is preferred, because larger ✂☎✄✝✆ not only decrease re-
quest rate for each I/O node, but also increases cache hit

rate, which is very important in dynamic hit rate environ-

ment.

6 Related Work

Several recent works have studied how to improve par-

allel I/O performance of PVFS. The kernel level client and

global caching are implemented in [14] to improve the I/O

performance of concurrently executing processes in PVFS.

Apon et al. [2] analyzed the role of sensitivity of the I/O

nodes and compute nodes and concluded that the overall

I/O performance will be degraded if a node serves both as

an I/O client and as a data server. To reduce disk arm seek-

ing time, several scheduling schemes [9, 12] are introduced

in I/O nodes to re-order the service of requests according

to their desired locations in the space of Logical Block Ad-

dress. CEFT-PVFS [17] increases availability of PVFS by

adopting a RAID-10 architecture. It delivers a considerably

high throughput by carefully designing duplication proto-

cols and utilizing mirror data in read operations. In [8],

software and hardware RAIDs are used in PVFS I/O nodes

to achieve higher aggregate I/O bandwidth. To eliminate

communication bottleneck of network, Wu et al. [16, 15]

use the RDMA features of high-performance interconnects,

like Myrinet, Quadrics, and InfiniBand, to improve the per-

formance of PVFS. A better interface and related imple-
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mentation is presented in [4] to optimize the non-contiguous

I/O access performance. Our work in parallel file systems

is related but different from previous studies because iPVFS

builds a two-level I/O architecture using iSCSI and iRAID.

Researchers have used mathematics models to analyze

performance of I/O system. Feng et al. [6] built a queu-

ing model to estimate the response time of CEFT-PVFS.

In [10], using approximate analysis, a simple expression

for a maximum delay of asynchronous disk interleaving is

obtained and then verified by simulation using trace data.

Our work uses a two-level queuing model to evaluate per-

formance of iPVFS.

7 Conclusions

In this paper, we propose a parallel file system (iPVFS),

based on PVFS and iRAID, for cluster computing environ-

ment, and develop a queuingmodel to measure and compare

system response times of both iPVFS and PVFS with same

numbers of nodes. Our simulation indicates that iPVFS im-

proves the performance under different workloads.

In a cluster environment, iPVFS, instead of pure PVFS,

can be deployed to improve I/O performance, as long as we

provide high performance servers for I/O nodes, which are

at most half number of total storage nodes. Therefore, in

our design, all storage nodes are divided into two groups:

one group is equipped with more powerful servers acting

as I/O nodes, another group with relatively lower perfor-

mance servers acting as target nodes. This cost effective

solution provides higher I/O performance than pure PVFS

while keep low cost. Our design suits for large scientific

computation environment, in which multiple clients manip-

ulate very large data simultaneously in a heterogeneous en-

vironment.
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