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ABSTRACT. The well-known technique of n-coloring a diagram of an

oriented link l is generalized using elements of the circle T for colors.

For any positive integer r, the more general notion of a (T, r)-coloring

is defined by labeling the arcs of a diagram D with elements of the

torus Tr−1. The set of (T, r)-colorings of D is an abelian group, and

its quotient by the connected component of the idenitity is isomorphic

to the torsion subgroup of H1(Mr(l);Z). Here Mr(l) denotes the r-fold

cyclic cover of S3 branched over the link l. Results about braid entropy

are obtained using techniques of symbolic dynamical systems.

1. INTRODUCTION. The well-known technique of tricoloring offers an elementary

method of distinguishing a trefoil from the trivial knot [CrFo], [Fo1], [Fo2]. A tricoloring

of a link diagram is an assignment of three colors to the arcs of the diagram such that

at any crossing either all three colors appear or only one color appears. Obviously any

diagram has three trivial, monochromatic diagrams. After checking that the number of

tricolorings of a diagram is unaffected by the three Reidemeister moves, one can deduce

that the trefoil knot is different from the trivial knot simply by observing that the standard

diagram for the trefoil knot can be tricolored nontrivially.

Expanding our palette to n colors, identified with the elements of the finite cyclic

group Z/n, we can consider the more general notion of n-coloring. An n-coloring of a

link diagram is an assignment of colors to the arcs such that at any crossing the sum of

the colors of the undercrossings is equal to twice the color of the overcrossing modulo n.

Since again Reidemeister moves do not affect the number of n-colorings of the diagram,

the number is an invariant of l. The idea but not the terminology can be found in [Fo1].

The requisite mathematical ideas were certainly known to Reidemeister [Re].

There are important relationships between the set of n-colorings of a diagram for a

link l and the topology of the link space S3 − l. It has long been known, for example,

that the set of n-colorings is an abelian group that is isomorphic to H1(M2(l);Z/n)⊕Z/n,

where Mr(l) denotes the r-fold cyclic cover of S3 branched over l. More recently, the
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notion of n-coloring has inspired useful exotic constructions in knot theory such as those

found in [Kau].

Here we trade our finite palette for a continuous one, coloring diagrams of oriented

links with elements of the continuous group T (= R/Z). Of course, one no longer expects

the set of T-colorings to be finite. However, the set is a compact abelian topological group

with attractive properties. We will see that its quotient by the connected component

of the identity element is isomorphic to the torsion subgroup TH1(M2(l);Z). Using a

slightly more general scheme, coloring arcs with elements of the torus Tr−1, we will recover

TH1(Mr(l);Z), for any r ≥ 1, in a similar way.

The groups of colorings that we define all have natural “shift automorphisms” that can

be studied from the point of view of dynamics. What can be learned from such a study?

For example, if ls is the closure of an iterated braid αs, we determine the exponential

growth rates lims→∞(1/s) log |TH1(Mr(ls);Z)|, for each r, using results of [LiScWa]. We

then prove that if the growth rate is positive for some r, then α has positive braid entropy.

Our approach can be generalized with T replaced by an arbitrary topological group

Σ. We do this in the last section, and indicate directions for further research.

We are grateful to Istvan Kovacs and Fred Roush for suggestions and ideas used in

the Appendix.

2. TZ-COLORINGS. We consider the compact abelian group TZ consisting of all bi-

infinite sequences (αj) of elements αj ∈ T. The shift map σ : TZ → TZ which sends (αj)

to (α′
j) where α′

j = αj+1, is an automorphism.

Definition 2.1. Assume that D is a diagram of an oriented link. A TZ-coloring of D is

an assignment of elements C ∈ TZ to the arcs of D such that the condition

(2.1) σ(Ci − Ck) = Cj − Ck.

is satisfied at any crossing. Here Ck corresponds to the overcrossing, while Ci, Cj corre-

spond to the undercrossings, and we encounter Cj as we travel in the preferred direction

along the arc labeled by Ck, turing left at the crossing.

Ck

Cj

Ci

Figure 1
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We denote the set of TZ-colorings of D by ColT,∞(D). At first glance it appears to be

hopelessly large. The following observation is intended to encourage the reader and also

motivate the direction we intend to follow. For the present, identity an element α ∈ T with

the periodic sequence (. . . , α,−α, α,−α, α, . . .). (The bar indicates the 0th coordinate.)

It is easy to check that when using only elements of this type, condition (2.1) reduces to

the familiar coloring condition that the sum of the colors of the undercrossings is equal to

twice the color of the overcrossing. Since any finite cyclic group embeds in T in a natural

way, the subgroup of ColT,∞(D) consisting of periodic TZ-colorings of D with period 2

contains every n-coloring of D. We will describe the information contained in the subgroup

of periodic TZ-colorings with arbitrary period.

Definition 2.2. A TZ-coloring of an oriented link diagram D is periodic if there exists

a positive integer r such that σr(C) = C, for every assigned label C. In such a case we

say that TZ-coloring has period r.

We can color D trivially by assigning C to every arc. Such a coloring is monochro-

matic. Clearly, a monochromatic TZ-coloring of D has period r, for every positive integer

r, and the subgroup of monochromatic colorings is isomorphic to TZ.

One can show that if a diagram D′ is obtained from D by a finite sequence of Rei-

demeister moves (see [BuZi], for example), then the group ColT,∞(D′) is isomorphic to

ColT,∞(D), and hence is an oriented link invariant. Rather than do this, we will prove

invariance using algebraic topology.

Let l be an oriented link with group Gl = π1(S
3 − l). The augmentation homo-

morphism (or total linking number homomorphism) is the epimorphism χ : Gl → Z that

sends each oriented meridianal generator to 1. Adopting the terminology of [BrCr], we

refer to the kernel K as the augmentation subgroup of Gl. (If l is a knot, then K is the

commutator subgroup of Gl.) We will call the covering space X∞(l) associated to χ the

total linking number cover of the link. The fundamental group π1X∞(l) of the cover

is isomorphic to K.

Theorem 2.3. Let D be a diagram of an oriented link l. Then

ColT,∞(D) ∼= Hom(K,T) ⊕ TZ.

Corollary 2.4. The group ColT,∞(D) is an invariant ColT,∞(l) of the oriented link l.

Proof of Theorem 2.3. We can find a presentation for K using the following proce-

dure which combines the Wirtinger and Reidemeister-Schreier methods [SiWi2]. Distin-

guish some arc of the diagram, and dentote the corresponding meridianal generator by x.
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The generators corresponding to the remaining arcs of the diagram can be expressed as

ax, bx, cx, . . ., where a, b, c, . . . are elements of K. Now label the distinguished arc with the

identity element of K, and label each of the remaining arcs by the corresponding element

a, b, c, . . . The augmentation subgroup K has generators x−jax, x−jbxj , s−jcxj , . . . (j ∈ Z).

We abbreviate them by aj , bj , cj , . . .. The relations correspond to the crossings of the dia-

gram: aj+1cj = bj+1aj for the crossing in Figure 2. As is true for Wirtinger presentations

of link groups, any single relator is a consequence of the remaining relators and can be

omitted.

ac

b

aj+1cj = bj+1aj

FIGURE 2

For any homomorphism ρ : K → T, we obtain a TZ-coloring of D by sending the arcs

labeled a, b, . . . to (ρ(aj)), (ρ(bj)), . . .. This gives a one-to-one correspondence between ho-

momorphisms ρ : K → T and the subgroup of TZ-colorings of D such that (. . . , 0, 0, 0, . . .)

is assigned to the distinguished arc.

Consider the following short exact sequence of abelian groups

0 → Hom(K,T) → ColT,∞(D)
π
→ TZ → 0,

where π is the map that sends any TZ-coloring to the element of TZ assigned to the

distinguished arc of D. If we define s : TZ → ColT,∞(D) by sending any C ∈ TZ to the

monochromatic coloring of D in which C is assigned to every arc, then πs = 1TZ . Hence

the sequence splits, and the theorem is proved.

Definition 2.5. Let D be a diagram of an oriented link l with some arc distinguished. A

TZ-coloring of D is based if it assigns the identity element to the distinguished arc.

The group of based TZ colorings of an oriented link diagram D clearly is indepen-

dent of the choice of distinguished arc. We will denote the group by Col0
T,∞(l). The

proof of Theorem 2.3 shows that Col0
T,∞(l) ∼= Hom(π1X∞(l),T), which is isomorphic to

Hom(H1(X∞(l);Z),T), since T is abelian.

If A is any locally compact abelian group, then Hom(A,T) with the compact-open

topology is the dual group of A, and it is usually denoted by A∧ [Kat]. Endowed with
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the discrete topology, H1(X∞(l);Z) is a locally compact abelian group. It is easy to

check that the (topological) group of based TZ-colorings is isomorphic to the dual group

H1(X∞(l);Z)∧.

Let l = l1∪· · ·∪ lµ be an oriented link, and let r be a positive integer. The cyclic cover

Mr(l) of S3 branched over l is constructed as follows. Begin with the exterior X(l) of l,

obtained from S3 by removing a tubular neighborhood N1∪· · ·∪Nµ of l, and consider its r-

fold cyclic cover Xr(l), corresponding to the homomorphism Gl
χ
→Z → Z/r. The boundary

of X(l) consists of disjoint tori ∂N1 ∪ · · · ∪∂Nµ, and the preimage of each is again a torus.

The preferred longitude on each ∂Ni, i = 1, . . . , µ, is covered by r disjoint loops, while the

meridian is covered r times by a single loop. We obtain Mr(l) by attatching a solid torus

S1 × D2 to each lift ∂Ni, matching a meridian ∗ × S1 with a preimage of a meridian of

∂Ni. Additional details can be found in [BuZi].

Consider now a diagram D for the link with a distinguished arc. By the proof of

Theorem 1.3 the augmentation subgroup K has a presentation of the form

(2.2) 〈aj , bj , . . . | rj , sj , . . . (j ∈ Z)〉,

where aj , bj , . . . denote the elements x−jaxj , x−jbxj , . . .. The relators rj+k, sj+k, . . . can

be obtained from rj , sj , . . ., respectively, by “shifting subscripts,” adding k to the subscript

of every generator that occurs. For any r ≥ 1, the following is a presentation of π1(Xr(l)).

(2.3) 〈y, aj , bj , . . . | rj , sj , . . . , y
−1ajy = aj+r, y−1bjy = bj+r, . . . (j ∈ Z)〉

The generator y is represented by a lift of the meridian of the distinguished arc of D; it

is equal to xr in the link group Gl. We can build a presentation for π1(Mr(l)) by adding

µ relators to (2.3), one for each solid torus added to Xr(l). The relators that we add are

xr, (ax)r, (bx)r, . . .; they are represented up to conjugacy by the lifts of the rth power of the

various meridianal generators. Equivalently, we can introduce xr, x−r(ax)r, x−r(bx)r, . . ..

Of course, the first relator merely eliminates the generator y. The second relator can be

written as (x−raxr)(x−r+1axr−1) · · · (x−1ax) which is the same as arar−1 · · · a1. Moreover,

for any integer j, a loop in Mr(l) representing x−j+1(ax)rxj−1 is freely homotopic to one

that represents (ax)r, and hence x−rx−j+1(ax)rxj−1 = aj+r−1ak+r−2 · · · aj is trivial in

π1(Mr(l)). Similarly, the third relator x−r(bx)r implies that brbr−1 · · · b1 is trivial. Hence

bj+r−1bk+r−2 · · · bj is trivial for all j. We conclude that π1(Mr(l)) has a presentation

consisting of generators aj , bj , . . . and relators rj , sj , . . ., together with

(2.4 i) aj = aj+r, bj = bj+r, . . . ,

(2.4 ii) aj+r−1ak+r−2 · · · aj , bj+r−1bk+r−2 · · · bj , . . .
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where j ranges over Z.

When l has only one component the relators (2.4 ii) follow immediately from the single

relator xr, since in that case every meridianal generator ax, bx, . . . is conjugate to x. On

the other hand, for any link l the relators (2.4 i) clearly are a consequence of (2.4 ii). Hence

we have shown

Lemma 2.7. Let l be an oriented link, and r a positive integer. Consider a presentation

for the augmentation subgroup K of the form (2.2). Then π1(Mr(l)) is the quotient of K

by the normal subgroup generated by the elements (2.4 ii).

Abelianization yields a more familiar result. Regard H1(X∞(l);Z) as a Z[t, t−1]-

module in the usual way, with the action of t corresponding to conjugation by x in

the group of the link. It follows from Lemma 1.7 that the quotient of the Z[t, t−1]-

module H1(X∞(l);Z) by the submodule (tr−1 + · · ·+ t + 1)H1(X∞(l);Z) is isomorphic to

H1(Mr(l);Z), for any positive integer r.

Definition 2.8. Assume that l is an oriented link with diagram D, and r is a positive

integer. A (T, r)-coloring of D is a periodic TZ-coloring with period r such that the sum

of any r consecutive coordinates of any assigned label vanishes.

We will denote the subgroup of all (T, r)-colorings of D by ColT,r(D). (The group

ColT,1(D) is obviously trivial.) The subgroup of based (T, r)-colorings will be denoted

by Col0
T,r(D).

We give H1(Mr(l));Z) the discrete topology. From what has been said it follows that

the dual group [H1(Mr(l);Z)]∧ is isomorphic to Col0
T,r(D). Also, [H1(Mr(l);Z) ⊕ Zr−1]∧

is isomorphic to ColT,r(D).

For a fixed positive integer r, we can determine Col0
T,r(D) by the following device (cf.

[SiWi1]). Label arcs of D by vectors C ∈ Tr−1 such that at any crossing

(2.5) (Ci − Cj)S
ǫ
r = Cj − Ck,

where Sr is the (r − 1) × (r − 1)-matrix

Sr =













0 0 . . . 0 −1
1 0 . . . 0 −1
0 1 . . . 0 −1
...

...
. . .

...
...

0 0 . . . 1 −1













.
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As in Definition 2.1, the vector Ck corresponds to the overcrossing, Ci, Cj correspond

to the undercrossings, ǫ = ±1 is the algebraic sign of the crossing. Any vector C =

(α1, . . . , αr−1) ∈ Tr−1 extends to an element (αj) ∈ TZ by defining αj+r−1 to be the

matrix product C · Sj , for j ∈ Z. Note that the sum of any r consecutive coordinates of

(αj) vanishes; conversely, any element (αj) ∈ TZ for which the sum of every r consecu-

tive coordinates vanishes arises uniquely in this way. The correspondence establishes an

isomorphism between ColT,r(D) and the subgroup of TZ-colorings which satisfy condition

(2.4).

Example 2.9. Consider any diagram D of the trefoil knot 31 with three arcs. A (T, 2)-

coloring of D is a triple (α, β, γ) ∈ T3 such that 2α = β + γ, 2β = γ + α, and 2γ = α + β.

The first condition allows us express γ as 2α − β. The second condition then becomes

3α = 3β. Given any value α ∈ T, there are exactly three values of β (and one of γ) such

that (α, β, γ) determines a (T, 2)-coloring of D.

It is apparent that ColT,2(D) consists of three disjoint circles in T3. One of the circles

is the connected component N of the identity. Notice that ColT,2(D)/N ∼= H1(M2;Z), a

cyclic group of order 3. In Theorem 2.10 we establish a general result.

Any (T, r)-coloring of D can be regarded as a triple (A, B, C) ∈ (Tr−1)3 such that

(A, B, C) · M(Sr) = (0, 0, 0) (mod 1),

where M(Sr) is the block matrix





I − Sr Sr −I
−I I − Sr Sr

Sr −I I − Sr



 .

The closely related matrix

M(t) =





1 − t t −1
−1 1 − t t
t −1 1 − t



,

is almost an Alexander matrix of 31. In fact, it is a reduced Alexander matrix of the link

31 ⊔ ©, the union of l with an unknotted, unlinked circle [CrFo], [Kau, pp. 201–203].

Note that M presents H1(X∞(31);Z) ⊕ Z.

The entries of M are polynomials mi,j(t). It follows from Lemma 2.7 that the block

matrix M(Sr) = (mi,j(Sr)) that we use to find (T, r)-colorings of D is a presentation

matrix for the abelian group H1(Mr(31);Z) ⊕ Zr−1.

Theorem 2.10. Assume that l is an oriented link with diagram D, and r is a positive

integer. Let N be the connected component of the identity in ColT,r(D). Then

ColT,r(D)/N ∼= TH1(Mr(l);Z).
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Proof. An exact sequence similar to that in the proof of Theorem 1.3 shows that

ColT,r(D) ∼= [H1(Mr(l);Z)]∧ ⊕ Tr−1. We can decompose H1(Mr(l);Z) as the direct sum

of its torsion subgroup TH1(Mr(l);Z) and a free abelian group Zk of finite rank. Then

ColT,r(D) ∼= [TH1(Mr(l);Z)]∧ ⊕ Tk ⊕ Tr−1. Since the first factor is finite, N is isomor-

phic to the torus Tk+r−1. Hence ColT,r(D)/N ∼= [TH1(Mr(l);Z)]∧, which is isomorphic

by Pontryagin duality to TH1(Mr(l);Z).

3. BRAID ENTROPY AND BRANCHED COVERS. Assume that α is an n-braid

with its strands coherently oriented. Let ls be the oriented link obtained as the closure of

the iterated product αs, for any positive integer s. We combine the idea of (T, r)-colorings

with results of symbolic dynamics in order to prove asymptotic results about the homology

of Mr(ls). It is convenient to regard the n arcs at the bottom of α as “input arcs.” Those

at the top are “output arcs.” The braid product α1α2 is visualized as usual by joining the

output strands of α2 to the input strands of α1.

Let r be a postive integer. Any labeling of the n input arcs with vectors in Tr−1

uniquely determines vectors for the output arcs, using (2.5). The correspondence defines

an automorphism fr of the n(r − 1)-torus.

Let Bn denote the group of n-braids, with standard generators σ1, . . . , σn−1 chosen

so that when strands are coherently oriented each crossing is positve. We recall that the

Burau representation B : Bn → GL(n,Z[t, t−1]) maps σi to the block diagonal matrix

Bσi
(t) =







Ii−1

1 − t 1
t 0

In−i−1






,

where Ik denotes the k×k identity submatrix. The entries of Bα(t) are Laurent polynomials

bi,j(t). (See [Bi], for example.) It is easy to see that fr is induced by the block matrix

Bα(Sr) obtained from (bi,j(t)) by substituting the transpose S′
r of the (r−1)×(r−1)-matrix

Sr everywhere for t.

Topological entropy h(f) is defined for any continuous map f of a compact space X

[AdKoMc]. This measure of the dynamical complexity is generally difficult to compute.

However, the topological entropy of a toral automorphism is known [Yu]. If f is a torus

automorphism induced by an integer matrix M , then h(f) is equal to the log of the Mahler

measure of the characteristic polynomial Det(xI − M).

Definition 3.1. [Ma] (See also [Sc].) The Mahler measure of a polynomial p(t) =

cdt
d + · · · + c1t + c0 (cd 6= 0) is

M(p(t)) = |cd| ·

d
∏

j=1

max(|rj |, 1),

8



where r1, . . . , rd are the roots of p(t).

Theorem 3.2. Let α be an n-braid, and ls the closure of αs. Let ∆α(t, x) be the

characterstic polynomial of the Burau matrix Bα(t). Then for any positive integer r,

(3.1) lim
s→∞

1

s
log |TH1(Mr(ls);Z)|

exists and it is equal to

(3.2)
∣

∣

r−1
∏

j=1

M(∆α(ζj , x))
∣

∣,

where ζ is a primitive rth root of unity.

Proof. Let Fix(fs
r ) denote the subgroup of period s points of fr. Clearly, ColT,r(ls) ∼=

Fix(fs
r ). By Theorem 2.10 we have TH1(Mr(ls);Z) ∼= Fix(fs

r )/Fix(fs
r )◦, where Fix(fs

r )◦

denotes the connected component of the identity in Fix(fs
r ).

It is shown in [LiScWa] that lims→∞

∣

∣Fix(fs
r )/Fix(fs

r )◦
∣

∣ exists and is equal to the

topological entropy h(fr). In view of the comments above, h(fr) is equal to logM[Det(xI−

Bα(S′
r))]. The (r − 1) × (r − 1) blocks that comprise xI − Bα(S′

r) commute, and hence

Det(xI − Bα(S′
r)) is equal to the determinant of the (r − 1) × (r − 1)-matrix ∆α(Sr, x),

by Lemma A.1 with R = Z[t±1, x±1] and R = Z[x±1] (see Appendix). The matrix S′
r is

similar to the diagonal matrix with rth roots of unity ζj , j 6= 1, along the diagonal. Hence

Det(∆α(S′
r, x)) = ∆α(ζ, x) · · ·∆α(ζr−1, x), and the theorem follows.

The quantity (3.1) can be regarded as the exponential growth rate of |TH1(Mr(ls);Z)|.

Clearly, conjugate n-braids produce the same links ls, for each s, and hence the same growth

rates.

It is well known that Bn is isomorphic to the mapping class group of D − Pn, the

2-disk minus n interior points. Hence any braid can be represented by a homeomorphism

of D−Pn; two homeomorphisms represent the same braid if and only if they are isotopic rel

∂. The braid entropy of α ∈ Bn is the infimum of h(φ), taken over all homeomorphisms

φ representing α.

We recall the description of a useful lower bound for braid entropy. Assume that φ is a

homeomorphism of D−Pn that representing an n-braid α. Fixing a finite set of generators

g1, · · · , gn for the (free) fundamental group of the puntured disk, one iterates the induced

automorphism φ♯ on each generator. Then γ(φ♯) is defined to be

max
i

lim
k→∞

1

k
log |φk

♯ (gi)|,
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where |g| denotes the length of a shortest word in g±1
1 , . . . , g±1

n that represents g. The

quantity is finite and independent of the generator set. It follows from results of R. Bowen

[Bo] that log γ(φ♯) ≤ h(φ). It is clear that g(φ♯) is the same for all homeomorphisms φ

representing α. Hence if it positive, then α has positive braid entropy.

In [Ko] B. Kolev proved that γ(φ♯) is bounded below by the spectral radius of the

Burau matrix Bα(t) (this result is implicit in [Fr]).

Corollary 3.3. Let α be an n-braid, and ls the closure of αs. If for some positive integer

r, the exponential growth rate of |TH1(Mr(ls);Z)| is positive, then the braid α has positive

entropy.

Proof. By the hypothesis and Theorem 4.2 there exists an integer j, 1 ≤ j < r, such

that M(∆α(ζj , x)) > 1. Consequently, some root of ∆α(ζj , x) has modulus greater than

1, and so the spectral radius of the Burau matrix Bα(t) is greater than 1. For an arbitrary

homeomorphism φ representing α, Kolev’s result implies that log γ(φ♯) is positive, and so

by Bowen’s result h(φ) > 0. Hence α has positve braid entropy.

When the hypothesis of Corollary 3.3 holds, the exponential growth rates increase

without bound as r approaches infinity.

Corollary 3.4. Let α be an n-braid, and ls the closure of αs. If for some positive integer

r, the exponential growth rate of |TH1(Mr(ls);Z)| is positive, then

lim
r→∞

lim
s→∞

1

s
log |TH1(Mr(ls);Z)| = ∞.

Proof. By the proof of Corollary 3.3 there exists an integer j, 1 ≤ j < r, such that some

root of ∆α(ζj , x) has modulus greater than 1. Let I be an interval about the modulus

that does not include zero. For any natural number N , we can choose r′ sufficiently large

so that there exist at least N r′th roots of unity ζ ′ such that ∆α(ζ ′, x) has a root with

modulus contained in I. Now Theorem 3.2 implies that the exponential growth rate of

|TH1(Mr′(ls);Z)| is at least N times that of |TH1(Mr(ls);Z)|.

4. LIE GROUP PALETTES. Colorings can be defined for any topological group Σ.

We consider the topological group ΣZ consisting of all bi-infinite sequences (αj) of elements

αj ∈ Σ. As before the shift map σ : ΣZ → ΣZ which sends (αj) to (α′
j), where α′

j = αj+1,

is an automorphism.

Definition 4.1. Let Σ be any topological group. Assume that D is a diagram of an

oriented link. A ΣZ-coloring of D is an assignment of elements C ∈ ΣZ to the arcs of D

such that at any crossing
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(4.1) (σCi)Ck = (σCk)Cj

As in Definition 2.1, Ck corresponds to the overcrossing, while Ci, Cj correspond to the

undercrossings. The same orientation convention should be applied.

Periodic ΣZ-colorings are defined as in Definition 2.2.

The set ColΣ,∞(D) of ΣZ-colorings of a diagram D for an oriented link l is a closed

σ-invariant subspace of ΣZ. In general it is not a subgroup. However, as a dynamical

system it is an invariant ColΣ,∞(l) of l. In fact, if Y denotes the infinite cyclic cover of

the link l ∪©, then ColΣ,∞(D) is homeomorphic to Hom(π1Y,Σ). Here π1Y is given the

discrete topology, and Hom(π1Y,Σ) receives the compact-open topology.

When Σ is finite, ColΣ,∞(l) coincides with the representation shift ΦΣ(l) studied in

[SiWi3]. In that case we obtain a shift of finite type, a special type of dynamical system

that can be completely described by a finite directed graph Γ. The elements (ΣZ-colorings)

correspond to bi-infinite paths in Γ, while the action of σ on an element is realized by

shifting the vertices of the corresponding path.

When Σ is infinite no such simple model is available. Special subspaces such as those

consisting of period r points are more amenable.

Definition 4.2. Assume that l is an oriented link with diagram D, and r is a postive

integer. A (Σ, r)-coloring of D is a periodic ΣZ-coloring with period r such that the

product in reverse order of any r consecutive coordinates of any assigned label is the

identity.

The set Col0Σ,∞(D) of based ΣZ-colorings and the sets Col0Σ,r(D) of based (Σ, r)-

colorings, for each positive integer r, are defined as section 2. Give π1Mr(l) the discrete

topology, and Hom(π1Mr(l); Σ) the compact-open topology. The following is immediate

from Lemma 2.7.

Proposition 4.3. Assume that l is an oriented link with diagram D, and r is a positive

integer. Then Col0Σ,∞(D) is homeomorphic to Hom(π1Mr(l),Σ).

For any topological group, the set of connected components of ColΣ,r(D) is a natural

generalization of Fox’s n-coloring. By a theorem of W. Goldman [Go] the set is finite

whenever Σ is a semisimple Lie group with finite center.

The construction for braids also generalizes. If α is an n-braid as in Section 3, then any

labeling of the input arcs with vectors in Σr−1 uniquely determines vectors for the output

arcs using (4.1). We obtain a homeomorphism fr of Σn(r−1). The connected components

of Fix(fs
r ) correspond bijectively to those of Hom(π1Mr(l); Σ).

11



Conjecture 4.4. Assume that Σ is a semisimple Lie group with finite center. If the

topological entropy of h(fr) is positive, for some positive integer r, then the braid entropy

h(α) is positive.

APPENDIX: On determinants of block matrices

Assume that R is a commutative ring, and R is a commutative ring without zero

divisors. Assume further that ρ : R → Matn(R) is a representation of R in the ring

of n × n matrices over R. For any positive integer k, we extend ρ to a homomorphism

ρ̄ : Matk(R) → Matnk(R); the image of M ∈ Matk(R) is a matrix of n×n blocks in which

any two blocks commute.

The following result might be well known to some group of experts. We have been

unable to find it in the literature.

Theorem A.1. det ρ̄(M) = det [ρ(det M)], for every M ∈ Matk(R).

Proof. We will prove the result by induction on k. If k = 1, the conclusion is obvious.

We assume that it is true for k − 1, and show it for k.

Assume that M = (mi,j). Consider the matrix equation:









1 0 . . . 0
−m2,1 1 . . . 0

...
...

. . .
...

−mk,1 0 . . . 1

















1
m1,1

. . .

m1,1









M =









m1,1 ∗ ∗ ∗
0
... N
0









Taking determinants, we see at once that

(A.1) mk−1
1,1 (det M) = m1,1 (det N).

Applying ρ̄ to both sides of the matrix equation above, and taking determinants:

[det ρ(m1,1)]
k−1 · det ρ(M) = det ρ(m1,1) · det ρ(N)

= det ρ(m1,1) · det [ρ(det N)]

(by the induction hypothesis)

= det [ρ(m1,1) · ρ(det N)]
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= det [ρ(m1,1 · det N)]

= det [ρ(mk−1
1,1 · det M)]

(using (A.1))

= [det ρ(m1,1)]
k−1 · det [ρ(det M)]].

If det [ρ(m1,1)
k−1] 6= 0, then the proof is complete, since R is assumed to have no zero

divisors. For the general case, embed R in the polynomial ring R[z], and replace ρ(m1,1) by

ρ(m1,1)+zIn in the computation above. The determinant of ρ(m1,1)+zIn is a polynomial of

degree n, and hence does not vanish. Examination of the constant terms of the polynomials

obtained completes the proof.

The following elementary consequence of Theorem A.1 is worth stating.

Corollary A.2. Assume that A = (Ai,j) is a kn × kn-matrix consisting of n × n-block

matrices Ai,j over a commutative ring R without zero divisors. If the block matrices are

pairwise commutative, then

det A = det[
∏

π∈Sk

(sgn π)A1,π(1) · · ·Ak,π(k)].

The product is the usual one that appears in the definition of determinant. The corollary

states that we can first treat the block matrices as matrix coefficients.

Proof. The block matrices generate a subring R of Matn(R).
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