MA 237-02
§3.1-6.1
Name: \qquad
score
18 April 2002

Instructions: Answers to question 8 may be written on this page. All other problems should be worked on a separate sheet.

1. Find the coordinates of the point $[-1,2]^{t}$ in the basis $\left\{[2,1]^{t},[1,1]^{t}\right\}$ for \mathbb{R}^{2}. Show how you do this. (10 points)
Solution: Form the matrix $Q=\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right]$ and calculate $Q^{-1} X=\left[\begin{array}{cc}1 & -1 \\ -1 & 2\end{array}\right]\left[\begin{array}{c}-1 \\ 2\end{array}\right]=\left[\begin{array}{c}-3 \\ 5\end{array}\right]$.
2. Give an example of a 2×3 matrix A so that the image of the induced transformation of A consists of the line $y=2 x$ in the plane. State the domain, range, dimension of the image, and dimension of the null space for such a transformation? Briefly explain. (10 points)

Solution: Since the range of a matrix transformation is equal to the span of the columns of the matrix, we just choose a 2×3 matrix in which the columns are all in the desired subspace $(y=2 x)$. Examples, of such matrices are $\left[\begin{array}{lll}1 & 0 & 0 \\ 2 & 0 & 0\end{array}\right],\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 6\end{array}\right]$, and $\left[\begin{array}{lll}1 & -1 & 3 \\ 2 & -4 & 6\end{array}\right]$. The domain of any such transformation is \mathbb{R}^{3}, the dimension of the range or image is 1 , and the dimension of the nullspace is 2 .
3. Give an example of two matrices A and B such that $(A B)^{t} \neq A^{t} B^{t}$ (show this), or state that such an example can't occur. (10 points)

Solution: You can pick nearly any pair of 2×2 matrices to show this.
4. Use the augmented matrix method to find (by hand) the inverse of the following matrix. (10 points)

$$
\left[\begin{array}{lll}
-1 & 3 & 1 \\
-1 & 2 & 1 \\
-1 & 0 & 2
\end{array}\right]
$$

Solution:
$\left[\begin{array}{cccccc}-1 & 3 & 1 & 1 & 0 & 0 \\ -1 & 2 & 1 & 0 & 1 & 0 \\ -1 & 0 & 2 & 0 & 0 & 1\end{array}\right] \rightarrow\left[\begin{array}{cccccc}1 & -3 & -1 & -1 & 0 & 0 \\ -1 & 2 & 1 & 0 & 1 & 0 \\ -1 & 0 & 2 & 0 & 0 & 1\end{array}\right] \rightarrow\left[\begin{array}{cccccc}1 & -3 & -1 & -1 & 0 & 0 \\ 0 & -1 & 0 & -1 & 1 & 0 \\ 0 & -3 & 1 & -1 & 0 & 1\end{array}\right] \rightarrow$
$\left[\begin{array}{cccccc}1 & -3 & -1 & -1 & 0 & 0 \\ 0 & 1 & 0 & 1 & -1 & 0 \\ 0 & -3 & 1 & -1 & 0 & 1\end{array}\right] \rightarrow\left[\begin{array}{cccccc}1 & 0 & -1 & 2 & -3 & 0 \\ 0 & 1 & 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 2 & -3 & 1\end{array}\right] \rightarrow\left[\begin{array}{cccccc}1 & 0 & 0 & 4 & -6 & 1 \\ 0 & 1 & 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 2 & -3 & 1\end{array}\right]$
So, $\left[\begin{array}{lll}-1 & 3 & 1 \\ -1 & 2 & 1 \\ -1 & 0 & 2\end{array}\right]^{-1}=\left[\begin{array}{lll}4 & -6 & 1 \\ 1 & -1 & 0 \\ 2 & -3 & 1\end{array}\right]$.
5. Use the Gram-Schmidt process to convert the ordered basis $\left\{[1,1,1]^{t},[2,1,2]^{t},[1,-1,-1]^{t}\right\}$ into an orthogonal basis. Show your work. (10 points)

Solution: To begin the process, let $A_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right], A_{2}=\left[\begin{array}{l}2 \\ 1 \\ 2\end{array}\right], A_{3}=\left[\begin{array}{c}1 \\ -1 \\ -1\end{array}\right]$ Set $Q_{1}=A_{1}$. Then calculate $Q_{2}=A_{2}-$
$\frac{A_{2} \cdot Q_{1}}{Q_{1} \cdot Q_{1}} \cdot Q_{1}=\left[\begin{array}{c}\frac{1}{3} \\ -\frac{2}{3} \\ \frac{1}{3}\end{array}\right]$. For convenience, replace Q_{2} with a parallel vector without the fractions: $Q_{2}=\left[\begin{array}{c}1 \\ -2 \\ 1\end{array}\right]$. Finally, calculate $Q_{3}=A_{3}-\frac{A_{3} \cdot Q_{1}}{Q_{1} \cdot Q_{1}} \cdot Q_{1}-\frac{A_{3} \cdot Q_{2}}{Q_{2} \cdot Q_{2}} \cdot Q_{2}=\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]$.
6. Calculate the characteristic polynomial for the given matrix and determine all of the eigenvalues. Show your work. You do not need to find any eigenvectors on this problem. (10 points)

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
2 & 1 & 2 \\
1 & 2 & 1
\end{array}\right]
$$

Solution: Compute the following determinant using any method, e.g., expanding along the first row.
$\left|\begin{array}{ccc}1-\lambda & 1 & 1 \\ 2 & 1-\lambda & 2 \\ 1 & 2 & 1-\lambda\end{array}\right|=(1-\lambda)\left|\begin{array}{cc}1-\lambda & 2 \\ 2 & 1-\lambda\end{array}\right|-\left|\begin{array}{cc}2 & 2 \\ 1 & 1-\lambda\end{array}\right|+\left|\begin{array}{cc}2 & 1-\lambda \\ 1 & 2\end{array}\right|=$
$(1-\lambda)\left((1-\lambda)^{2}-4\right)-(2(1-\lambda)-2)+(4-(1-\lambda))=(1-\lambda)\left(-3-2 \lambda+\lambda^{2}\right)-(-2 \lambda)+(3+\lambda)=$ $-\lambda^{3}+3 \lambda^{2}+4 \lambda$
7. Since the matrix below is in triangular form, you know that $\lambda=2$ is an eigenvalue for the matrix. Determine the corresponding eigenspace by exhibiting an eigenvector (or collection of independent eigenvectors) that span(s) the eigenspace. Show your work. (10 points)

$$
\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & 2 & 0 \\
1 & 1 & -1
\end{array}\right]
$$

Solution: Solve the homogeneous system represented by the matrix for $\lambda=2$. $\left[\begin{array}{ccc}2-\lambda & 0 & 0 \\ 0 & 2-\lambda & 0 \\ 1 & 1 & -1-\lambda\end{array}\right]=$ $\left[\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 1 & -3\end{array}\right]$. This last matrix contains only the information that $x_{1}+x_{2}-3 x_{3}=0$, so $X=x_{2}\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right]+x_{3}\left[\begin{array}{l}3 \\ 0 \\ 1\end{array}\right]$. So the eigenspace corresponding to $\lambda=2$ is the span of the set $\left\{\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}3 \\ 0 \\ 1\end{array}\right]\right\}$.
8. For each of the following, answer True if the given statement in always true. Otherwise, answer FALSE. (3 points each)
(a) Any subspace of \mathbb{R}^{n} has an orthogonal basis.

Solution: True; just take any basis and apply the Gram-Schmidt process.
(b) For any invertible matrix $A,\left|A^{-1}\right|=\frac{1}{|A|}$.

Solution: True, since $A A^{-1}=I$ so $|A| \cdot\left|A^{-1}\right|=1$.
(c) For any square matrices A and B of the same size, $|A B|=|B A|$.

Solution: True, since $|A B|=|A| \cdot|B|=|B| \cdot|A|=|B A|$.
(d) If a matrix B is obtained from an $n \times n$ matrix A by interchanging exactly two rows, then $|A|=|B|$.

Solution: False. Row interchanges negate the determinant.
(e) Any linear transformation from \mathbb{R}^{1} to \mathbb{R}^{2} is one-to-one.

Solution: FALSE, for example the transformation that sends everything to 0 is not $1-1$.
(f) A square matrix with two identical columns has a determinant of 0 .

Solution: True, since one column operation will yield a column of zeros.
(g) A square matrix is invertible if and only if the associated linear transformation is onto.

Solution: True. This is one of our many equivalences to invertibility.
(h) If A is a square matrix, and if $A X=B$ has no solutions for some vector B, then A is not invertible.

Solution: True, since such a vector B would not be in the column space of A, so A would not be onto.
(i) If A is a 5×3 matrix and B is a 3×4, the transformation induced by the product matrix $A B$ is never one-to-one.

Solution: True, since B is a transformation from $\mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$, it is not $1-1$. Following it by A will not change this.
(j) If A is a 5×3 matrix and B is a 3×4, the transformation induced by the product matrix $A B$ is never onto.

Solution: True. $A B$ is a transformatino from $\mathbb{R}^{4} \rightarrow \mathbb{R}^{5}$, so $A B$ can't be onto.

