
1

Oracle® SOA Suite

New Features

10g (10.1.3.3)

E10381-03

March 2008

This document describes new features available with the Oracle SOA Suite for
release 10.1.3.3 patch set.

This document contains the following topics:

■ Deploying a Custom Worklist Application and Enabling SSO

■ Changing Workflow Standard View Definitions

■ New Database Views for Oracle Workflow

■ File/FTP Adapter New Features

■ MQSeries Adapter New Features

■ Database Adapter New Features

■ AQ Adapter New Features

■ JMS Adapter New Features

■ Oracle ESB Singleton Behavior for Inbound Adapter Endpoints

■ Decision Service Support for Ilog JRules

■ Fault Management Framework

Deploying a Custom Worklist Application and Enabling SSO
In 10.1.3.1, deploying a custom Oracle BPEL Worklist Application (Worklist
Application) and enabling single sign-on (SSO) for the Worklist Application
required a number of workarounds. Bug fixes introduced in 10.1.3.3 simplify the
process considerably. This section describes the revised processes for deploying a
custom Worklist Application and enabling SSO in the preinstalled Worklist
Application.

See Also: Additional documentation included with this patch set:

■ Oracle Application Server Patch Set Notes Addendum for details
about known issues with the patch set

■ Oracle Application Server Patch Set Notes for details about applying
the patch set

■ Oracle Application Server Fixed Bugs List for details about bugs
fixed with the patch set

2

Deploying the Custom Worklist Application

The top-level directory of the sample Worklist Application contains an ant
script, build.xml, for building and deploying the Worklist Application. This
ant script uses the orabpel.properties properties file that exists in the same
directory.

The following steps describe how to build and deploy the custom Worklist
Application:

1. Ensure that all the properties in orabpel.properties have been updated
to reflect your environment.

2. Build and deploy the customized Worklist Application from the operating
system command prompt:

ant deploy.oc4j

Or run ant deploysso.oc4j, if you want the custom Worklist
Application to be Java single sign-on (JSSO)-enabled.

3. Access the customized Worklist Application at the following URL:

http://host:port/integration/customapp/

4. Log in to the Worklist Application.

The task list page appears.

Enabling the Worklist Application for Single Sign-On

By default, the 10.1.3.3 Worklist Application uses a custom authentication
mechanism through its own login page. The preinstalled Worklist Application
does not run under OC4J container security and is not JSSO-enabled.

When deploying a custom Worklist Application, you can deploy it to be either
JSSO-enabled or to use the Worklist Application login page (see "Deploying the
Custom Worklist Application" on page 2). It is also possible to reconfigure the
preinstalled Worklist Application to be JSSO-enabled. This section describes how
to perform this task.

Note that JSSO does not provide multirealm support. If you are using an identity
provider configured with multiple realms, Oracle recommends that you not use a
JSSO-enabled Worklist Application.

This section contains the following topics:

■ Task 1: Updating web.xml for the Worklist Application

■ Task 2: Enabling JSSO for the Worklist Application in Oracle Enterprise
Manager 10g Application Server Control Console

Task 1: Updating web.xml for the Worklist Application

1. Go to the directory SOA_ORACLE_HOME\j2ee\home\applications\hw_
services\worklistapp\WEB-INF.

2. Copy the file web.xml to webnonsso.xml (so you can revert the changes if
necessary).

3. Copy the file websso.xml to web.xml. This enables container-managed
security for the Worklist Application.

3

Task 2: Enabling JSSO for the Worklist Application in Oracle Enterprise Manager
10g Application Server Control Console

1. Start the Oracle Enterprise Manager 10g Application Server Control Console
for the OC4J server that is hosting your SOA instance.

2. Click the Administration tab.

3. Click the SSO Configuration task.

4. Click on the Participating Applications tab.

5. Click the check box next to hw_services.

6. Click Apply.

7. Restart the server.

When you access the preinstalled Worklist Application, the JSSO login page
appears, rather than the Worklist Application login page.

Changing Workflow Standard View Definitions
The workflow service includes a number of standard view definitions. These
views define standard queries against a user's list of tasks. The views are
available to all users. They are displayed in the Worklist Application, and can be
queried through the user metadata service.

While these views are useful in themselves, you often want to modify the
existing standard view definitions, or create your own standard views. The
Worklist Application and the user metadata service do not provide a way of
doing this.

The standard views included with the workflow service are defined in an XML
file named StandardTaskViews.xml that gets loaded from the workflow
service's class path. The contents of this file are shown in "Contents of
StandardTaskViews.xml" on page 5.

You can modify the contents of this file by editing existing views or adding new
views. Place the edited version of this file in the following directory:

SOA_ORACLE_

HOME\bpel\system\classes\oracle\bpel\services\workflow\user\config\

When the server is restarted, it loads the new standard view definitions.

When defining new standard views, the existing standard views can be used as a
guideline.

The following XML elements define a view:

■ <id> — standard view IDs must be unique, and must begin with ORCL_WF_
STD_VIEW.

■ <name> — the name you give to the standard view.

■ <owner> — this is not used for standard views; copy the dummy owner
element from another standard view.

■ <hidden> — this should be false.

■ <description> — a short description of the view.

4

■ <viewColumns> — a list of the columns for the view to display. The
element should contain one or more <column> elements. Each <column>
element should contain a <columnName> element that specifies the name of
the column, together with an optional <displayName> element. If a value is
specified for <displayName>, it overrides the default column header used
by the Worklist Application.

■ <viewOptionalInfo> — if the view is to display a column containing
drop-down lists of permitted actions for each task, this element should
contain a <taskOptionalInfo> element with a value of Actions (as
specified in the views that are already listed in the file). Otherwise, the
<viewOptionalInfo> element can be empty.

■ <viewPredicate> — Defines the query predicate for the view. It can
contain the following elements:

- assignmentFilter — This element is mandatory. It must contain one
of the following values:

* My

* My+Group

* Group

* Owner

* Previous

* Reportees

- <keywords> — A view can optionally specify keywords. A view filters
tasks if any of these task attributes contain the specified string: task title,
identification key, all text attribute columns in the task, and task number
(only if the keyword is a number).

- <clause> — A view can optionally specify one or more predicate
clauses to filter tasks. A joinOperator of OR or AND can be specified
for each <clause>. Each <clause> element contains the following:

* <column> — the name of the task column.

* <operator> — the operator to use for the predicate. The allowable
operators depend on the type of the column:

For string columns: eq (equals), neq (not equals), begins, not_
begins, ends, not_ends, like, not_like, contains, not_
contains, is_null, is_not_null, in, and not_in.

For number columns: eq (equals), neq (not equals), lt (less than),
lte (less than or equal to), gt (greater than), gte (greater than or
equal to), is_null, is_not_null, in, and not_in.

For date columns: eq (equals), neq (not equals), lt (less than), lte
(less than or equal to), gt (greater than), gte (greater than or equal
to), is_null, is_not_null, next_n_days, and last_n_days.

* <value> — The value associated with the column and the operator.
Note the following exceptions:

No value needs to be specified for the is_null and is_not_null
operators.

5

If using the in or not_in operator, use a <valueList> element
instead. The <valueList> element must contain one or more
<value> elements containing the values to specify for the in or
not_in join.

If using a date column, and not using the next_n_days or last_
n_days operator, use a <dateValue> element instead. This should
contain the required date for the clause, as specified in
xsd:dateTime.

■ <viewOrdering> — the view can specify how to order tasks, using one or
more ordering <clause> elements. Each <clause> element contains:

- <column> — name of column on which to order

- <sortOrder> — ascending or descending order

- <nullFirst> — should null values appear first or last in the order
(true or false).

■ <chart> — this is not used by the Worklist Application.

When defining a view that displays filters on flex fields, use the flex field column
name (for example, TextAttribute1), rather than the attribute label name. To
ensure that the Worklist Application can determine the appropriate attribute
label name when displaying the flex field column in the view, also specify a
clause in the view for the taskDefinitionId of the task type of the flex field
mapping. For example:

<clause>

 <column>taskDefinitionId</column>

 <operator>eq</operator>

 <value>[the task definition id]</value>

</clause>

Alternatively, you can use the <displayName> element to define a display
name for the column.

Contents of StandardTaskViews.xml

This section shows the contents of the StandardTaskViews.xml file. Copy the
contents into your own StandardTaskViews.xml file, and edit it to make
changes to the standard views.

<StandardTaskViews>

 <!-- High Priority Tasks -->

 <userViewDetail viewType="VIEW"

 xmlns="http://xmlns.oracle.com/bpel/workflow/userMetadata">

 <id>ORCL_WF_STD_VIEW_HIGH_PRIORITY_TASKS</id>

 <name>STD_VIEW_HIGH_PRIORITY_TASKS</name>

 <owner type="USER">

 <realm xmlns="http://xmlns.oracle.com/bpel/workflow/common">

iPlanetRealm</realm>

 <name xmlns="http://xmlns.oracle.com/bpel/workflow/common">

bpeladmin</name>

 </owner>

 <hidden>false</hidden>

 <description>High Priority Tasks (Priority IsEq 5)</description>

 <viewColumns>

 <column>

 <columnName>taskNumber</columnName>

6

 <displayName></displayName>

 </column>

 <column>

 <columnName>title</columnName>

 <displayName></displayName>

 </column>

 <column>

 <columnName>priority</columnName>

 <displayName></displayName>

 </column>

 <column>

 <columnName>State</columnName>

 <displayName></displayName>

 </column>

 <column>

 <columnName>createdDate</columnName>

 <displayName></displayName>

 </column>

 <column>

 <columnName>expirationDate</columnName>

 <displayName></displayName>

 </column>

 </viewColumns>

 <viewOptionalInfo>

 <taskOptionalInfo

 xmlns="http://xmlns.oracle.com/bpel/workflow/taskQuery">Actions

</taskOptionalInfo>

 </viewOptionalInfo>

 <viewPredicate>

 <assignmentFilter

 xmlns="http://xmlns.oracle.com/bpel/workflow/taskQuery">My+Group

</assignmentFilter>

 <keywords xmlns="http://xmlns.oracle.com/bpel/workflow/taskQuery">

</keywords>

 <clause joinOperator="AND"

 xmlns="http://xmlns.oracle.com/bpel/workflow/taskQuery">

 <column>priority</column>

 <operator>lte</operator>

 <value>2</value>

 </clause>

 <clause joinOperator="AND"

 xmlns="http://xmlns.oracle.com/bpel/workflow/taskQuery">

 <column>state</column>

 <operator>eq</operator>

 <value>ASSIGNED</value>

 </clause>

 </viewPredicate>

 <viewOrdering>

 <clause xmlns="http://xmlns.oracle.com/bpel/workflow/taskQuery">

 <column>expirationDate</column>

 <sortOrder>ascending</sortOrder>

 <nullFirst>false</nullFirst>

 </clause>

 </viewOrdering>

 <chart>

 <groupByColumn>state</groupByColumn>

 </chart>

 </userViewDetail>

 <!-- Due Soon -->

7

 <userViewDetail viewType="VIEW"

 xmlns="http://xmlns.oracle.com/bpel/workflow/userMetadata">

 <id>ORCL_WF_STD_VIEW_TASKS_DUE_SOON</id>

 <name>STD_VIEW_TASKS_DUE_SOON</name>

 <owner type="USER">

 <realm xmlns="http://xmlns.oracle.com/bpel/workflow/common">

iPlanetRealm</realm>

 <name xmlns="http://xmlns.oracle.com/bpel/workflow/common">

bpeladmin</name>

 </owner>

 <hidden>false</hidden>

 <description>Due Soon (expires within next 24 hours)</description>

 <viewColumns>

 <column>

 <columnName>taskNumber</columnName>

 <displayName></displayName>

 </column>

 <column>

 <columnName>title</columnName>

 <displayName></displayName>

 </column>

 <column>

 <columnName>priority</columnName>

 <displayName></displayName>

 </column>

 <column>

 <columnName>State</columnName>

 <displayName></displayName>

 </column>

 <column>

 <columnName>createdDate</columnName>

 <displayName></displayName>

 </column>

 <column>

 <columnName>expirationDate</columnName>

 <displayName></displayName>

 </column>

 </viewColumns>

 <viewOptionalInfo>

 <taskOptionalInfo

xmlns="http://xmlns.oracle.com/bpel/workflow/taskQuery">Actions

</taskOptionalInfo>

 </viewOptionalInfo>

 <viewPredicate>

 <assignmentFilter

 xmlns="http://xmlns.oracle.com/bpel/workflow/taskQuery">My+Group

</assignmentFilter>

 <keywords

 xmlns="http://xmlns.oracle.com/bpel/workflow/taskQuery">

</keywords>

 <clause joinOperator="AND"

 xmlns="http://xmlns.oracle.com/bpel/workflow/taskQuery">

 <column>expirationDate</column>

 <operator>next_n_days</operator>

 <value>1</value>

 </clause>

 <clause joinOperator="AND"

 xmlns="http://xmlns.oracle.com/bpel/workflow/taskQuery">

 <column>state</column>

8

 <operator>eq</operator>

 <value>ASSIGNED</value>

 </clause>

 </viewPredicate>

 <viewOrdering>

 <clause xmlns="http://xmlns.oracle.com/bpel/workflow/taskQuery">

 <column>priority</column>

 <sortOrder>descending</sortOrder>

 <nullFirst>false</nullFirst>

 </clause>

 </viewOrdering>

 <chart>

 <groupByColumn>priority</groupByColumn>

 </chart>

 </userViewDetail>

 <!-- New Tasks -->

 <userViewDetail viewType="VIEW"

 xmlns="http://xmlns.oracle.com/bpel/workflow/userMetadata">

 <id>ORCL_WF_STD_VIEW_NEW_TASKS</id>

 <name>STD_VIEW_NEW_TASKS</name>

 <owner type="USER">

 <realm

 xmlns="http://xmlns.oracle.com/bpel/workflow/common">

iPlanetRealm</realm>

 <name xmlns="http://xmlns.oracle.com/bpel/workflow/common">

bpeladmin</name>

 </owner>

 <hidden>false</hidden>

 <description>New Tasks (created within past 24 hours)</description>

 <viewColumns>

 <column>

 <columnName>taskNumber</columnName>

 <displayName></displayName>

 </column>

 <column>

 <columnName>title</columnName>

 <displayName></displayName>

 </column>

 <column>

 <columnName>priority</columnName>

 <displayName></displayName>

 </column>

 <column>

 <columnName>State</columnName>

 <displayName></displayName>

 </column>

 <column>

 <columnName>createdDate</columnName>

 <displayName></displayName>

 </column>

 <column>

 <columnName>expirationDate</columnName>

 <displayName></displayName>

 </column>

 </viewColumns>

 <viewOptionalInfo>

 <taskOptionalInfo

 xmlns="http://xmlns.oracle.com/bpel/workflow/taskQuery">Actions

</taskOptionalInfo>

9

 </viewOptionalInfo>

 <viewPredicate>

 <assignmentFilter

 xmlns="http://xmlns.oracle.com/bpel/workflow/taskQuery">My+Group

</assignmentFilter>

 <keywords xmlns="http://xmlns.oracle.com/bpel/workflow/taskQuery">

</keywords>

 <clause joinOperator="AND"

 xmlns="http://xmlns.oracle.com/bpel/workflow/taskQuery">

 <column>createdDate</column>

 <operator>last_n_days</operator>

 <value>1</value>

 </clause>

 <clause joinOperator="AND"

 xmlns="http://xmlns.oracle.com/bpel/workflow/taskQuery">

 <column>state</column>

 <operator>eq</operator>

 <value>ASSIGNED</value>

 </clause>

 </viewPredicate>

 <viewOrdering>

 <clause xmlns="http://xmlns.oracle.com/bpel/workflow/taskQuery">

 <column>priority</column>

 <sortOrder>descending</sortOrder>

 <nullFirst>false</nullFirst>

 </clause>

 </viewOrdering>

 <chart>

 <groupByColumn>priority</groupByColumn>

 </chart>

 </userViewDetail>

</StandardTaskViews>

New Database Views for Oracle Workflow
This section describes database views that were added to allow queries against
the Oracle workflow services schema to get reports. The following table lists the
reports exposed in the worklist application and the database views
corresponding to these reports.

The following sections describe each database view with samples:

■ Unattended Tasks Report View

Existing Worklist Report Corresponding Database View

Unattended Tasks report WFUNATTENDEDTASKS_VIEW

Task Cycle Time report WFTASKCYCLETIME_VIEW

Task Productivity report WFPRODUCTIVITY_VIEW

Task Priority Report WFTASKPRIORITY_VIEW

Note: Refer to the Worklist Application documentation in Oracle
BPEL Process Manager Developer's Guide for details about these reports

10

■ Task Cycle Time Report View

■ Task Productivity Report View

■ Task Priority Report View

Unattended Tasks Report View

View Name: WFUNATTENDEDTASKS_VIEW

View Description:

Samples:

■ Query unattended tasks that have an expiration date of next week:

SELECT tasknumber, taskname, assigneegroups FROM WFUNATTENDEDTASKS_VIEW

 WHERE expirationdate > current_date AND expirationdate < current_date +

 7;

■ Query unattended tasks for mygroup:

SELECT tasknumber, taskname, assigneegroups FROM WFUNATTENDEDTASKS_VIEW

 WHERE 'mygroup' IN assigneegroups;

■ Query unattended tasks created in the last 30 days:

SELECT tasknumber, taskname, assigneegroups FROM WFUNATTENDEDTASKS_VIEW

 WHERE createddate > current_date -30;

Task Cycle Time Report View

View Name: WFTASKCYCLETIME_VIEW

View Description:

Name Type

TASKID1

1 NOT NULL column

VARCHAR2(64)

TASKNAME VARCHAR2(200)

TASKNUMBER NUMBER

CREATEDDATE DATE

EXPIRATIONDATE DATE

STATE VARCHAR2(100)

PRIORITY NUMBER

ASSIGNEEGROUPS VARCHAR2(2000)

Name Type

TASKID1 VARCHAR2(64)

TASKNAME VARCHAR2(200)

TASKNUMBER NUMBER

11

Samples:

■ Compute the average cycle time (task completion time) for completed tasks
that were created in the last 30 days:

SELECT avg(cycletime) FROM WFTASKCYCLETIME_VIEW WHERE createddate >

 (current_date - 30);

■ Query the average cycle time for all completed tasks created in the last 30
days and group them by task name:

SELECT taskname, avg(cycletime) FROM WFTASKCYCLETIME_VIEW WHERE

 createddate > (current_date - 30) GROUP BY taskname;

■ Query the least and most time taken by each task:

SELECT taskname, min(cycletime), max(cycletime) FROM WFTASKCYCLETIME_VIEW

 GROUP BY taskname;

■ Compute the average cycle time for tasks completed in the last seven days:

SELECT avg(cycletime) FROM WFTASKCYCLETIME_VIEW WHERE enddate >

 (current_date - 7);

■ Query tasks that took more than seven days to complete:

SELECT taskname, avg(cycletime) FROM WFTASKCYCLETIME_VIEW WHERE cycletime

 > ((current_date +7) - current_date) GROUP BY taskname;

Task Productivity Report View

View Name: WFPRODUCTIVITY_VIEW

View Description:

Samples:

CREATEDDATE DATE

ENDDATE DATE

CYCLETIME NUMBER(38)

1 NOT NULL column

Name Type

TASKNAME VARCHAR2(200)

TASKID VARCHAR2(200)

TASKNUMBER NUMBER

USERNAME VARCHAR2(200)

STATE1

1 For completed tasks, the state is null. Use decode(outcome, '', 'COMPLETED',
outcome) in queries.

VARCHAR2(100)

LASTUPDATEDDATE DATE

Name Type

12

■ Count the number of unique tasks that the user has updated in the last 30
days:

SELECT username, count(distinct(taskid)) FROM WFPRODUCTIVITY_VIEW WHERE

 lastupdateddate > (current_date -30) GROUP BY username;

■ Count the number of tasks that the user has updated (one task may have
been updated multiple times) in the last seven days:

SELECT username, count(taskid) FROM WFPRODUCTIVITY_VIEW WHERE

 lastupdateddate > (current_date -7) GROUP BY username;

■ Count the number of tasks of each task type on which the user has worked:

SELECT username, taskname, count(taskid) FROM WFPRODUCTIVITY_VIEW GROUP

 BY username, taskname;

■ Count the number of tasks of each task type that the user has worked on in
the last 100 days:

SELECT username, taskname, count(taskid) FROM WFPRODUCTIVITY_VIEW WHERE

 lastupdateddate > (current_date -100) GROUP BY username, taskname;

Task Priority Report View

View Name: WFTASKPRIORITY_VIEW

View Description:

Samples:

■ Query the number of tasks updated by each user in each task priority:

SELECT updatedby, priority, count(taskid) FROM WFTASKPRIORITY_VIEW GROUP

 BY updatedby, priority;

■ Query task-to-outcome distribution:

SELECT taskname, decode(outcome, '', 'COMPLETED', outcome), count

 (taskid) FROM WFTASKPRIORITY_VIEW GROUP BY taskname, outcome;

■ Query the number of tasks updated by the given user in each priority:

SELECT priority, count(taskid) FROM WFTASKPRIORITY_VIEW WHERE

Name Type

TASKID1

1 NOT NULL column

VARCHAR2(64)

TASKNAME VARCHAR2(200)

TASKNUMBER NUMBER

PRIORITY NUMBER

OUTCOME VARCHAR2(100)

ASSIGNEDDATE DATE

UPDATEDDATE DATE

UPDATEDBY VARCHAR2(64)

13

 updatedby='jstein' GROUP BY priority;

File/FTP Adapter New Features
This section describes new features for the File/FTP adapter.

 This section contains the following topics:

■ Appending Files to an Existing File

■ Transferring Large Payloads in Oracle BPEL Process Manager

■ Reading File Names from an Outbound Operation in Oracle BPEL Process
Manager

■ Controlling the Size of a Rejected Message

■ Specifying Unique File Names When Using Time Pattern as Part of the
Naming Convention for Outbound Partner Links

Appending Files to an Existing File

The File/FTP adapter now enables you to configure outbound interactions to
append files to existing files. To append to a file, add Append=”true” in the
InteractionSpec for the File/FTP adapter.

The following syntax shows how to append to the same file in the outbound
directory.

<jca:operation

 FileType="ascii"

 PhysicalDirectory="/home/adapter/out"

 . . .

 FileNamingConvention="MyOutputFile.txt"

 NumberMessages="1"

 . . .

 . . .

 Append="true"

 >

The file name can either be specified in the WSDL (as shown in the preceding
syntax), or through the header.

Transferring Large Payloads in Oracle BPEL Process Manager

There are two new options for supporting large payloads:

■ Attachment Support in Oracle BPEL Process Manager

■ XML Debatching

Attachment Support in Oracle BPEL Process Manager

This feature is only available with Oracle BPEL Process Manager. As a general
rule, use this feature to handle nondebatchable files larger then 10 MB.

Note: For this feature to work properly in the FTP adapter, the
destination FTP server must support the RFC 959 APPE command.

14

The following example shows how to transfer a file from a source to a destination
without any translation or transformation.

To configure the adapter to publish files as an attachment, you must do the
following:

1. Import or add the following schema into the BPEL project. Note that the
namespaces must have the exact same names.

<schema xmlns="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://xmlns.oracle.com/pcbpel/adapter/file/attachment/"

elementFormDefault="qualified">

<element name="attachmentElement">

 <complexType>

 <attribute name="href" type="string"/>

 </complexType>

</element>

</schema>

2. Create the inbound file adapter partner link using attachment.xsd.

3. Add a new activation parameter to the adapter WSDL file for the inbound
partner link: AsAttachment="true".

4. Create the outbound File adapter partner link using the same
attachment.xsd file.

Note: Name the XSD file as attachment.xsd in this example.

15

5. Add an assign statement to copy the href attribute between the source and
target partner links.

16

XML Debatching

This feature is available with Oracle BPEL Process Manager and Oracle
Enterprise Service Bus. This feature enables you to debatch large XML files and
native files. XML debatching in 10.1.3.3 works directly on XML documents, as
opposed to the 10.1.2 debatching capability, which assumed a non-XML (flat file)
format. Setting up XML debatching requires you to download and configure the
XML pull-parsing library (StaX).

1. Go to
http://jcp.org/aboutJava/communityprocess/final/jsr173/in

dex.html.

2. Go to the "Reference Implementations" section and choose from the available
reference implementations.

3. Download the API (jsr173_1.0_api.jar) and RI (jsr173_1.0_
ri.jar). Note that these JAR files are required only for debatching XML
files. Non-XML file debatching does not require these files.

4. Copy both JARs to SOA_ORACLE_HOME\bpel\lib.

5. Register both JARs in server.xml (available in SOA_ORACLE_
HOME\j2ee\MID_TIER\config) under the oracle.bpel.common shared
library.

<shared-library name="oracle.bpel.common" version="10.1.3">

 . . .

 . . .

 <code-source path="C:\product\bpel\lib\jsr173_1.0_api.jar"/>

 <code-source path="C:\product\bpel\lib\jsr173_1.0_ri.jar"/>

 . . .

 . . .

</shared-library>

6. Turn on debatching in the inbound File/FTP adapter partner link by setting
the PublishSize parameter.

<jca:operation

 PhysicalDirectory=" \in"

 ActivationSpec="oracle.tip.adapter.file.inbound.FileActivationSpec"

 . . .

 . . .

 PublishSize="1"

 . . .

 . . .

 >

</jca:operation>

Note: If the transfer operation fails, perform the following steps:

■ Increase the transaction timeout in transaction-manager.xml
(available in SOA_ORACLE_HOME\j2ee\MIDDLE_
TIER\config).

■ Increase the timeouts in orion-ejb-jar.xml (available in SOA_
ORACLE_HOME\j2ee\MIDDLE_
TIER\application-deployments\orabpel\ejb_ob_

engine).

17

Reading File Names from an Outbound Operation in Oracle BPEL

Process Manager

You can read file names and directory names after an outbound interaction.

The following example shows how to read the name of the file that was created
after the write operation.

1. Edit the process WSDL file for the outbound File/FTP adapter to receive the
file name after the interaction. Add an output message of type outbound
header to the portType. Remember that the namespace prefix (hdr) is
already defined in the WSDL file.

<portType name="Write_ptt">

 <operation name="Write">

 <input message="tns:PurchaseOrder_msg"/>

 <output message="hdr:OutboundHeader_msg"/>

 </operation>

</portType>

2. Manually create a variable of type outbound header in the BPEL file; the
namespace may vary.

<variable name="Invoke_1_Write_OutputVariable"

 messageType="ns3:OutboundHeader_msg"/>

3. Use this variable as the outbound variable in the invoke activity.

<invoke name="Invoke_1" partnerLink="FileOut"

 portType="ns2:Write_ptt" operation="Write"

 inputVariable="Invoke_1_Write_InputVariable"

 outputVariable="Invoke_1_Write_OutputVariable"/>

Controlling the Size of a Rejected Message

You can now control the size of a rejected message by specifying the following
endpoint property for the inbound File/FTP adapter partner link.

In this example, you reject 100 lines from the file since the actual file is too large.

oracle.tip.adapter.file.debatching.rejection.quantum=”100”

The acceptable values are 0, EOF, and any non-negative number.

Note: If the downloaded reference implementation shows a single
file (for example, jsr173.zip), extract the API (jsr173_1.0_
api.jar) and RI (jsr173_1.0_ri.jar) from the file.

Note: If the endpoint property is not specified, the entire message
file (or what is available of the message file) is rejected.

18

Specifying Unique File Names When Using Time Pattern as Part of the

Naming Convention for Outbound Partner Links

When you use the time-pattern as part of the file naming convention for
outbound partner links, you lose messages. This is because messages created
with the same time stamp overwrite one another.

You can now avoid this problem by mixing file naming conventions. For
example, you can specify %yyMMddHHmmssSSz%__%SEQ%_
OrderBookings.xml. This ensures that the file names are unique.

MQSeries Adapter New Features
This section describes new features for the MQSeries adapter.

This section contains the following topics:

■ MQSeries Adapter Deprecated Features

■ Outbound Synchronous-Solicit-Request-Response Scenario

■ Outbound Dequeue Scenario

■ Properties for Inbound Messaging

■ Changes to Activation and InteractionSpec Property Names

■ Polling Multiple Queues in a BPEL Process

■ Enabling the Binding Mode for Connections

MQSeries Adapter Deprecated Features

■ Support for the polling mode for message retrieval in the inbound adapter
direction is deprecated.

■ The blocking dequeue mode is now used for getting messages from queues.
During blocking dequeue mode, the adapter waits for the message to arrive
in a queue rather then polling the queue. This feature provides performance
benefits.

■ Message filtering based on priority is not a natively-supported feature of the
MQSeries itself; therefore, adapter feature provisioning for this feature is
deprecated. If you are migrating projects from 10.1.3.1 to 10.1.3.3, ensure that
the property FilteredByPriority is removed from the
activationSpec in the inbound adapter direction.

Outbound Synchronous-Solicit-Request-Response Scenario

The 10.1.3.3 MQSeries adapter supports the outbound
synchronous-solicit-request-response scenario through use of several
InteractionSpec properties. In this scenario, the adapter enqueues a
normal/request message in a queue and expects the report/reply synchronously.
The report/reply message arrives in the replyToQueueName of the
normal/request message.

Note: This works only for nonbatching cases (for example,
NumberMessages=”1”)

19

InteractionSpec properties for the outbound
synchronous-solicit-request-response scenario are as follows:

■ SyncSolicitReqRes – the permitted value for this property is true or
false. Set this property to true for the
synchronous-solicit-request-response scenario. This is a mandatory property
if you are using the synchronous-solicit-request-response scenario.

■ ResponseWaitInterval – the permitted value for this property is any
interval value (>= 0). This is the time in milliseconds during which the
adapter waits for the report/reply to arrive in replyToQueueName. By
default, the value of this property is 0 milliseconds. You can change this
value, but the value must be less than that of the timeout for the outbound
activity. If the report/reply message does not arrive in the stipulated time,
the adapter throws an exception. This property is not mandatory.

■ ResponseOpaqueSchema – the permitted value for this property is true or
false. Set this property to true if the report/reply message has an opaque
payload. This property is not mandatory. The default value for this property
is false.

The following examples describe this feature:

Example 1: Enqueue a Normal Message and Dequeue a Message

This example shows how to enqueue a normal message and dequeue a COA
report message. The report must arrive within 5000 milliseconds and the report
message has an opaque payload. A portion of the WSDL file is shown below:

<jca:operation

 InteractionSpec="oracle.tip.adapter.mq.outbound.InteractionSpecImpl"

 QueueName="Request_Queue"

 MessageType="NORMAL"

 MessageFormat="NONE"

 Priority="AS_Q_DEF"

 Persistence="AS_Q_DEF"

 Expiry="NEVER"

 ReportCOA="WITH_FULL_DATA"

 ReplyToQueueName="Report_Queue"

 OpaqueSchema="false"

 SyncSolicitReqRes="true"

 ResponseWaitInterval="5000"

 ResponseOpaqueSchema="true"

 >

</jca:operation>

Example 2: Enqueue a Request Message and Dequeue a Reply Message

This example shows how to enqueue a request message and dequeue a reply
message in an interval of 5000 milliseconds. The response message has a schema
associated with it. A portion of the WSDL file is shown below:

<jca:operation

 InteractionSpec="oracle.tip.adapter.mq.outbound.InteractionSpecImpl"

 QueueName="Request_Queue"

 MessageType="REQUEST"

 MessageFormat="NONE"

 Priority="AS_Q_DEF"

 Persistence="AS_Q_DEF"

 Expiry="NEVER"

20

 ReportCOA="WITH_FULL_DATA"

 ReplyToQueueName="Reply_Queue"

 OpaqueSchema="false"

 SyncSolicitReqRes="true"

 ResponseWaitInterval="5000"

 >

</jca:operation>

Outbound Dequeue Scenario

The outbound dequeue scenario dequeues a single message from a queue using
the outbound MQSeries adapter through use of several InteractionSpec
properties. The outbound dequeue scenario supports various filter options. The
supported filter options are messageId, correlationId, GroupId, and a
combination of messageId and correlationId. Filter options can be specified
only through headers.

InteractionSpec properties for the outbound dequeue scenario are as
follows:

■ InteractionSpec – This is the InteractionSpec class used for an
outbound dequeue. The value for this property must be
oracle.tip.adapter.mq.outbound.SyncInteractionSpecImpl.
This property is mandatory.

■ QueueName – This is the name of the MQSeries queue from which the
message is dequeued. This property is mandatory.

■ WaitInterval – This is the time (in milliseconds) that the adapter waits if
the message is not in the queue. The default value for this property is 0
milliseconds. This property is not mandatory. The permitted value for this
property is any integer value (>=0). Note that the value of this property must
be less than that of the timeout for the outbound activity.

■ FilterByMsgId – This property sets the message filter option based on the
messageId. This property is not mandatory. The value provided for this
property must be a hexadecimal-encoded value for some messageId.

■ FilterByCorrelId – This property sets the message filter option based on
the correlationId. This property is not mandatory. The value provided
for this property must be a hexadecimal-encoded value for some
correlationId.

■ FilterByGroupId – This property sets the message filter option based on
groupId. This property is not mandatory. The value provided for this
property must be a hexadecimal-encoded value for some groupId.

The following example shows how to dequeue a message from an
OutboundDequeue_Queue using the outbound adapter direction. If the
message is not in the queue, wait for a maximum of 1000 milliseconds. A
portion of the WSDL file is shown below:

<jca:operation

Note: The ResponseWaitInterval value must be less than the
timeout for the outbound activity. If the ResponseWaitInterval
value exceeds the outbound activity timeout, the adapter can behave
ambiguously.

21

 InteractionSpec="oracle.tip.adapter.mq.outbound.SyncInteractionSpecImpl"

 QueueName="OutboundDequeue_Queue"

 WaitInterval="1000"

 >

</jca:operation>

Properties for Inbound Messaging

In addition to being used for outbound messaging as described in "Outbound
Dequeue Scenario" on page 20, the FilterByGroupId, FilterByMsgId, and
FilterByCorrelId properties can also be used for inbound messaging.

Changes to Activation and InteractionSpec Property Names

Table 1 shows the activation and InteractionSpec property names changes.

Polling Multiple Queues in a BPEL Process

You can specify multiple activationAgent properties in bpel.xml to poll
more than one queue. The endpoint property name to specify a queue in the
inbound direction is adapter.mq.inbound.queueName, as shown in the
following example.

<activationAgents>

<activationAgent

 className="oracle.tip.adapter.fw.agent.jca.JCAActivationAgent"

 partnerLink="inboundService">

 <property name="portType">Dequeue_ptt</property>

 <property name="adapter.mq.inbound.queueName">Queue1</property>

 </activationAgent>

 <activationAgent

 className="oracle.tip.adapter.fw.agent.jca.JCAActivationAgent"

 partnerLink="inboundService">

 <property name="portType">Dequeue_ptt</property>

 <property name="adapter.mq.inbound.queueName">Queue2</property>

 </activationAgent>

 </activationAgents>

Enabling the Binding Mode for Connections

Enable the binding mode for connections by modifying the oc4j-ra.xml file
for the MQSeries adapter. The following changes are required in the
oc4j-ra.xml file:

hostName – ""

Table 1 Property Name Changes

Old Name New Name

SegmentIfReqd SegmentIfRequired

BlockingInterval WaitInterval

Note: This feature is available as a preview release only and has not
been certified.

22

portNumber - Any interger value (>1023 & <65356)

channelName – ""

queueManagerName – "Valid_Queue_Manager_Name"

Database Adapter New Features
This section describes new features for the database adapter.

This section contains the following topics:

■ XMLType Support

■ Proxy Authentication Support

■ Inbound Schema Validation

XMLType Support

Pure SQL has been enhanced to support XMLType columns. Because storing
XML in CLOB columns was already supported (see the SOA_ORACLE_
HOME\bpel\tutorials\122.DBAdapter\advanced\dmlInvoke\InsertW

ithClobs sample), XMLType support was designed to provide the following
benefits:

■ Enable you to write XQuery expressions in SQL (to query for and update
XML records through XPath expressions)

■ Import the XSDs of schema-bound XMLTypes from Oracle into your Oracle
JDeveloper project process. Importing XMLType columns as xs:any is not
helpful.

■ Support XMLType tables, not just XMLType columns of normal tables

The following SQL statement and autogenerated XSD demonstrates support for
these three enhancements:

SELECT * FROM MOVIES_XMLTYPE WHERE EXTRACT_VALUE(object_value,

 '/Movies/title') = ?

<?xml version = '1.0' encoding = 'UTF-8'?>

<xs:schema targetNamespace="http://xmlns.oracle.com/pcbpel/

adapter/db/XMLTypeSelectService"

xmlns="http://xmlns.oracle.com/pcbpel/adapter/db/XMLTypeSelectService"

xmlns:ns1="http://xmlns.oracle.com/pcbpel/adapter/db/xdb/Movies"

elementFormDefault="qualified"

attributeFormDefault="qualified" xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:import

namespace="http://xmlns.oracle.com/pcbpel/adapter/db/xdb/Movies"

 schemaLocation="Movies_xmltype.xsd"/>

 <xs:element name="XMLTypeSelectServiceInput"

 type="XMLTypeSelectServiceInput"/>

 <xs:complexType name="XMLTypeUpdateServiceInput">

 <xs:sequence>

 <xs:element name="XML" nillable="true">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="ns1:Movies" minOccurs="0"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="TITLE" type="xs:string" nillable="true"/>

23

 </xs:sequence>

 </xs:complexType>

 <xs:element name="XMLTypeSelectServiceOutputCollection"

 type="XMLTypeSelectServiceOutputCollection"/>

 <xs:complexType name="XMLTypeSelectServiceOutputCollection">

 <xs:sequence>

 <xs:element name="XML" nillable="true">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="ns1:Movies" minOccurs="0"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 </xs:sequence>

 </xs:complexType>

</xs:schema>

See the new SOA_ORACLE_
HOME\samples\tutorials\122.DBAdapter\PureSQLTutorial.txt file,
which includes notes about XMLType support. Anonymous XMLTypes are still
supported for stored procedures. XMLType support was not added for the
Perform an Operation on a Table field of the Operation Type page of the
Adapter Configuration Wizard. XMLType support adds a new use case to the
database adapter, which conceptually takes an existing relational schema as a
starting point. If you have an XML schema, but not a relational schema, you can
still store and query that XML in an Oracle database. Oracle XDB can remove the
XSD to provide performant XML persistence.

Proxy Authentication Support

You can use proxy authentication to connect to an Oracle data store. On a per
invoke basis, you can use a combination of the following new header properties:

■ proxyUserName

■ proxyPassword

■ proxyRoles

■ proxyCertificate (base64Binary)

■ proxyDistinguishedName

■ proxyIsThickDriver

For the execution of the invoke, a proxy connection is obtained from the data
source. Note that proxyIsThickDriver must be configured and set to true if
using the OCI driver, because there is a discrepancy in the JDBC-level API
between thick and thin drivers.

See Also: The following URL for additional details about the
underlying Oracle TopLink feature:

http://www.oracle.com/technology/products/ias/toplink/doc/1013/main

/_html/dblgcfg008.htm

24

Inbound Schema Validation

You can configure a new activation spec property named SchemaValidation
in the WSDL file. When set to true, all XML produced by the polling database
adapter (for receives) is validated against the XSD. If a failure occurs, the XML
record is rejected, but still marked as processed by the database adapter. Prior to
10.1.3.3, their was no concept of malformed XML from the database adapter, so
message rejection was not implemented. Databases provide structured storage
and the XSD is generated by the Adapter Configuration Wizard. However, if you
edit the autogenerated XSD and add your own restrictions, you can enable
validation. For example, if you import a VARCHAR(50) field, the autogenerated
XSD is restricted to a maximum length of 50. However, if your BPEL process can
only handle values of a fixed length of 22, the XML may be validated.

AQ Adapter New Features
This section describes new features for the AQ adapter:

■ Inbound Schema Validation

■ Using Multiple Activation Agents in the Inbound Direction

Inbound Schema Validation when Using ADT Queues

When using the AQ adapter with ADT (object) queues, no inbound XML
validation occurs against the schema generated during design time.

To enable inbound XML validation, add the following Boolean property to the
partner link WSDL file performing the dequeue operation:

SchemaValidation

This Boolean activation spec property value is set to false by default. If set to
true, inbound XML is validated against the design-time schema during runtime.

Note that the Adapter Configuration Wizard does not support this property. To
enable this property, you must manually edit the partner link WSDL file.

Using Multiple Activation Agents in the Inbound Direction

If you use a large number of activation agents in the inbound direction, set the
useDefaultConnectionManager property to true for the inbound JNDI
entry in the oc4j-ra.xml file. If you use an outbound AQ adapter service along
with the inbound adapter AQ service with multiple activation agents in the
inbound direction, ensure that you do the following:

■ Use a different JNDI entry in oc4j-ra.xml.

■ Set useDefaultConnectionManager to false.

JMS Adapter New Features
This section describes new features for the JMS adapter.

25

Support for BEA WebLogic JMS Provider Queues and Topics

The JMS adapter provides support for BEA WebLogic JMS provider queues and
topics. To use this feature, set environment-naming-url-factory-enabled
to true in the server.xml file.

Oracle ESB Singleton Behavior for Inbound Adapter
Endpoints
When using Oracle ESB in a clustered (OC4J) environment, inbound
nontransaction JCA resource adapters incur race conditions when consuming
messages from the endpoint (for example, an inbound file adapter).

To avoid this problem, add the following ESB endpoint property to the service
definition:

clusterGroupId

This endpoint property can be assigned any value. At runtime, only one node in
the cluster owns the endpoint activation.

Decision Service Support for Ilog JRules
The decision service automatically supports integration with Ilog JRules.
However, several configuration steps must be manually performed. These steps
are described in this section.

Prerequisites

These instructions assume that the Ilog JRules version 6.1 Rule Execution Server
(RES) is installed and the RES management application (EAR file) is deployed to
Oracle SOA Suite 10.1.3.3. Throughout these instructions, the following
environment variables point to directories of installed components:

■ JRULES_HOME — The directory in which Ilog JRules 6.1 is installed

■ ORACLE_HOME — The directory in which Oracle SOA Suite is installed

■ JDEV_HOME — The directory in which Oracle JDeveloper is installed

Oracle JDeveloper Setup

To connect to the Ilog JRules RES from the Decision Service wizard, copy the
following JAR file from the Ilog JRules installation directory to the Oracle
JDeveloper installation directory.

1. Exit Oracle JDeveloper.

2. Perform the following steps at the operating system command prompt:

cd ${JDEV_HOME}/integration

mkdir thirdparty/ilog/lib

cp ${JRULES_HOME}/executionserver/lib/jrules-bres-session-java.jar \

${JDEV_HOME}/integration/thirdparty/ilog/lib

3. Start Oracle JDeveloper.

26

SOA Suite setup

The Oracle Application Server instance hosting Oracle BPEL Process Manager
must be configured for the decision service runtime to use Ilog JRules.

1. Stop Oracle SOA Suite.

${ORACLE_HOME}/opmn/bin/opmnctl stopall

2. Open the server.xml file in the ${ORACLE_HOME}/j2ee/oc4j_
soa/config directory.

3. Search for shared library oracle.bpel.common and add the following JAR
files.

<code-source path="${JRULES_

 HOME}/executionserver/lib/jrules-bres-execution.jar"/>

<code-source path="${JRULES_

 HOME}/executionserver/lib/jrules-bres-manage-tools.jar"/>

<code-source path="${JRULES_

 HOME}/executionserver/lib/jrules-bres-session-java.jar"/>

<code-source path="${JRULES_

 HOME}/executionserver/lib/jrules-engine.jar"/>

<code-source path="${JRULES_

 HOME}/executionserver/lib/commons-digester.jar"/>

<code-source path="${JRULES_

 HOME}/executionserver/lib/commons-logging.jar"/>

<code-source path="${JRULES_HOME}/executionserver/lib/sam.jar"/>

<code-source path="${JRULES_HOME}/executionserver/lib/xercesImpl.jar"/>

4. Start Oracle SOA Suite.

${ORACLE_HOME}/opmn/bin/opmnctl startall

5. Open the ${ORACLE_
HOME}/bpel/system/services/config/DecisionServiceConfigur

ation.xml file.

6. Verify that the decision service is configured to use Ilog JRules by ensuring
that the following entries in bold exist:

<?xml version = '1.0' encoding = 'UTF-8'?>

<!--

 Configuration file for the decision service.

-->

<configuration xmlns="http://xmlns.oracle.com/bpel/rules">

 <!--

 Rule Engine provider implementations

 -->

 <ruleEngine name="Oracle" description="Oracle Business Rules

 10.1.3.1.0">

 <ruleEngineClass>

 oracle.bpel.services.rules.rpi.oracle.OracleRuleEngine

 </ruleEngineClass>

 </ruleEngine>

 <ruleEngine name="Ilog" description="Ilog JRules 6.1">

 <ruleEngineClass>

 oracle.bpel.services.rules.rpi.ilog.IlogRuleEngine

 </ruleEngineClass>

 <properties>

27

 <property name="jndiXuConnectorName">

 eis/XUConnectionFactory

 </property>

 <property name="ruleSessionProviderClass">

 ilog.rules.bres.session.j2se.IlrJ2SERuleSessionProvider

 </property>

 </properties>

 </ruleEngine>

 <!--

 Fact context implementations

 -->

 <factContext name="OracleJaxb" description="Oracle JAXB 1.0">

 <factContextClass>

 oracle.bpel.services.rules.rpi.JAXBFactContext

 </factContextClass>

 </factContext>

 <factContext name="XOM" description="Ilog JRules 6.1 XOM">

 <factContextClass>

 oracle.bpel.services.rules.rpi.ilog.XOMFactContext

 </factContextClass>

 </factContext>

</configuration>

The following properties can be configured depending on the rule execution
server connectivity setup:

■ jndiXuConnection — The JNDI name of the Ilog JRules Execution
Unit resource adapter (XU) connection factory. The default setting is
eis/XUConnectionFactory.

■ ruleSessionProviderClass — The fully-qualified Ilog JRules Java
class name that establishes a rule session with the Ilog JRules RES. The
default setting is
ilog.rules.bres.session.j2se.IlrJ2SERuleSessionProvide

r. See the Ilog JRules API reference for other settings. You may need to
specify additional properties. For example, if the rule session class is
ilog.rules.bres.session.ejb.IlrManagedRuleSessionProvi

der or
ilog.rules.bres.session.ejb.IlrRemoteRuleSessionProvid

er, then appropriate JNDI properties must be configured to initialize the
JNDI InitialContext. Those properties can be added to the
properties element of the Ilog JRules rule engine configuration in the
DecisionServiceConfiguration.xml file.

Example 1 DecisionServiceConfiguration.xml Property Settings

<ruleEngine name="Ilog" description="Ilog JRules 6.1">

 <ruleEngineClass>

 oracle.bpel.services.rules.rpi.ilog.IlogRuleEngine

 </ruleEngineClass>

 <properties>

 <property name="jndiXuConnectorName">

 eis/XUConnectionFactory

 </property>

 <property name="ruleSessionProviderClass">

 ilog.rules.bres.session.ejb.IlrRemoteRuleSessionProvider

28

 </property>

 <property name="java.naming.factory.initial">

 com.evermind.server.rmi.RMIInitialContextFactory

 </property>

 <property name="java.naming.provider.url">

 ormi://localhost:23791/rulesession

 </property>

 <property name="java.naming.security.principal">

 oc4jadmin

 </property>

 <property name="java.naming.security.credentials">

 welcome1

 </property>

 </properties>

</ruleEngine>

The properties for the Ilog JRules decision service configuration in the
DecisionServiceConfiguration.xml file denote default values.
However, the values can be overwritten by a specific decision service partner
link configuration. To do this, modify the ruleEngineProvider element in
the decision service configuration file decisionservices.decs of the
BPEL project with the following properties shown in bold:

 <ruleEngineProvider provider="Ilog" name="jrules61_myhost">

 <repository type="Service">

 <service>

 <url>service:jmx:rmi:///opmn://myhost.com:6003/home</url>

 <username>oc4jadmin</username>

 <password encrypted="true">AK6qvYcrlNMqnYt1uPZFjw==</password>

 </service>

 </repository>

 <properties>

 <property name="jmxConnectorClass">

 oracle.bpel.services.rules.rpi.ilog.OracleJmxConnector

 </property>

 <property name="ruleSessionProviderClass">

 ilog.rules.bres.session.j2se.IlrJ2SERuleSessionProvider

 </property>

 </properties>

 </ruleEngineProvider>

Limitations

This section describes known limitations on decision service integration with Ilog
JRules:

■ Parameter type support — The input and output parameters of the rule set
you want to expose as a decision service must be derived from an
XML-schema element. The decision service does not currently support type
models based on JavaBeans or others.

■ Deployment of Ilog JRules decision service — Some Ilog JRules specific
deployment artifacts must be copied into the Web archive suite of the
decision service prior to deployment. This may include configuration files for
the JRules XU resource adapter (ra.xml) or any other Ilog specific file. See
the Ilog JRules documentation for details.

29

Fault Management Framework
Release 10.1.3.3 provides a generic fault management framework for handling
faults in BPEL processes. If a fault occurs during runtime in an invoke activity in
a process, the framework catches the fault and performs a user-specified action
defined in a fault policy file associated with the activity. If a fault results in a
condition in which human intervention is the prescribed action, you perform
recovery actions from Oracle BPEL Control. The fault management framework
provides an alternative to designing a BPEL process with catch branches in scope
activities.

This section contains the following topics:

■ Fault Management Framework Overview

■ Designing a Fault Policy

■ Fault Management Framework Use Case

■ Java Action Fault Policy

Fault Management Framework Overview

This section provides an overview of the components that comprise the fault
management framework.

■ A schema named fault-policy.xsd is provided for defining a fault
management policy.

■ The fault management framework catches all faults (business and runtime)
for an invoke activity.

■ A fault policy file defines fault conditions and their corresponding fault
recovery actions. Each fault condition specifies a particular fault or group of
faults, which it attempts to handle, and the corresponding action for it. A set
of actions is identified by an ID in the fault policy file.

■ A set of conditions invokes an action (known as fault policy).

■ Fault policies are defined in multiple files under a directory named
fault-policies for each domain:

SOA_ORACLE_HOME\bpel\domains\domain_name\config\fault-policies\

where domain_name is the name of the domain (for example, default or
any additional domains that you have created).

■ A fault policy can be associated at the following levels:

- Partner link

- Port type

- Process

- Domain

See Also: The following fault management framework sample:

SOA_ORACLE_

HOME\bpel\samples\tutorials\122.DBAdapter\InsertWithCatch

30

■ A fault policy bindings file associates the policies defined in a fault policy file
with partner links, port types, processes, and domains. The framework looks
for fault policy bindings in the following files (in order of priority):

- In the bpel.xml file at the process level

- In the domain level file:

SOA_ORACLE_HOME\bpel\domains\domain_name\config\fault-bindings.xml

Designing a Fault Policy

This section describes how to design a fault policy.

This section contains the following topics.

■ Understanding How Fault Policy Binding Resolution Works

■ Task 1: Create a Fault Policy File for Automated Fault Recovery

■ Task 2: Associate a Fault Policy

Understanding How Fault Policy Binding Resolution Works

A fault policy bindings file associates the policies defined in a fault policy file
with partner links, port types, processes, and domains. The framework attempts
to identify a fault policy binding in the following order:

■ Partner link binding in bpel.xml

■ Port type binding in bpel.xml

■ Process binding in bpel.xml

■ Partner link binding specified for the domain

■ Port type binding specified for the domain

■ Process binding specified for the domain

During the resolution process, if no action is found that matches the condition,
the framework assumes that resolution failed and moves to the next resolution
level.

For example, assume an invoke activity faults with faultname="abc". There is
a policy binding specified in the bpel.xml file:

■ Partner link name binds to policy-id-1

■ Port type binds to policy-id-2

■ Process binds to policy-id-3

In the SOA_ORACLE_HOME\bpel\domains\domain_
name\config\fault-bindings.xml file, the following bindings are also
specified:

■ Partner link name binds to policy-id-4

Note: A fault policy configured with the fault management
framework overrides any fault handling defined in catch branches of
scope activities in the BPEL process. The fault management
framework can be configured to rethrow the fault handling back to the
catch branches.

31

■ Port type binds to policy-id-5

■ Process binds to policy-id-6

The fault management framework behaves as follows:

■ First match the resolve binding (in this case, policy-id-1).

■ If the fault resolution fails, go to the next possible match (in this case,
policy-id-2).

■ If the fault resolution fails, go to the next possible matches (policy-id-3,
(policy-id-4, policy-id-5, and policy-id-6).

■ If the fault resolution still fails, the fault is sent to the BPEL fault catch
branch.

Task 1: Create a Fault Policy File for Automated Fault Recovery

1. Create directories named fault-policies under the config directory for
every domain in which you want to use the fault management framework.

SOA_ORACLE_HOME\bpel\domains\domain_name\config\fault-policies

2. Create a fault policy file (for example, named fault-policy.xml) in the
fault-policies directory. This file includes condition and action
sections for performing specific tasks.

3. Define the condition section of the fault policy file.

■ Note the following details about the condition section:

– This section provides a condition based on faultName.

– Multiple conditions may be configured for a faultName.

– Each condition has one test section (an XPath expression) and one
action section.

– The test section (XPath expression) is evaluated for the fault
variable available in the fault.

– The action section has a reference to the action defined in the same
file.

– You can only query the fault variable available in the fault.

– The order of condition evaluation is determined by the sequential
order in the document.

The following table provides examples of condition section use in the
fault policy file. All actions defined in the condition section must be
associated with an action in the action section.

Condition Example Fault Policy File Syntax

This condition is checking a fault
variable for code =
“WSDLFailure”

An action of ora-terminate is
specified.

<condition>

 <test>$fault.code/code="WSDLReading Error"

 </test>

 <action ref="ora-terminate"/>

</condition>

32

4. Define the action section of the fault policy file.

■ Note the following details about the action section:

– The list of actions cannot be extended.

– Validation of fault policy files is done at the domain startup time.
Oracle BPEL Server must be restarted for new handlers to be
effective.

The following table provides several examples of action section use in
the fault policy file. You can provide automated recovery actions for
some faults. In all recovery actions except retry and human intervention,
the framework performs the actions synchronously.

No test condition is provided.
This is a catch all condition for a
given faultName.

<condition>

 <action ref="ora-rethrow"/>

</condition>

If the faultName name attribute is
missing, this indicates a catch all
branch for faults that have any
QName.

<faultName > . . . </faultName>

Recovery Actions Fault Policy File Syntax

Retry — Provides the following
actions for retrying the activity.

■ Retry a specified number of
times

■ Provide a delay between
retries

■ Provide an exponential
backoff

■ Provide a retry failure
action

■ Provide a retry success
action

Note: Exponential backoff
indicates the next retry attempt
is scheduled at 2 x the delay,
where delay is the current retry
interval. For example, if the
current retry interval is 2
seconds, the next retry attempt
is scheduled at 4, the next at 8,
and the next at 16 seconds until
the retryCount value is
reached.

<Action id="ora-retry">

 <Retry>

 <retryCount>3</retryCount>

 <retryInterval>2</retryInterval>

 <exponentialBackoff/>

 <retryFailureAction ref="ora-java"/>

 <retrySuccessAction ref="ora-java"/>

 </Retry>

</Action>

Note the following details:

■ If multiple WSDL locations are available, the
Oracle BPEL Server attempts a connection to the
next location for n times with delay. The
framework attempts to connect to each specified
WSDL location at every retry count attempt.

■ The framework chains to the retry success action
in the event of the retry attempt being successful.

■ If all retry attempts fail, the framework chains to
the retry failure action.

Condition Example Fault Policy File Syntax

33

The following example shows a fault policy file with fully defined condition
and action sections.

Human Intervention — Causes
the current activity to stop
processing. You can now go to
Oracle BPEL Control and take
several actions on this instance.

See Also: "Human Intervention
in Oracle BPEL Control" on
page 41

<Action id="ora-human-intervention">

 <humanIntervention/></Action>

Terminate Process — Terminates
the process

<Action id="ora-terminate"><abort/></Action>

Java Code — Enables you to
execute an external Java class.

See Also: "Java Action Fault
Policy" on page 47

<Action id="ora-java">

<!-- this is user provided custom java

 class-->

<javaAction className="mypackage.myClass"

 defaultAction="ora-terminate">

 <returnValue value="REPLAY"

 ref="ora-terminate"/>

 <returnValue value="RETRHOW"

 ref="ora-rethrow-fault"/>

 <returnValue value="ABORT"

 ref="ora-terminate"/>

 <returnValue value="RETRY" ref="ora-retry"/>

 <returnValue value="MANUAL"

 ref="ora-human-intervention"/>

</javaAction>

</Action>

Rethrow Fault — The
framework sends the fault to the
BPEL fault handlers (catch
branches in scope activities). If
none are available, the fault is
sent up.

<Action

id="ora-rethrow-fault"><rethrowFault/></Action>

Replay Scope — Raises a replay
fault

<Action

id="ora-replay-scope"><replayScope/></Action>

Notes:

■ There is no option for creating a generic fault handler extension.
The list of fault policy actions is limited by the framework.

■ The preseeded recovery action tag names (ora-retry,
ora-human-intervention, ora-terminate, and so on) are
only samples. You can substitute these names with ones
appropriate to your environment.

Note: Fault policy file names are not restricted to one specific name.
However, the file must conform to the fault-policy.xsd schema
available in the SOA_ORACLE_HOME\bpel\system\xmllib folder.

Recovery Actions Fault Policy File Syntax

34

<?xml version="1.0" encoding="UTF-8"?>

<faultPolicy version="2.0.1" id="CRM_ServiceFaults"

xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns="http://schemas.oracle.com/bpel/faultpolicy"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://schemas.oracle.com/bpel/faultpolicy

C:\oc4j\bpel\system\xmllib\fault-policy.xsd">

<Conditions>

<!-- Fault if wsdlRuntimeLocation is not reachable -->

<faultName xmlns:bpelx="http://schemas.oracle.com/bpel/extension"

 name="bpelx:remoteFault">

 <condition>

 <test>$fault.code/code="WSDLReadingError"</test>

 <action ref="ora-terminate"/>

 </condition>

 <condition>

 <action ref="ora-java"/>

 </condition>

</faultName>

<!-- Fault if location port is not reachable-->

<faultName xmlns:bpelx="http://schemas.oracle.com/bpel/extension"

 name="bpelx:bindingFault">

 <!--ORA-00001: unique constraint violated on insert-->

 <condition>

 <test>$fault.code/code="1"</test>

 <action ref="ora-java"/>

 </condition>

 <!--ORA-01400: cannot insert NULL -->

 <condition>

 <test>$fault.code/code="1400"</test>

 <action ref="ora-terminate"/>

 </condition>

 <!--ORA-03220: required parameter is NULL or missing -->

 <condition>

 <test>$fault.code/code="3220"</test>

 <action ref="ora-terminate"/>

 </condition>

 <condition>

 <action ref="ora-retry-crm-endpoint"/>

 </condition>

</faultName>

<!-- Business faults -->

<!-- Fault comes with a payload of error, make sure the name space-->

<!-- is provided here or at root level -->

<faultName xmlns:credit="http://services.otn.com"

 name="credit:NegativeCredit">

 <condition>

 <test>$fault.payload/credit:error="Bankruptcy Report"</test>

 <action ref="ora-retry"/>

 </condition>

 <condition>

 <test>$fault.payload/credit:error="Illegal SSN"</test>

 <action ref="ora-terminate"/>

 </condition>

</faultName>

</Conditions>

<Actions>

 <Action id="ora-retry">

35

 <retry>

 <retryCount>3</retryCount>

 <retryInterval>2</retryInterval>

 <exponentialBackoff/>

 <retryFailureAction ref="ora-java"/>

 <retrySuccessAction ref="ora-java"/>

 </retry>

 </Action>

 <Action id="ora-retry-crm-endpoint">

 <retry>

 <retryCount>5</retryCount>

 <retryFailureAction ref="ora-java"/>

 <retryInterval>5</retryInterval>

 <retrySuccessAction ref="ora-java"/>

 </retry>

 </Action>

 <Action id="ora-replay-scope">

 <replayScope/>

 </Action>

 <Action id="ora-rethrow-fault">

 <rethrowFault/>

 </Action>

 <Action id="ora-human-intervention">

 <humanIntervention/>

 </Action>

 <Action id="ora-terminate">

 <abort/>

 </Action>

 <Action id="ora-java">

 <!-- this is user provided class-->

 <javaAction

 className="com.oracle.bpel.client.config.faultpolicy.TestJavaAction"

 defaultAction="ora-terminate" propertySet="prop-for-billing">

 <returnValue value="REPLAY" ref="ora-terminate"/>

 <returnValue value="RETRHOW" ref="ora-rethrow-fault"/>

 <returnValue value="ABORT" ref="ora-terminate"/>

 <returnValue value="RETRY" ref="ora-retry"/>

 <returnValue value="MANUAL" ref="ora-human-intervention"/>

 </javaAction>

 </Action>

</Actions>

 <Properties>

 <propertySet name="prop-for-billing">

 <property name="user_email_recipient">bpeladmin</property>

 <property name="email_recipient">joe@abc.com</property>

 <property name="email_recipient">mike@xyz.com</property>

 <property name="email_threshold">10</property>

 <property name="sms_recipient">+429876547</property>

 <property name="sms_recipient">+4212345</property>

 <property name="sms_threshold">20</property>

 <property name="user_email_recipient">john</property>

 </propertySet>

 <propertySet name="prop-for-order">

 <property name="email_recipient">john@abc.com</property>

 <property name="email_recipient">jill@xyz.com</property>

 <property name="email_threshold">10</property>

 <property name="sms_recipient">+42222</property>

 <property name="sms_recipient">+423335</property>

 <property name="sms_threshold">20</property>

36

 </propertySet>

 </Properties>

</faultPolicy>

Task 2: Associate a Fault Policy

1. Associate a fault policy with the level of fault policy binding you are using:

■ Task 2a: Associate a Fault Policy with a Partner Link, Port Type, or
Process

■ Task 2b: Associate a Fault Policy with a Partner Link, Port Type, or
Process at the Domain Level

Task 2a: Associate a Fault Policy with a Partner Link, Port Type, or Process You can
associate a specific partner link, port type, or entire process with a fault policy.
This method:

■ Provides a more granular approach to fault policy binding than "Task 2b:
Associate a Fault Policy with a Partner Link, Port Type, or Process at the
Domain Level"

■ Overrides any fault policy binding defined for "Task 2b: Associate a Fault
Policy with a Partner Link, Port Type, or Process at the Domain Level"

1. Add a new section to bpel.xml file. Note the following details:

■ Only one fault policy can be bound to a process, port type, or partner
link.

■ Multiple partner links can be bound to a fault policy.

■ Multiple port types can be bound to a fault policy.

The following example is provided:

<faultPolicyBindings>

 <process faultPolicy="BillingFaults"/>

 <!-----Fault on any plink/port type not specified--->

 <!-----below uses policy BillingFaults--->

 <partnerLink xmlns:credit="http://services.otn.com" faultPolicy="CRM_

 ServiceFaults">

 <name>UnitedLoanService</name>

 <!-----Fault on these 2 plink will use policy CRM_ServiceFaults--->

 <name>StarLoanService</name>

 <portType>credit:CreditRatingService</portType>

 <!----Fault on these 2 port types uses policy CRM_ServiceFaults--->

 <portType xmlns:united="http://services.uninted.com/loan">

 united:UnitedLoanService</portType>

 </partnerLink>

 <partnerLink faultPolicy="myOtherFaults">

 <name>AnotherPartnerLink</name>

 <!-----Fault on this plink uses policy myOtherFaults--->

 </partnerLink>

</faultPolicyBindings>

Task 2b: Associate a Fault Policy with a Partner Link, Port Type, or Process at the Domain

Level You can associate an entire domain with a fault policy.

37

1. Provide a fault policy applicable to an entire domain in the
fault-bindings.xml file in the SOA_ORACLE_
HOME\bpel\domains\domain_name\config directory.

The following example is provided:

<faultPolicyBindings version="2.0.1"

xmlns="http://schemas.oracle.com/bpel/faultpolicy"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" >

 <process faultPolicy="BillingFaults"/>

 <partnerLink faultPolicy="CRM_ServiceFaults">

 <name>StarLoanService</name>

 <name>BillCardService</name>

 <portType xmlns:credit="http://services.otn.com">

 credit:CreditRatingService</portType>

 <portType xmlns:united="http://services.uninted.com/loan">

 united:UnitedLoanService</portType>

 </partnerLink>

</faultPolicyBindings>

A binding provided for a port type in this file is used for all processes in the
domain. These processes can use different partner link names. If the port
types are the same, the fault policy specified in this file is used.

Fault Management Framework Use Case

This use case describes the design time and runtime phases of a fault
management framework used in a BPEL process.

This section contains the following topics:

■ BPEL Process and Fault Policy Design

■ Scenario 1: Automated Fault Recovery

■ Scenario 2: Human Intervention for Fault Recovery

■ Human Intervention in Oracle BPEL Control

■ Fault Logging

BPEL Process and Fault Policy Design

This section provides a use case of how to design a BPEL process and fault policy
using the fault management framework.

This section contains the following topics:

■ BPEL Process Design

■ Fault Policy Files for the Domain

■ Fault Policy Binding Definitions in the bpel.xml File

BPEL Process Design The BPEL process shown in Figure 1 includes the following
activities:

Note: The fault policy bindings file must be named
fault-bindings.xml. This name must conform to the schema
available in SOA_ORACLE_
HOME\bpel\system\xmllib\fault-bindings.xsd.

38

■ A scope activity named Scope_1 with a fault handler for bpelx:bindingFault.

■ Two invoke activities that connect to two partner links.

Figure 1 Scope Activity of BPEL Process

Fault Policy Files for the Domain As shown in Figure 1, there are two partner links
invoked by two invoke activities. Fault policy files are created using the fault
management framework to handle faults for both invoke activities. The fault
policy overrides the fault handling provided in the bpelx:bindingFault catch
branch in the Scope_1 scope activity. Example 2 shows the first fault policy file
(CreditRating.xml) created in the default domain for the GetCreditRating
partner link.

Example 2 SOA_ORACLE_HOME\bpel\domains\default\config\fault-policies\Credi-

tRating.xml

<?xml version="1.0" encoding="UTF-8"?>

<faultPolicy version="2.0.1" id="CreditRating "

 xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns="http://schemas.oracle.com/bpel/faultpolicy"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://schemas.oracle.com/bpel/faultpolicy

C:\oc4j\bpel\system\xmllib\fault-policy.xsd">

 <Conditions>

 <!-- Fault if location port is not reachable-->

 <faultName xmlns:bpelx="http://schemas.oracle.com/bpel/extension"

 name="bpelx:bindingFault">

 <condition>

 <action ref="ora-retry-crm-endpoint"/>

39

 </condition>

 </faultName>

 </Conditions>

 <Actions>

 <Action id="ora-retry">

 <retry>

 <retryCount>3</retryCount>

 <retryInterval>2</retryInterval>

 <exponentialBackoff/>

 <retryFailureAction ref="ora-java"/>

 </retry>

 </Action>

 <Action id="ora-retry-crm-endpoint">

 <retry>

 <retryCount>5</retryCount>

 <retryInterval>5</retryInterval>

 <retryFailureAction ref="ora-java"/>

 <retrySuccessAction ref="ora-java"/>

 </retry>

 </Action>

 <Action id="ora-replay-scope"><replayScope/></Action>

 <Action id="ora-rethrow-fault"><rethrowFault/></Action>

 <Action id="ora-human-intervention">

 <humanIntervention/>

 </Action>

 <Action id="ora-terminate"><abort/></Action>

 <Action id="ora-java">

 <!-- this is user provided class-->

 <javaAction className="myPackage.LogFault"

 defaultAction="ora-terminate"> Note: property set is optional

 <returnValue value="REPLAY" ref="ora-terminate"/>

 <returnValue value="RETHROW" ref="ora-rethrow-fault"/>

 <returnValue value="ABORT" ref="ora-terminate"/>

 <returnValue value="RETRY" ref="ora-retry"/>

 <returnValue value="MANUAL" ref="ora-human-intervention"/>

 </javaAction>

 </Action>

 </Actions>

-----Note: Properties section is optional----

</faultPolicy>

Example 3 shows the second fault policy file (ApplyCredit.xml) created in the
default domain for the ApplyCredit partner link. The contents of the action
section in Example 3 are the same as those shown in Example 2.

Example 3 SOA_ORACLE_HOME\bpel\domains\default\config\fault-policies\Apply-

Credit.xml

<FaultPolicy id="ApplyCredit">

 <!--------------------------Conditions------------------------------->

 <Conditions>

 <faultName

 name="{http://schemas.oracle.com/bpel/extension}bindingFault">

 <condition>

 <action ref="ora-human-intervention"/>

 </condition>

 </faultName>

 </Conditions>

<Actions>

40

. . .

. . .

. . .

</Actions>

Fault Policy Binding Definitions in the bpel.xml File The fault policy binding is defined
in the bpel.xml file. Note the following details:

■ A fault on CreditRating causes the framework to use the CreditRating
fault policy.

■ A fault on ApplyCredit falls back to the process level binding and causes
the framework to use the ApplyCredit fault policy.

<faultPolicyBindings>

 <process faultPolicy=" ApplyCredit "/>

 <!--Process binds to ApplyCredit policy-->

 <partnerLink faultPolicy="CreditRating ">

 <name>creditRatingService</name>

 <!--partner link binds to CreditRating policy-->

 <portType xmlns:credit="http://services.otn.com">

 StarRatingService</portType>

 </partnerLink>

</faultPolicyBindings>

Scenario 1: Automated Fault Recovery

In this scenario, the automated fault recovery process is demonstrated. The
CreditRating endpoint is unavailable. The following series of actions occur:

■ The Invoke_1 activity raises a fault that is caught by the framework.

■ The fault policy resolution process is started.

- The fault policy CreditRating is identified.

■ The action resolution process is started:

- The fault policy has a catch branch for bpelx:bindingFault. The
ora-retry-crm-endpoint action defined in the CreditRating.xml
file shown in Example 2 on page 38 is identified.

■ Get action details:

- This is a retry action in which the retry count is 5, the retry interval is 5
seconds, the retry failure action is ora-java, and the retry success
action is ora-java.

- The retry action is an asynchronous operation.

■ Dehydrate the activity and other policy-related data.

■ The fault management framework attempts a retry.

■ All retry attempts fail.

■ The RetryFailureAction attribute is ora-java.

■ The steps from the action resolution process are repeated.

■ Since ora-java is a synchronous operation, no dehydration is performed
and the Java code provided in myPackage.LogFault is invoked.

■ The Java code logs the string and returns a RETHROW. This causes chaining to
ora-rethrow-fault.

41

■ The Scope_1 fault handler for the bindingFault defined in the BPEL
process catches the exception.

If the retry attempt is successful, the framework chains to ora-java, but
invokes a different method on this object.

Scenario 2: Human Intervention for Fault Recovery

In this scenario, human intervention is demonstrated. The ApplyCredit service
endpoint receives a business fault. The following series of actions occur:

■ The Invoke_2 activity raises a fault that is caught by the framework.

■ The fault policy resolution process is started.

- The partner link binding resolves to no policy; resolution of process level
binding is attempted.

- The ApplyCredit fault policy is identified.

■ The action resolution process is started.

- Action ora-human-intervention defined in the ApplyCredit.xml
file shown in Example 3 on page 39 is identified.

■ Get action details:

- This is a pause action; only the activity is put in a pause status.

- A pause action (human intervention) is an asynchronous operation

■ Dehydrate the activity and other policy-related data.

■ All other activities in the process are not affected.

■ Go to Oracle BPEL Control and take the next action.

Human Intervention in Oracle BPEL Control

1. Go to the faulted instance in the Oracle BPEL Control.

2. Click the Activities tab.

The Activity State list enables you to display activities based on their current
state. For this example, only activities currently pending are displayed.

Note: The framework handles the exception even if the BPEL process
has a fault handler.

42

3. Click the faulted activity.

The Available Actions list displays a set of available recovery actions.

Once an activity is marked for recovery through human intervention, the
recovery actions described in the following table are possible.

State Description

All States Displays all activities, regardless of their state.

Open Displays only open activities.

Completed Displays only completed activities.

Cancelled Displays only cancelled activities.

Stale Displays only stale activities.

Pending Displays only pending activities.

Recovery Action Description

Retry Retries the activity with an option to provide a retry success action.

Abort Terminates the process instance of the faulted activity.

43

4. Expand Fault Details to view details about the faulted instance.

5. See the following sections to use these recovery actions:

■ Retry the Activity

■ Change the Input Variable Contents and Retry

■ Set the Output and Continue

■ Replay the Scope

■ Rethrow the Exception

■ Abort The Process

■ Abort, Change Input, and Create New Instance

■ Retry Several Faulted Activities

Retry the Activity An example of a scenario in which to use this recovery action is
when the fault occurred because the service provider was not reachable due to a
network error. The network error is now resolved.

1. Click Recover to retry the activity.

Rethrow Rethrows the exception and allows the BPEL fault handlers (catch
branches) to handle the fault. By default, all exceptions are caught
by the fault management framework unless an explicit rethrow
fault policy is provided.

See Also: "Rethrow the Exception" on page 45

Replay Replays the scope in which the fault occurred.

Continue Skips the activity. The framework assumes the activity completed
with no fault.

Note: The Oracle BPEL Process Manager API enables you to
programmatically perform the abort, retry (with a success action),
continue, rethrow, and replay recovery options.

Recovery Action Description

44

All Java actions available in the fault policy used by the automated fault
recovery are shown in the dropdown list.

Note the following details about the retry action:

■ If the retry faults again, the framework goes through the same steps as
earlier and returns to this point.

■ If the same fault is identified, the activity is marked for human
intervention.

■ If the retry attempt is successful, the framework invokes
handleRetrySuccess on the custom Java class provided under the
action selected here.

Change the Input Variable Contents and Retry You can modify the input variable
contents used by the faulted activity. All variables available to this faulted
activity are listed in a dropdown list.

1. Select the variable and click Get. This retrieves the value of the variable in
the context of the faulted activity.

2. Alter the variable contents in the text area and click Set to modify the
variable in the context of the faulted activity.

Note that the Skeleton Value button enables you to retrieve the variable for
editing without displaying its actual value.

45

3. Select Retry in the list of available actions and click Recover to retry the
activity.

Set the Output and Continue An example of a scenario in which to use this recovery
action is when a service provider billing system is not reachable. You decide to
either:

■ Skip the call to billing

■ Manually perform the billing and continue the current instance

1. Retrieve and modify the variable data as described in "Change the Input
Variable Contents and Retry" on page 44.

2. Select Continue as the action and click Recover to mark the activity as a
success. When an activity is marked as a success, the faulted activity is
ignored and processing continues to the next activities.

Replay the Scope You can replay the scope in which the fault occurred.

1. Retrieve and modify the variable data as described in "Change the Input
Variable Contents and Retry" on page 44.

2. Select Replay as the action and click Recover to replay the scope.

Rethrow the Exception You can rethrow the exception and enable the BPEL fault
handlers (catch branches) to process the fault.

1. Retrieve and modify the variable data as described in "Change the Input
Variable Contents and Retry" on page 44.

2. Select Rethrow as the action and click Recover to rethrow the fault.

Note: This action is only useful for a synchronous process. For an
asynchronous process, marking the invoke activity as a success is not
useful because Oracle BPEL Server waits at the matching receive
activity.

46

Abort The Process You can abort the instance of the faulted activity.

1. Select Abort as the action and click Recover to abort the instance.

Abort, Change Input, and Create New Instance An example of a scenario in which to
use this recovery action is if the instance faulted because of bad input to the
process, the current instance must be terminated, and a new instance with a
modified payload must be instantiated.

1. Click New Instance to access the Initiate page. The selection for operation in
the dropdown list (initiate) and the input payload are already filled in.

2. Modify the value for the payload input variable used in the faulted instance
and click Initiate to initiate a new instance.

Retry Several Faulted Activities You can attempt bulk recoveries on multiple faulted
activities.

1. Return to the Activities tab of the faulted instance.

2. Select all activities that must be recovered. Check boxes appear only for
activities that can be recovered.

3. Select a recovery action from the dropdown list and click Recover.

47

Fault Logging

All fault information is logged using the current logging scheme. There is no
option to add to logging and no additional data that you can choose to log in the
event of a fault. While you cannot control the level of logging scheme, you can
provide a custom Java class using JavaAction in the fault policy. This enables
custom logging to be performed based on a fault.

To log to another file or database, attach a policy with JavaAction that invokes
a user Java class, and perform all user-specific logging in the Java code.

To use the JavaAction policy to perform logging only, chain JavaAction to a
rethrow action using the defaultAction attribute. This sends the fault to the
process-defined fault catch branch. In this case, the custom Java class performs
logging only.

Java Action Fault Policy

Note the following details when using the Java action fault policy.

■ The Java class provided follows a specific interface. This interface returns a
string. Multiple values can be provided for output and fault policy to take
after execution.

■ Additional fault policy can be executed by providing a mapping from the
output value (return value) of implemented methods to a fault policy.

■ If no ReturnValue is specified, the default fault policy is executed:

<Action id="ora-java">

 <JavaAction ClassName="mypackage.myclass"

 defaultAction="ora-human-intervention" propertySet="prop-for-billing">

 <!--defaultAction is a required attribute, but propertySet is optional-->

 <!-- attribute-->

 <ReturnValue value="RETRY" ref="ora-retry"/>

 <!--value is not nilable attribute & cannot be empty-->

 <ReturnValue value="RETRHOW" ref="ora-rethrow-fault"/>

 </JavaAction>

48

</Action>

Table 2 provides an example of ReturnValue use.

To invoke a Java class, you can provide a class that implements the
IFaultRecoveryJavaClass interface. This interface has two methods:

public interface IFaultRecoveryJavaClass

{

 public void handleRetrySuccess(IFaultRecoveryContext ctx);

 public String handleBPELFault(IFaultRecoveryContext ctx);

}

Note the following details:

■ handleRetrySuccess is invoked upon a successful retry attempt. The
retry policy chains to a Java action on retrySuccessAction.

■ handleBPELFault is invoked to execute a policy of type javaAction.

The following data is available with FaultRecoveryContext:

public interface IFaultRecoveryContext

{

 public Map getProperties();

 public String getActionId();

 public String getPolicyId();

 public String getActivityType();

 public String getActivityId();

 public String getActivityName();

 public String getWsdlLocation();

 public String getPartnerLinkName();

 public QName getPortType();

 public String getCorrelationId();

 public BPELFault getFault();

 public BPELProcessId getProcessId();

 public String getStatus();

Table 2 System Interpretation of Java Action Fault Policy

Code Description

<ReturnValue value="RETRY"

 ref="ora-retry"/>

Execute the ora-retry action if the
method returns a string of RETRY

<ReturnValue value="”

 ref=”ora-rethrow”/>

Fails in validation

<JavaAction

 ClassName="mypackage.myclass"

 defaultAction="ora-human-intervention">

Execute ora-human-intervention
after Java code execution. This
attribute is used if the return from the
method does not match any provided
ReturnValue.

<ReturnValue value="RETRY"

 ref="ora-retry"/>

<ReturnValue value="” ref=””/>

Fails in validation

<JavaAction

 ClassName="mypackage.myclass"

 defaultAction=" ora-human-intervention">

<ReturnValue></ReturnValue>

Fails in validation

49

 public void setStatus(String status);

 public String setTitle(String title);

 public String getTitle();

 public int getPriority();

 public void setPriority(int priority);

 public long getInstanceId();

 public Locator getLocator();

 public void addAuditTrailEntry(String message, Object detail);

 public void addAuditTrailEntry(String message);

 public void addAuditTrailEntry(Throwable t);

 public Object getVariableData(String name) throws BPELFault;

 public Object getVariableData(String name, String partOrQuery)

 throws BPELFault;

 public Object getVariableData(String name, String part, String query)

 throws BPELFault;

 public void setVariableData(String name, Object value) throws BPELFault;

 public void setVariableData(String name, String partOrQuery, Object value)

 throws BPELFault;

 public void setVariableData(String name, String part, String query,

 Object value) throws BPELFault;

}

Example 4 provides an example of javaAction implementation.

Example 4 Implementation of a javaAction

public class TestJavaAction implements IFaultRecoveryJavaClass

{

 public void handleRetrySuccess(IFaultRecoveryContext ctx)

 {

 System.out.println("This is for retry success");

 handleBPELFault(ctx);

 }

 public void dumpProperties(Map properties)

 {

 // check if there were properties

 if(properties.size() == 0)

 return;

 System.out.println("----Begin propeties -----");

 Set entries = properties.entrySet();

 Iterator iterator = entries.iterator();

 while (iterator.hasNext())

 {

 Map.Entry entry = (Map.Entry) iterator.next();

 System.out.println("\nKey="+entry.getKey());

 // all values are list of strings

 List propValueList = (List)entry.getValue();

 Iterator it = propValueList.iterator();

 while (it.hasNext())

 {

 System.out.print("Value="+it.next()+"\t");

 }

 }

 System.out.println("\n----End propeties -----");

 }

 public String handleBPELFault(IFaultRecoveryContext ctx)

50

 {

 System.out.println("-----Inside handleFault-----\n" + ctx.toString());

 dumpProperties(ctx.getProperties());

 ctx.addAuditTrailEntry("hi there");

 System.out.println("-----End Inside handleFault-----");

 return "MANUAL";

 }

}

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of
assistive technology. This documentation is available in HTML format, and
contains markup to facilitate access by the disabled community. Accessibility
standards will continue to evolve over time, and Oracle is actively engaged with
other market-leading technology vendors to address technical obstacles so that
our documentation can be accessible to all of our customers. For more
information, visit the Oracle Accessibility Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this
document. The conventions for writing code require that closing braces should
appear on an otherwise empty line; however, some screen readers may not
always read a line of text that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor
makes any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services

Oracle provides dedicated Text Telephone (TTY) access to Oracle Support
Services within the United States of America 24 hours a day, seven days a week.
For TTY support, call 800.446.2398.

Oracle SOA Suite New Features
E10381-03

Copyright © 2005, 2008, Oracle. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information; they are provided under a license
agreement containing restrictions on use and disclosure and are also protected by copyright, patent, and other intellectual and industrial
property laws. Reverse engineering, disassembly, or decompilation of the Programs, except to the extent required to obtain interoperability
with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in the documentation, please
report them to us in writing. This document is not warranted to be error-free. Except as may be expressly permitted in your license agreement
for these Programs, no part of these Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical,
for any purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on behalf of the United States
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S.
Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition
Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
Programs, including documentation and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial Computer Software--Restricted

51

Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently dangerous applications. It shall
be the licensee's responsibility to take all appropriate fail-safe, backup, redundancy and other measures to ensure the safe use of such
applications if the Programs are used for such purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its affiliates. Other names may be
trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third parties. Oracle is not responsible
for the availability of, or any content provided on, third-party Web sites. You bear all risks associated with the use of such content. If you
choose to purchase any products or services from a third party, the relationship is directly between you and the third party. Oracle is not
responsible for: (a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the third party,
including delivery of products or services and warranty obligations related to purchased products or services. Oracle is not responsible for
any loss or damage of any sort that you may incur from dealing with any third party.

52

