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Abstract

This paper presents a new technique for off-line signature recognition and verification. The proposed system is based on global,

grid and texture features. For each one of these feature sets a special two stage Perceptron OCON (one-class-one-network)

classification structure has been implemented. In the first stage, the classifier combines the decision results of the neural networks

and the Euclidean distance obtained using the three feature sets. The results of the first-stage classifier feed a second-stage radial base

function (RBF) neural network structure, which makes the final decision. The entire system was extensively tested and yielded high

recognition and verification rates. # 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

As available computing power eventually increases

and computer algorithms become smarter, tasks that a

few years ago seamed completely unfeasible, now come

again to focus. This partly explains why a considerable

amount of research effort is being recently devoted in

designing algorithms and techniques associated with the

problems like human handwritten signature recognition

and verification.

A signature recognition and verification system

(SRVS) is a system capable of efficiently addressing

two individual but strongly related tasks: (a) identifica-

tion of the signature owner, and, (b) decision whether

the signature is genuine or forger. Depending on the

actual needs of the problem at hand, SRVSs are often

categorized in two major classes: on-line SRVSs and off-

line SRVSs. While for systems belonging to the former

class, only digitized signature images are needed, for

systems in the latter class, information about the way

the human hand creates the signature such as hand

speed and pressure measurements, acquired from special

peripheral units, is needed.

During the last few years, several on-line Parizeu and

Plamondon, 1990; Brault and Plamondon, 1993; Lee

et al., 1996) and off-line (Qi and Hunt, 1994; Yedekco-

glu et al., 1995; Han and Sethi, 1996; Droughard et al.,

1996; Bajaj and Chaudhury, 1997; Huang and Yan,

1997) SRVSs have been proposed. In the off-line

category, Qi and Hunt (1994) proposed a SRVS that is

based on global and grid features in conjunction with a

simple Euclidean distance classifier. Yedekcoglu et al.

(1996) developed a technique based on thickened

templates that can be utilized as an initial face of a

SRVS in order to reject signatures that are completely

unmatched. Han and Sethi (1996) proposed a signature

retrieval and identification system based on geometric

and topologic features. Droughard et al. (1996) used

directional probability density function in conjunction

with backpropagation-trained neural networks. Bajaj

and Chaudhury (1997) used multiple neural networks

supplied by three sets of global features, including

projection moments. Huang and Yan (1997) use

geometric features in combination with a neural net-

work classifier. However, the experimental results were

based on a small number of samples. Ramesh and
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Murty (1999) propose a system for off-line signature

verification, which consists of four subsystems based on

geometric features, moment representations, envelope

characteristics and wavelet features.

In this paper, a novel approach for off-line signature

recognition and verification is proposed. The presented

system is based on three powerful feature sets in

combination with a multiple-stage neural-network-

based classifier (Fig. 1). The novelty of the system lies

mainly on the structure of the classifier and the way that

it is used. The neural network classifier is arranged in

two stages.

We have understood that for a SRVS to be functional

in practical applications, the ability to easily add/remove

signatures from new/obsolete owners to its database

must be inherent. Our approach towards this goal is to

implement the structure of the neural network classifier

is a one-class-one-network scheme. That is for each

signature owner an individual classifier is being im-

plemented. Each time signatures from a new owner are

added to the SRVS database, only a small, fixed-size,

neural-network-based classifier must be trained.

Moreover, to farther overcome training difficulties

stemming from the feature set size, the proposed feature

set is divided into three individual feature groups of

different physical meaning. For each of the resulting

three feature groups, an individual multi-layer percep-

tron (MLP) neural network is implemented. These three

small and fixed size neural networks for each signature

owner constitute the first stage of the classifier. It is a

task of the second-stage classifier, a radial basis

functions (RBF) neural network to combine the results

of the first stage to make the final decision of weather

the presented to the system signature, belongs to a

candidate owner or not.

The experimental results confirm the effectiveness of

the proposed structure and show its ability to yield high

recognition and verification rates.

2. Preprocessing

The preprocessing stage is divided into four different

parts: noise reduction, data area cropping, width

normalization and signature skeletonization.

2.1. Noise reduction

Before any further processing takes place, a noise

reduction filter is applied to the binary scanned image.

The goal is to eliminate single white pixels on black

background and single black pixels on white back-

ground. In order to accomplish this, we apply a 3� 3

mask to the image with a simple decision rule: if the

number of the 8-neighbors of a pixel that have the same

color with the central pixel is less than two, we reverse

the color of the central pixel.

2.2. Data area cropping

The signature area is separated from the background

by using the well-known segmentation method of

vertical and horizontal projections (Gonzalez and

Wintz, 1987). Thus, the white space surrounding the

signature is discarded.

2.3. Width normalization

The image size is adjusted so that the width reaches a

default value while the height-to-width ratio remains

unchanged.

2.4. Skeletonization

A simplified version of the skeletonization technique

described by Lam and Suen (1991) is used.The simplified

algorithm used here consists of the following three steps:

Step 1: Mark all the points of the signature that are

candidates for removing (black pixels that have at least

one white 8-neighbor and at least two black 8-neighbors

pixels).

Step 2: Examine one by one all of them, following the

contour lines of the signature image, and remove these

as their removal will not cause a break in the resulting

pattern.

Step 3: If at least one point was deleted go again to

Step 1 and repeat the process once more.

Fig. 2. shows an example of this skeletonization

technique. Skeletonization makes the extracted features

invariant to image characteristics like the qualities of the

pen and the paper the signer used, and the digitizing

method and quality.

Fig. 1. Structure of the system.
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3. Feature extraction

The choice of a powerful set of features is crucial in

optical recognition systems. The features used must be

suitable for the application and for the applied classifier.

In this system, three groups of features are used

categorized as global features, grid information features

and texture features.

While global features provide information about

specific cases concerning the structure of the signature,

grid information and texture features are intended to

provide overall signature appearance information in two

different levels of detail. For grid information features,

the image is segmented in 96 rectangular regions. Only

the area (the number of signature points) in each region

is utilized in order to form the grid information feature

group. For the texture feature group to be formed, a

coarser segmentation scheme is adopted. The signature

image is segmented in only six rectangular areas, while,

for each area, information about the transition of black

and white pixels in the four different directions is used.

3.1. Global features

Signature height. The height of the signature image,

after width normalization, can be considered as a way of

representing the height-to-width ratio.

Image area. The number of black (foreground) pixels

in the image. In skeletonized signature images, it

represents a measure of the density of the signature

traces.

Pure width. The width of the image with horizontal

blank spaces removed (Qi and Hunt, 1994).

Pure height. The height of the signature image after

vertical blank spaces removed.

Baseline shift. The deference, between the vertical

centers of gravity of the left and the right part of the

image. It was taken as a measure for the orientation of

the signature.

Vertical center of the signature. The vertical center Cy

is given by

Cy ¼

Pymax

y¼1 y
Pxmax

x¼1 b½x; y�
Pxmax

x¼1

Pymax

y¼1 b½x; y�
: ð1Þ

Horizontal center of the signature. The horizontal

center Cx is given by

Cx ¼

Pxmax

x¼1 x
Pymax

y¼1 b½x; y�
Pxmax

x¼1

Pymax

y¼1 b½x; y�
: ð2Þ

Maximum vertical projection. The vertical projection

of the skeletonized signature image is calculated. The

highest value of the projection histogram is taken as the

maximum vertical projection.

Maximum horizontal projection. As above, the hor-

izontal projection histogram is calculated and the

highest value of it is considered as the maximum

horizontal projection.

Vertical projection peaks. The number of the local

maxima of the vertical projection histogram.

Horizontal projection peaks. The number of the local

maxima of the horizontal projection histogram.

Global slant angle. The image is rotated from ÿ30 to

408 with a step of 18. For each step, the number of

vertical 3-pixel connections is calculated. The angle that

has the most vertical 3-pixel connections is the global

slant angle (Qi and Hunt, 1994).

Local slant angle. The image is rotated in a similar

way as above. For each angle of rotation, the vertical

projection histogram is calculated and the 70 highest

values of the histogram are summed. The angle that

presents the highest summation is the local slant angle

(Qi and Hunt, 1994).

Number of edge points. An edge point is defined as a

signature point that has only one 8-neighbor.

Number of cross points. Cross point is a signature

point that has at least three 8-neighbors.

Number of closed loops. The number of closed loops

can be defined as

CL ¼ 1þ
ELÿ EP

2
ð3Þ

with EP denoting the number of edge points and EL the

number of extra departures, defined as

EL ¼
X

All cross points

½ðNumber of 8-neighborsÞ ÿ 2�: ð4Þ

It is to be noted that if the skeletonized signature

image is not compact, that is, the signature is divided

Fig. 2. Example of the skeletonization algorithm.
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into two or more non overlapping segments, the number

of closed loops, as defined above, has no physical

interpretation. Even in that case, this number is

characteristic for each signature and describes the

amount of complexity that the signature lines involve.

Some examples of cross and edge points are shown in

Fig. 3.

3.2. Grid information features

The skeletonized image is divided into 96 rectangular

segments (12� 8), and for each segment, the area (the

sum of foreground pixels) is calculated. The results are

normalized so that the lowest value (for the rectangle

with the smallest number of black pixels) would be zero

and the highest value (for the rectangle with the highest

number of black pixels) would be one. The resulting 96

values form the grid feature vector.

A representation of a signature image and the

corresponding grid feature vector is shown in Fig. 4. A

black rectangle indicates that for the corresponding area

of the skeletonized image we had the maximum number

of black pixels. On the contrary, a white rectangle

indicates that we had the smallest number of black

pixels.

3.3. Texture features

To extract the texture feature group, the co-occur-

rence matrices of the signature image are used. In a

gray-level image, the co-occurrence matrix Pd ½i; j� is

defined by first specifying a displacement vector

d ¼ ðdx; dyÞ and counting all pairs of pixels separated

by d and having gray level values i and j. In our case, the

signature image is binary and therefore the co-occur-

rence matrix is a 2� 2 matrix describing the transition of

black and white pixels (Haralick and Shapiro, 1992; Jain

et al., 1995). Therefore, the co-occurrence matrix Pd ½i; j�

is defined as

Pd ½i; j� ¼
p00 p01
p10 p11

� �

; ð5Þ

where p00 is the number of times that two white pixels

occur, separated by d. p01 is the number of times that a

combination of a white and a black pixel occurs,

separated by d. p10 is the same as p01. p11 is the number

of times that two black pixels occur, separated by d.

The image is divided into six rectangular segments

(3� 2). For each region the P(1,0), P(1,1), P(0,1) and Pðÿ1;1Þ

matrices are calculated and the p01 and p11 elements of

these matrices are used as texture features of the

signature. The above procedure sums up to 48 features

(six segments� four matrices� two elements).

4. The signature database

For training and testing of the SRVS many signatures

are used. The results given in this paper are obtained

by using a signature master database of about 2000

signatures. The signatures were taken from 115 persons

(15–25 signatures from each).

For training the system, two subsets, taken from the

master set, of about 1000 and 500 signatures were used.

The first subset (TRS1) was used to train the first-stage

classifier while the second subset (TRS2) was used to

train the second-stage classifier. The performance of the

system was checked by the use of the remaining subset

(TS) of 500 signatures.

In order to make the system robust to intra-personal

variations and to extract worst-case classification rates,

the signers were asked to use as much variation in their

signature sizes and shapes as they should ever use in real

circumstances. Whenever it was feasible (for about 10 of

the 147 persons), the signature acquisition was per-

formed in more than one phases (4 to 5 signatures per

Fig. 3. Examples of corner (C1, C2, C3, C4) and edge (E1, E2, E3, E4)

points.

Fig. 4. The grid feature vector of a signature.
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day without letting the signer see the signatures he/she

has already given in previous phases).

Examples of signatures are shown in Fig. 5.

5. Classification

Multi-layer perceptron (MLP) neural networks are

among the most commonly used classifiers for pattern

recognition problems. Despite their advantages, they

suffer from some very serious limitations that make their

use, for some problems, impossible. The first limitation

is the size of the neural network. It is very difficult, for

very large neural networks, to get trained. As the

amount of the training data increases, this difficulty

becomes a serious obstacle for the training process.

The second difficulty is that the geometry, the size of

the network, the training method used and the training

parameters depend substantially on the amount of the

training data. Also, in order to specify the structure and

the size of the neural network, it is necessary to know a

priori the number of the classes that the neural network

will have to deal with. Unfortunately, when talking

about a useful SRVS, a priori knowledge about the

number of signatures and the number of the signature

owners is not available.

The proposed SRVS confronts these problems by

reducing the training computation time and the size of

the neural networks used. This is achieved by:

* Reduction of the feature space. The feature set is split

to three different groups, i.e., global features, grid

features and texture features. Due to the different

nature and the uncorrelation of the three feature sets,

the combination of the three feature vectors covers

the required feature information.
* Reduction of the necessary training samples. This is

achieved because each neural network corresponds to

only one signature owner. Specifically, during the first

stage of classification, multiple but fixed-size neural

networks are used (Figs. 1 and 6). In Fig. 1, each one

of the neural-networks NN1, NN2, NN3 specializes

in signatures of only one person. For practical

systems, this approach offers another significant

Fig. 5. Examples of signatures from various owners.
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advantage: each time we want to add a set of

signatures (a new person) to the systems database,

we only have to train three new small neural

networks (one for each set of features). It is not

necessary to retrain a very large neural network,

which is of course a much more difficult situation.

Due to the use of many neural networks, it is

necessary to apply a training algorithm that can train

them efficiently, avoiding local minima. The ALOPEX

algorithm (Pandya and Macy, 1995) was chosen for this

task. Due to its stochastic nature, it presents a

remarkable tendency to avoid local minima. The main

drawback of the ALOPEX algorithm is its convergence

time, which for problems having no local minima but

strong global minimum is longer than the time the back

propagation algorithm needs to converge. This draw-

back was not of much importance for our problem

because of the small dimensionality of the neural

networks used.

In conjunction with the three neural network struc-

tures, a simple MED classifier, utilizing all the three

groups of features together, is applied.

The results of the above structures were propagated to

the second stage of the classification where an RBF

network was used to make the final decision.

5.1. First stage of classification

The first stage of classification is based on the use of

three MLPs, one for each group of features. All features

are normalized within the region [0, 1]. For each owner

in TRS1 all the three MLPs are trained individually

using the ALOPEX algorithm with a fixed number of

iterations. The training set, consists of all the signatures

in TRS1 of the specific owner and a number of 150

random signatures among other owners in TRS1. The

resulting weights are stored separately for each owner in

a special database.

As shown in Fig. 1, an Euclidean distance metric is

used in conjunction with the three neural networks

described above. Although the feature distributions

within the data do not provide any clear evidence that

signature classes were completely separable by such a

metric, practice showed that:

* There are some cases where one or more neural

networks are misled to incorrect output due to either

feature distribution overlaps among classes or in-

sufficient training. While, for the former case very

little can be done, for the latter case, the Euclidean

distance metric provides an extra vote towards the

correct direction.
* While the Euclidean distance does not perform well

in all cases, its output hardly is such that can lead the

second stage of the classification structure to in-

correct results.
* Since the Euclidean distance block is the only one

supplied by all features groups, it enables the system

to have simple and quite stable metric of the

distribution of classes in the whole feature space.

Fig. 1 demonstrates the structure of the classifier. The

first neural network NN1 has 16 inputs (the global

features), the second NN2 96 inputs (12� 8) and the

third NN3 48 inputs (3� 2� 4� 2). The Euclidean

distance block has 160 inputs (16+96+48). Each neural

network has only one output neuron. Output ‘‘1’’

indicates that the input is recognized. Output ‘‘0’’

indicates that the input is not recognized.

Each of the four blocks propagates its result to a

second-stage classification RBF network, where the final

decision is being made.

5.2. Second stage of classification

The four classifiers used in the first stage produce

outputs in the range [0, 1]. Given a test signature and a

candidate owner, the output of each one of these

classifiers should be close to ‘‘1’’ if the signature is

similar to the signatures of the candidate owner in the

training database. On the contrary, the output should be

close to ‘‘0’’ if the signature does not match with a

prototype one and therefore should be rejected.

To make the system able to combine the knowledge

offered by the four neural networks of the first stage, one

could use a weighted average of these four classifiers in

combination with a proper thresholding technique. In

this work an RBF neural network is used in order to

have the final decision. The RBF neural networks are

feed-forward architectures with a hidden non-linear

layer and a linear output layer. The structure of the

network used here is shown in Fig. 7. The network has

four inputs (fed by the outputs of the first-stage

Fig. 6. The structure of a single OCON (one-class-one-network)

neural network.
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classifiers), a hidden layer with two non-linear neurons

and a simple output linear neuron.

The RBF neural network of the second stage is

trained after training of all the neural networks of the

fist stage. The RBF network does not use the signatures

of TRS1 for training, because they are already used as

prototype signatures in the first stage. Thus, a new

training set TRS2 is used, which is unknown in the first

stage.

The activation functions of the two hidden neurons

are chosen to be Gaussians, so they are characterized by

their mean vectors (centers of the two classes) m1, m2

and the covariance matrices C1; C2. Thus, the activation

function of the ith hidden neuron for an input xj is

given as

gi ¼expðÿ1
2
ðxj ÿmiÞ

T
S
ÿ1
i ðxj ÿmiÞÞ;

i 2 f1; 2g; j 2 f1; 2; . . . ;Ntrg; ð6Þ

where Ntr is the number of the training examples and

1
2
S
ÿ1
i ¼ CT

i Ci: ð7Þ

In the RBF network the hidden layer neurons are

fully connected to the output neuron, and its response is

given as

yðxjÞ ¼ ÿl0 þ l1g1ðxjÞ þ l2g2ðxjÞ ð8Þ

or

Y ¼ GL ð9Þ

with

Y ¼
yðx1Þ
� � �

yðxNtr
Þ

2

4

3

5

;

G ¼
ÿ1 g1ðx1Þ g2ðx1Þ
� � � � � � � � �
ÿ1 g1ðxNtr

Þ g2ðxNtr
Þ

2

4

3

5

;

L ¼
l0

l1

l2

2

4

3

5

: ð10Þ

Training the RBF network means estimation of m1, m2,

C1, C2, l0, l1, l2.

The m1, m2, C1, C2,
P

1,
P

2 are calculated directly

from the training data while the l0, l1, l2 are obtained

as

L ¼ ðGT
GÞÿ1

G
T
Y : ð11Þ

To solve the above equation, G is easily com-

puted from Eq. (6) while vector Y is defined from Eq.

(9), with

yðxjÞ

¼

1 if the signature with first stage output xj

should be accepted;

ÿ1 if the signature with first stage output xj

should be rejected:

8

>

>

>

<

>

>

>

:

ð12Þ

6. The training phase

The training of the system includes the following two

steps.

Step 1: Train the first-stage classifier

This task consists of training the three neural

networks for each person in the TRS1. The TRS1

consists of 1000 signature images randomly selected

from the master set of 2000 signature images. There are

available signatures from 115 different persons and so

we have to train 115� 3=345 different but small size

neural networks.

Each neural network corresponds to a specific

owner, and therefore, all of his features are con-

sidered as positive (prototype) training examples. As

negative examples, features from 150, randomly

selected signatures of other owners in TRS1 are used.

All the neural networks are trained with a fixed

number of iterations and their weights coefficients are

stored.

Step 2: Train the second-stage classifier.

To train the second-stage classifier the signatures

from TRS1 cannot be used because they already have

been applied to the first stage classifier. Thus, a second

training set, TRS2, is used. TRS2 consists of 500

signature images randomly selected from the remaining

1000 signatures in the master set.

For each one of the 500 signatures, one positive

example is formed by telling the classifier of stage one to

examine for the correct owner (to use the neural

networks of the correct owner) and 114 negative

examples. Doing this, 57,500 training examples (500

positive and 57,000 negative) are formed and used to

train the RBF neural network.Fig. 7. The RBF neural network serving as second-stage classifier.
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7. Testing phase and results

According to the above analysis, when the system is

asked to decide whether an unknown signature image

belongs to a particular person in the database the

following steps are followed.

* The unknown signature image passes through the

pre-processing and feature extraction stages.
* The three sets of features are applied to the inputs of

all of the three specialized Perceptron neural net-

works. The networks are run forward so that we get

outputs for all of them.
* The Euclidean distance between the 160 features

(all the three sets) of the unknown signature image

and the features of each signature in the TRS1 that

belongs to the candidate person is calculated.

The average Euclidean distance is then extracted.

For example, the Euclidean norm (DN) between the

feature vector of the unknown image XT and the

feature vector of the Nth signature in the database

XN is given from the following equation:

DN ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X160

i¼1
ðXTi ÿ XNiÞ

2

r

: ð13Þ

The outputs of the three neural networks and the

average Euclidean distance are taken as the inputs of

the second-stage classifier (the RBF neural network).

The RBF neural network is then ran forward. If the

output is positive, the given signature belongs to the

candidate person. If not, it does not belong to the

candidate person.

For the performance testing of the system, the

remaining 500 signatures in the master set are used

(unknown both to the first- and to the second-stage

classifiers). This set is called TS and the system is tested

by two different scenarios: the verification scenario and

the recognition scenario.

7.1. The verification scenario

For each signature in TS, we queried the system 115

times, one time for each owner. The TS contained 500

signature images and that made 115� 500=57,500

testing cases.

The possible cases are

Correct acceptation. The system was asked if the

signature belonged to the correct owner and the

response was positive.

False rejection. The system was asked if the signature

belonged to the correct owner and the response was

negative.

False acceptation. The system was asked if the

signature belonged to a false owner and the response

was positive.

Correct rejection. The system was asked if the

signature belonged to a false owner and the response

was negative.

Table 1 summarizes the results obtained in the

verification stage.

7.2. The recognition scenario

For each signature in TS, we queried the system 115

times (one time for each owner). The system proposes as

the signature owner the owner that gives the maximum

output value of the RBF neural network.

In summary, the results obtained are given in Table 2.

8. Conclusions and remarks

This paper proposes a new off-line signature verifica-

tion and recognition technique. The entire system is

based on 160 features grouped to three subsets and on a

two-stage neural network classifier that is arranged in

an-one-class-one-network scheme. During the training

process of the first stage, only small, fixed-size neural

networks have to be trained, while, for the second stage

the training process is straightforward.

In designing the proposed system, most of our efforts

were towards of embodying most of the intelligence to

the structure of the system itself. No feature reduction

process was used and the basic rule of thumb in deciding

which features to include and which not was ‘‘use all

features and leave the neural networks decide which of

them are important and which are not’’. Usually, such a

rule leads to very large and complicated neural net-

works, very difficult to get trained. The innovation of

the proposed system is the categorization of the features

into groups and the adoption of a two-stage structure.

We showed that such a structure leads to small, easily

trained classifiers without hazarding performance by

leaving out features that may be useful to the system.

Table 1

Cases that should be accepted 500

Cases that should be rejected 57,000

Accepted 1485

Rejected 56,015

Correct acceptances 485 (97%)

False rejections 15 (3%)

Correct rejections 51,211 (90.019%)

False acceptances 5689 (9.81%)

Table 2

Cases 500

Correct classifications 404 (80.81%)

False classifications 96 (19.19%)
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Besides the advantage of easily training, the pro-

posed structure offers the substantial benefit of the

ability to expand with new signatures without having

to retrain the entire system from the starting point. That

is, no a priori knowledge concerning the number of

persons and the number of signatures is required at

design time.

It is also to be noted that the performance of the

system, as it is illustrated by the recognition and the

verification rates that we presented, expresses a worst-

case scenario. The signers were asked to use as much

variation in their signatures as they should ever use

under real circumstances. The type of the features and

the classifier used were proven to offer to the entire

system independence of the signature type and size.
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