Motivation	
Color Scale	
Draw Map	
Assign Colors	
Results	
Geographically Weighted Regression	
Quantile Regression & Geographically Weighted Quantile Regression	
Discussion	

Introduction of geospatial data visualization and geographically weighted regression (GWR)

Frank Fan

Vanderbilt University

August 16, 2012

Motivation Color Scale

Good Schne Draw Map Assign Colors Results Geographically Weighted Regression Quantile Regression & Geographically Weighted Quantile Regression Discussion

Study Background

Study Background Data Overview Algorithm

(1) Information of breast cancer or population characteristic such as mortality rate, median household income, and ethnicity ...etc around Nashville area or US.

Motivation Color Scale

Draw Map Draw Map Assign Colors Results Geographically Weighted Regression Quantile Regression & Geographically Weighted Quantile Regression Discussion

Study Background

Study Background Data Overview Algorithm

- (1) Information of breast cancer or population characteristic such as mortality rate, median household income, and ethnicity ...etc around Nashville area or US.
- (2) Data are summarized in different levels.
 - State
 - County
 - Zip Code

Study Background

Study Background Data Overview Algorithm

- (1) Information of breast cancer or population characteristic such as mortality rate, median household income, and ethnicity ...etc around Nashville area or US.
- (2) Data are summarized in different levels.
 - State
 - County
 - Zip Code
- (3) The goal is generating several geographic maps with color representing information of interests.

Color Scale Draw Map Assign Colors Geographically Weighted Regression Quantile Regression & Geographically Weighted Quantile Regression Discussion

Tennessee

Study Background Data Overview Algorithm

Zip Code	Zip City	County	Female Mortality Rate
			per 100K
37013	Antioch	Davidson	20.05
37072	Goodlettsville	Davidson	28.13
37076	Hermitage	Davidson	25.34
37080	Joelton	Davidson	29.39
37115	Madison	Davidson	31.52
37138	Old Hickory	Davidson	28.71
37189	Whites Creek	Davidson	34.24
37201	Nashville	Davidson	27.40

イロト イポト イヨト イヨト

э

Color Scale Draw Map Assign Colors Results Geographically Weighted Regression Quantile Regression & Geographically Weighted Quantile Regression Discussion

Study Background Data Overview Algorithm

Generate a color scale How to represent, for example mortality rate, in a map with color ?

Color Scale Draw Map Assign Colors Results Geographically Weighted Regression Quantile Regression & Geographically Weighted Quantile Regression Discussion

Study Background Data Overview Algorithm

Generate a color scale

How to represent, for example mortality rate, in a map with color $? \end{tabular}$

Draw a map

Where to get information or R functions to plot the map ?

Color Scale Draw Map Assign Colors Results Geographically Weighted Regression Quantile Regression & Geographically Weighted Quantile Regression Discussion

Study Background Data Overview Algorithm

Generate a color scale

How to represent, for example mortality rate, in a map with color $? \end{tabular}$

Draw a map

Where to get information or R functions to plot the map ?

Fill in the color

Who is who ?

Get Colors

The idea is get a single color scale showing severity of mortality from light (less server) to dark (more server).

Get Colors

- The idea is get a single color scale showing severity of mortality from light (less server) to dark (more server).
- colorRampPalette {grDevices}
 Return as a function

Get Colors

- The idea is get a single color scale showing severity of mortality from light (less server) to dark (more server).
- colorRampPalette {grDevices}
 Return as a function
- ► Usage :

```
color.scales <- colorRampPalette(c( "orange", "red"))
col.lists <- color.scales(8)</pre>
```

Get Colors

- The idea is get a single color scale showing severity of mortality from light (less server) to dark (more server).
- colorRampPalette {grDevices}
 Return as a function
- ► Usage :

color.scales <- colorRampPalette(c("orange", "red"))
col.lists <- color.scales(8)</pre>

col.lists

"#FFA500" "#FF8D00" "#FF7500" "#FF5E00" "#FF4600" "#FF2F00" "#FF1700" "#FF0000"

Get Colors

- The idea is get a single color scale showing severity of mortality from light (less server) to dark (more server).
- colorRampPalette {grDevices}
 Return as a function
- ► Usage :

```
color.scales <- colorRampPalette(c( "orange", "red"))
col.lists <- color.scales(8)</pre>
```

col.lists

"#FFA500" "#FF8D00" "#FF7500" "#FF5E00" "#FF4600" "#FF2F00" "#FF1700" "#FF0000"

It's called hexadecimal color codes.

There are also RGB color function in R available. rgb(228,26,28,max=255)

8 Levels Between Orange and Red

Frank Fan Introduction of geospatial data visualization and geographically weighted re

More Colors ?!?!

Can we get more than two colors and have the scales between all of them ?

B 🕨 🖌 B 🕨

More Colors ?!?!

- Can we get more than two colors and have the scales between all of them ?
- ► Usage :

color.scales <- colorRampPalette(c("orange", "red", "green"))
col.lists <- color.scales(21)</pre>

Zip Code Map

Polygon

Maps package doesn't have either zip code's boundary or maps of Alaska & Hawaii, so I can't use map function to get those plotted.

- Maps package doesn't have either zip code's boundary or maps of Alaska & Hawaii, so I can't use map function to get those plotted.
- More tasks need to be done.

- Maps package doesn't have either zip code's boundary or maps of Alaska & Hawaii, so I can't use map function to get those plotted.
- More tasks need to be done.
 - Zip code boundary data (or Alaska & Hawaii boundary data)

Motivation	
Color Scale	
Draw Map	
Assign Colors	
Results	POL
Geographically Weighted Regression	
Quantile Regression & Geographically Weighted Quantile Regression	
Discussion	

- Maps package doesn't have either zip code's boundary or maps of Alaska & Hawaii, so I can't use map function to get those plotted.
- More tasks need to be done.
 - Zip code boundary data (or Alaska & Hawaii boundary data)
 - R function to draw the frame of each zip code area.

Motivation Color Scale Draw Map	
Assign Colors Results	
Geographically Weighted Regression Quantile Regression & Geographically Weighted Quantile Regression Discussion	

- Maps package doesn't have either zip code's boundary or maps of Alaska & Hawaii, so I can't use map function to get those plotted.
- More tasks need to be done.
 - Zip code boundary data (or Alaska & Hawaii boundary data)
 - R function to draw the frame of each zip code area.
 - Same or different function to fill in the color.

Zip Code Boundaries

Boundary Data.

Polygon

-

э

Zip Code Boundaries

Boundary Data.

US Census

Polygor

Polygon

Zip Code Boundaries

- Boundary Data.
- US Census
- It's back !! called "TIGER/Line Shapefiles"

Zip Code Boundaries

- Boundary Data.
- US Census
- It's back !! called "TIGER/Line Shapefiles"
- http://www.census.gov/geo/www/tiger/shp.html

Frank Fan Introduction of geospatial data visualization and geographically weighted re-

Zip Code Boundaries

- Boundary Data.
- US Census
- It's back !! called "TIGER/Line Shapefiles"
- http://www.census.gov/geo/www/tiger/shp.html
- http://www.census.gov/cgi-bin/geo/shapefiles2010/main

Polygon

Frank Fan Introduction of geospatial data visualization and geographically weighted re

Maptools Package

Need a way to read .shp file into R.

Frank Fan Introduction of geospatial data visualization and geographically weighted re

Maptools Package

Need a way to read .shp file into R.

readShapeSpatial{maptools}

Polygon

Maptools Package

- Need a way to read .shp file into R.
- readShapeSpatial{maptools}
- TN.zip.map <- readShapeSpatial("zt47_d00.shp")</p>

Maptools Package

- Need a way to read .shp file into R.
- readShapeSpatial{maptools}
- TN.zip.map <- readShapeSpatial("zt47_d00.shp")</p>
- str(TN.zip.map)
 Formal class 'SpatialPolygonsDataFrame' [package ''sp"] with
 5 slots

Polygon

..@ data :'data.frame': 964 obs. of 8 variables:

Polygon

Maptools Package

- Need a way to read .shp file into R.
- readShapeSpatial{maptools}
- TN.zip.map <- readShapeSpatial("zt47_d00.shp")</p>
- str(TN.zip.map)
 Formal class 'SpatialPolygonsDataFrame' [package ''sp"] with
 5 slots
 - .. @ data :'data.frame': 964 obs. of 8 variables:
- and another 1277 more lines !!!

Stracture of .shp File

Formal class 'SpatialPolygonsDataFrame' [package ''sp"] with 5 slots .. @ data :'data.frame': 964 obs. of 8 variables:\$ AREA : num [1:964] 2.92e-03 2.34e-02 4.18e-03 2.02e-05 2.95e-05\$ PERIMETER : num [1:964] 0.8641 1.3754 2.9457 0.0226 0.0326\$ ZT47_D00_ : int [1:964] 2 3 4 5 6 7 8 9 10 11\$ ZT47_D00_I: int [1:964] 1 2 3 4 5 6 7 8 9 10\$ ZCTA : Factor w/ 634 levels ''37010", ''37012",..: 65 66 65 15 15 15 88 108 81 98\$ NAME : Factor w/ 634 levels ''37010", ''37012",...: 65 66 65 15 15 15 88 108 81 98\$ LSAD : Factor w/ 1 level ''Z5": 1 1 1 1 1 1 1 1 1 1\$ LSAD_TRANS: Factor w/ 1 level ''5-Digit ZCTA": 1 1 1 1 1 1 1 1 1- attr(*, ''data_types")= chr [1:8] ''F" ''F" ''N" ''N" @ polygons :List of 964 ..\$:Formal class 'Polygons' [package ''sp"] with 5 slots@ Polygons :List of 1\$:Formal class 'Polygon' [package ''sp"] with 5 slots@ labpt : num [1:2] -88 36.6@ area : num 0.00292@ hole : logi FALSE@ ringDir: int 1@ coords : num [1:169, 1:2] -88 -88 -88 -88 -88@ plotOrder: int 1@ labpt : num [1:2] -88 36.6@ ID : chr "0"@ area : num 0.00292

Polygon

Decompose the Structure

► Take Hawaii as an example.

Polygon

Decompose the Structure

- ► Take Hawaii as an example.
- Think it as a box with lots boxes inside.

Decompose the Structure

- Take Hawaii as an example.
- Think it as a box with lots boxes inside.
- One huge box : object itself.

Polygon

Decompose the Structure

- Take Hawaii as an example.
- Think it as a box with lots boxes inside.
- One huge box : object itself.
- ▶ 5 middle size box :
Polvgon

- Take Hawaii as an example.
- Think it as a box with lots boxes inside.
- One huge box : object itself.
- 5 middle size box :
 - General information.

Polygon

- Take Hawaii as an example.
- Think it as a box with lots boxes inside.
- One huge box : object itself.
- 5 middle size box :
 - General information.
 - Main parts with numbers of small boxes inside.

Polygon

- Take Hawaii as an example.
- Think it as a box with lots boxes inside.
- One huge box : object itself.
- 5 middle size box :
 - General information.
 - Main parts with numbers of small boxes inside.
 - Coordinates.

Polygon

- Take Hawaii as an example.
- Think it as a box with lots boxes inside.
- One huge box : object itself.
- ▶ 5 middle size box :
 - General information.
 - Main parts with numbers of small boxes inside.
 - Coordinates.
 - Center Coordinate.

Polygon

- Take Hawaii as an example.
- Think it as a box with lots boxes inside.
- One huge box : object itself.
- 5 middle size box :
 - General information.
 - Main parts with numbers of small boxes inside.
 - Coordinates.
 - Center Coordinate.
 - Area, ID,etc.

Polygon

- Take Hawaii as an example.
- Think it as a box with lots boxes inside.
- One huge box : object itself.
- 5 middle size box :
 - General information.
 - Main parts with numbers of small boxes inside.
 - Coordinates.
 - Center Coordinate.
 - Area, ID,etc.
 - No zip code.

Polygon

- Take Hawaii as an example.
- Think it as a box with lots boxes inside.
- One huge box : object itself.
- 5 middle size box :
 - General information.
 - Main parts with numbers of small boxes inside.
 - Coordinates.
 - Center Coordinate.
 - Area, ID,etc.
 - No zip code.
 - The other 3 median boxes which is not so important.

Polygon

- ▶ Take Hawaii as an example.
- Think it as a box with lots boxes inside.
- One huge box : object itself.
- ▶ 5 middle size box :
 - General information.
 - Main parts with numbers of small boxes inside.
 - Coordinates.
 - Center Coordinate.
 - Area, ID,etc.
 - No zip code.
 - The other 3 median boxes which is not so important.
- Assumption : the zip code is saved with the order.

Polygon

Plot the Shape & Colored Only by Coordinates

Need a function to plot the shape by only giving a set of coordinates.

-

Polygon

Plot the Shape & Colored Only by Coordinates

- Need a function to plot the shape by only giving a set of coordinates.
- If can handle the color as well will be better.

Polygon

Plot the Shape & Colored Only by Coordinates

- Need a function to plot the shape by only giving a set of coordinates.
- If can handle the color as well will be better.
- polygon{graphics}

Polygon

Plot the Shape & Colored Only by Coordinates

- Need a function to plot the shape by only giving a set of coordinates.
- If can handle the color as well will be better.
- polygon{graphics}
- ► Useage :

polygon(x, y = NULL, density = NULL, angle = 45, border = NULL, col = NA, lty = par("lty"),...)

Representing Information with Colors

Zip Code	Female Mortality Rate	20% Quantile
	per 100K	
37013	20.05	1
37072	28.13	4
37076	25.34	3
37115	22.52	2
37138	28.71	5
37189	34.24	5
37201	27.40	4

3.1

Representing Information with Colors

Zip Code	Female Mortality Rate	20% Quantile	Corresponding
	per 100K		Color
37013	20.05	1	#9999 <i>FF</i>
37072	28.13	4	#4C4CFF
37076	25.34	3	#6666 <i>FF</i>
37115	22.52	2	# 7 <i>F</i> 7 <i>FFF</i>
37138	28.71	5	#3333 <i>FF</i>
37189	34.24	5	#3333 <i>FF</i>
37201	27.40	4	#4C4CFF
		•	

3.5

Two Parts of Data

Zip code with corresponding color.

B b

Two Parts of Data

- Zip code with corresponding color.
- Boundary coordinates for each zip code.

-

Two Parts of Data

- Zip code with corresponding color.
- Boundary coordinates for each zip code.
- Now we are ready to plot !!!!

-

	Motivation Color Scale Draw Man
	Assign Colors
	Results
	Geographically Weighted Regression
Quantile Regression & O	Geographically Weighted Quantile Regression
	Discussion
GWR	

 PI's question : Does breast cancer mortality related to education, household income...etc.

- PI's question : Does breast cancer mortality related to education, household income...etc.
- My first idea : Spearman's correlation.

Motivation	
Color Scale	
Draw Map	
Assign Colors	
Results	
Geographically Weighted Regression	
Quantile Regression & Geographically Weighted Quantile Regression	
Discussion	

 PI's question : Does breast cancer mortality related to education, household income...etc.

wr.sel

- My first idea : Spearman's correlation.
- ► The problem are :
 - What if we have more or fewer data points ?
 - Simple correlation can't deal with multiple covariates at the same time.

	Motivation
	Color Scale
	Draw Map
	Assign Colors
	Results
	Geographically Weighted Regression
Quantile Regression & Ge	ographically Weighted Quantile Regression
	Discussion

 PI's question : Does breast cancer mortality related to education, household income...etc.

zwr.sel

- My first idea : Spearman's correlation.
- ► The problem are :
 - What if we have more or fewer data points ?
 - Simple correlation can't deal with multiple covariates at the same time.
- Brunsdon (1996), "Geographically Weighted Regression: A Method for Exploring Spatial Nonstationarity", Geographical analysis, Vol. 28, No. 4, P.281.

► Wherever a house is located, for example, the marginal price increase associated with an additional bedroom is fixed.

gwr.sel

< 🗇 🕨

Image: A image: A

3

3.1

GWR

- ► Wherever a house is located, for example, the marginal price increase associated with an additional bedroom is fixed.
- It might be more reasonable to assume that rates of change are determined by local culture or local knowledge, rather than a global utility assumed for each commodity.

gwr.sel

GWR

- ► Wherever a house is located, for example, the marginal price increase associated with an additional bedroom is fixed.
- It might be more reasonable to assume that rates of change are determined by local culture or local knowledge, rather than a global utility assumed for each commodity.

gwr.sel

Variations in relationships over space, such as those described above, are referred to as spatial nonstationarity.

GWR

- Wherever a house is located, for example, the marginal price increase associated with an additional bedroom is fixed.
- It might be more reasonable to assume that rates of change are determined by local culture or local knowledge, rather than a global utility assumed for each commodity.

gwr.sel

- Variations in relationships over space, such as those described above, are referred to as spatial nonstationarity.
- Simple linear model is not not appropriate, but widely used in early 90s for the data with geographic information.

Discussion

spgwr gwr.sel gwr

Simpson's Paradox

an Introduction of geospatial data visualization and geographically weighted re

GWR

•
$$y = \alpha + \beta X + \epsilon$$

Frank Fan Introduction of geospatial data visualization and geographically weighted re

・ロン ・聞き ・モン・モン

э.

Motivation
Color Scale
Draw Map
Assign Colors
Results
Geographically Weighted Regression
Quantile Regression & Geographically Weighted Quantile Regression
Discussion

- $y = \alpha + \beta X + \epsilon$
- $y_i = \alpha_i + \beta_i X + \epsilon_i$
- Where i indicates that there is a set of coefficients estimated for every observation in the data set.

gwr.sel

Motivation	
Color Scale	
Draw Map	
Assign Colors	
Results	
Geographically Weighted Regression	
Quantile Regression & Geographically Weighted Quantile Regression	
Discussion	

- $y = \alpha + \beta X + \epsilon$
- $\triangleright \ y_i = \alpha_i + \beta_i X + \epsilon_i$
- Where i indicates that there is a set of coefficients estimated for every observation in the data set.
- Key difference : We estimate a set of regression coefficients for each observation (i).

gwr.sel

Motivation	
Color Scale	
Draw Map	
Assign Colors	
Results	
Geographically Weighted Regression	
Quantile Regression & Geographically Weighted Quantile Regression	
Discussion	

- $y = \alpha + \beta X + \epsilon$
- $\triangleright \ y_i = \alpha_i + \beta_i X + \epsilon_i$
- Where i indicates that there is a set of coefficients estimated for every observation in the data set.
- Key difference : We estimate a set of regression coefficients for each observation (i).

gwr.sel

 To do so we weight near observations more heavily than more distant ones.

Motivation	
Color Scale	
Draw Map	
Assign Colors	
Results	
Geographically Weighted Regression	
Quantile Regression & Geographically Weighted Quantile Regression	
Discussion	

- $y = \alpha + \beta X + \epsilon$
- $\triangleright \ y_i = \alpha_i + \beta_i X + \epsilon_i$
- Where i indicates that there is a set of coefficients estimated for every observation in the data set.
- Key difference : We estimate a set of regression coefficients for each observation (i).

gwr.sel

- To do so we weight near observations more heavily than more distant ones.
- First law of geography: everything is related with everything else, but closer things are more related.

GWR

Decide how you are going to weight your nearby locations.

gwr.sel

- Fixed bandwidth
- Variable bandwidth
- User-defined bandwidth

< ∃ >

spgwr gwr.sel gwr

GWR

- Decide how you are going to weight your nearby locations.
 - Fixed bandwidth
 - Variable bandwidth
 - User-defined bandwidth
- Bandwidth specifies shape of weights curve.

-

spgwr gwr.sel gwr

GWR

- Decide how you are going to weight your nearby locations.
 - Fixed bandwidth
 - Variable bandwidth
 - User-defined bandwidth
- Bandwidth specifies shape of weights curve.
- Whether we will define our bandwidth based on distance (fixed) or number of neighbors (adaptive).

Fixed Bandwidth

- X regression point
- data point

spgwr gwr.sel gwr

Adaptive Bandwidth

- X regression point
- data point
GWR

spgwr gwr.sel gwr

R package : spgwr (dependent packages: sp, maptools)

- 4 回 ト 4 ヨ ト 4 ヨ ト

э

GWR

R package : spgwr (dependent packages: sp, maptools)

spgwr

data(columbus)

< 🗇 🕨

→ Ξ ► → Ξ ►

э

GWR

R package : spgwr (dependent packages: sp, maptools)

spgwr

gwr.sel

- data(columbus)
- 5 variables
 - crime recorded crime per inhabitant
 - income average income values
 - housing average housing costs
 - x latitude
 - y longitude

글 > - - 글 >

3

GWR

R package : spgwr (dependent packages: sp, maptools)

spgwr

gwr.sel

- data(columbus)
- 5 variables
 - crime recorded crime per inhabitant
 - income average income values
 - housing average housing costs
 - x latitude
 - y longitude
- Relationship between crime and income & housing.

< ∃ >

Need to find a bandwidth for a given geographically weighted regression by optimizing a selected function.

gwr.sel

A 10

글 > - - 글 >

Need to find a bandwidth for a given geographically weighted regression by optimizing a selected function.

gwr.sel

gwr.sel(formula, data, coords, adapt=FALSE, ...)

글 > - - 글 >

Motivation	
Color Scale	
Draw Map	
Assign Colors	
Results	
Geographically Weighted Regression	
Quantile Regression & Geographically Weighted Quantile Regression	
Discussion	

Need to find a bandwidth for a given geographically weighted regression by optimizing a selected function.

gwr.sel

- gwr.sel(formula, data, coords, adapt=FALSE, ...)
 - formula, data, coords.

Motivation	
Color Scale	
Draw Map	
Assign Colors	
Results	
Geographically Weighted Regression	
Quantile Regression & Geographically Weighted Quantile Regression	
Discussion	

- Need to find a bandwidth for a given geographically weighted regression by optimizing a selected function.
- ▶ gwr.sel(formula, data, coords, adapt=FALSE, ...)
 - formula, data, coords.
 - adapt either TRUE: find the proportion between 0 and 1 of observations to include in weighting scheme (k-nearest neighbors), or FALSE find global bandwidth.

gwr.sel

Motivation	
Color Scale	
Draw Map	
Assign Colors	
Results	
Geographically Weighted Regression	
Quantile Regression & Geographically Weighted Quantile Regression	
Discussion	

GWR

- Need to find a bandwidth for a given geographically weighted regression by optimizing a selected function.
- ▶ gwr.sel(formula, data, coords, adapt=FALSE, ...)
 - formula, data, coords.
 - adapt either TRUE: find the proportion between 0 and 1 of observations to include in weighting scheme (k-nearest neighbors), or FALSE find global bandwidth.

gwr.sel

Returns the cross-validation bandwidth.

gwr

► Fit GWR model.

Frank Fan Introduction of geospatial data visualization and geographically weighted re

イロト イポト イヨト イヨト

э

- ► Fit GWR model.
- gwr(formula, data, coords, bandwidth, ...)

gwr

< 🗇 🕨

A 3 b

3 ×

э

- ► Fit GWR model.
- gwr(formula, data, coords, bandwidth, ...)

gwr.sel

gwr

formula, data, coords.

∃ >

Motivation
Color Scale
Draw Map
Assign Colors
Results
Geographically Weighted Regression
Quantile Regression & Geographically Weighted Quantile Regression
Discussion

- ► Fit GWR model.
- gwr(formula, data, coords, bandwidth, ...)
 - formula, data, coords.
 - bandwidth bandwidth used in the weighting function.

gwr.sel gwr

Motivation
Color Scale
Draw Map
Assign Colors
Results
Geographically Weighted Regression
Quantile Regression & Geographically Weighted Quantile Regression
Discussion

spgwr gwr.sel **gwr**

GWR

- ► Fit GWR model.
- gwr(formula, data, coords, bandwidth, ...)
 - formula, data, coords.
 - bandwidth bandwidth used in the weighting function.
 - An example.

 Quantile regression is also a method that could be applied to spatial data.

A 10

Image: A image: A

3 N

- Quantile regression is also a method that could be applied to spatial data.
- Another regression method called Geographically Weighted Quantile Regression (GWQR), as well as the corresponding R package are under development.

QR & GWQR

- Quantile regression is also a method that could be applied to spatial data.
- Another regression method called Geographically Weighted Quantile Regression (GWQR), as well as the corresponding R package are under development.
- By integrating the features of QR into GWR, the GWQR permits researchers to investigate the spatial non-stationary across both space and the whole distribution of a dependent variable.

► We can find lots of boundaries on line. If it's a .shp file, we can easily read it into R and use it now.

∃ >

- ▶ We can find lots of boundaries on line. If it's a .shp file, we can easily read it into R and use it now.
- However, the biggest assumption (but it should always followed) is, those blocks are following certain order.

- ▶ We can find lots of boundaries on line. If it's a .shp file, we can easily read it into R and use it now.
- However, the biggest assumption (but it should always followed) is, those blocks are following certain order.
- There are also lots of color platter available on line.

- ▶ We can find lots of boundaries on line. If it's a .shp file, we can easily read it into R and use it now.
- However, the biggest assumption (but it should always followed) is, those blocks are following certain order.
- There are also lots of color platter available on line.
- ► GWR, QR, or GWQR should be applied for spatial data.

- ▶ We can find lots of boundaries on line. If it's a .shp file, we can easily read it into R and use it now.
- However, the biggest assumption (but it should always followed) is, those blocks are following certain order.
- There are also lots of color platter available on line.
- ► GWR, QR, or GWQR should be applied for spatial data.
- Geographically Weighted Regression: The Analysis of Spatially Varying Relationships. WILEY (2002). \$120 !!!

- ▶ We can find lots of boundaries on line. If it's a .shp file, we can easily read it into R and use it now.
- However, the biggest assumption (but it should always followed) is, those blocks are following certain order.
- There are also lots of color platter available on line.
- ► GWR, QR, or GWQR should be applied for spatial data.
- Geographically Weighted Regression: The Analysis of Spatially Varying Relationships. WILEY (2002). \$120 !!!
- Thank you !! & Questions ??