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First-principles calculations of metal stabilized Si,, cages
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It is well known that sp? bonding in carbon can result in stable cage structures, but pure Si clusters with
similar cage structures are unstable. Using first-principles calculations, we show that a dodecahedral cage of
silicon can be stabilized dynamically as well as energetically by doping with Ba, Sr, Ca, Zr, and Pb atoms to
create structures of silicon similar to that of the smallest carbon fullerene. The stability and bonding in such
cages shed light on Si clathrates in which Si, is the basic building block of the structure. Moreover, the charge
distributions and highest-occupied—lowest-unoccupied molecular orbital gaps for these cage structures can be
tuned by changing the metal atom. This allows additional freedom for the design of nanomaterials involving Si.
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Carbon and silicon are members of the same group in the
periodic table, though their chemical behaviors are quite dif-
ferent. Carbon atoms can form single, double, and triple
bonds with themselves and other atoms that allow exhibition
of very rich structures—graphite, diamond, fullerenes, nano-
tubes, amorphous structures, porous structures, graphite in-
tercalated compounds (GIC’s), and so on. These carbon-
based materials display novel properties ranging from
insulating to superconducting. However, the larger number
of core electrons in Si makes it much more difficult for two
Si atoms to form double or triple bonds. Consequently, Si
prefers to form multidirectional single bonds (sp?). Al-
though silicon has great potential applications in computer
chips, microelectronic devices, catalysis, and new supercon-
ducting compounds, the possibility of using Si clusters in
nanodevices has not yet attracted the same attention as
carbon-based nanostructures have. This is primarily due to
the discovery of Cg, (Ref. 1) and carbon nanotubes.” In turn,
though, the rich structures and novel properties of fullerenes
and carbon nanotubes have excited the imaginations of sci-
entists over the world who have raced to find ways of mak-
ing silicon similar to carbon.

Recently, doping of transition-metal atoms has been used
to prepare caged clusters of silicon. In one such effort, large
abundances have been reported for W@Si;,, which has a
metal-encapsulated hexagonal prism structure.® Kumar and
Kawazoe* have performed first-principles computer simula-
tions and predicted fullerene-like cage M @Si;q (M =Hf
and Zr), Frank-Kasper polyhedral M @ Si;¢, (M = Ti and Hf),
and cubic M @Si,, (M =Fe, Ru, and Os) as well as 15- and
16-silicon-atom cage clusters encapsulating Cr, Mo, and W
atoms. These silicon cage clusters are attractive for device
applications due to the wide range of possible band gaps and
because the presently available manufacturing processes are
designed to produce silicon components.

These intriguing results for Si-based clusters leave some
open questions that demand further exploration. For ex-
ample, compared with carbon cage clusters, these doped Si
clusters are smaller in size and in most cases the structures
themselves are quite different from the fullerenes. Is it pos-
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sible to create stable Si clusters with the smallest fullerene
cage structure? We know that the smallest fullerene cage is
C,o, which has a dodecahedral structure.>® How about the
Siyq cluster? Many studies have been devoted to pure Si clus-
ters, and it has been well established that the ground state of
Siyo has a prolate-type structure with stacking of Si; tetra-
capped trigonal prisms units.”"'" However, the Si,, cage is
the basic building block for Si-clathrate materials, such as
B36C€2AU4Si42 . 12 Si34 N 13 Si46 R 14 B324Si100 N 15 and Si136 . 16 Is
it possible to maintain a stable cage structure for isolated
Siyo? This is important not only for Si-based nanodevices but
also for understanding the stability of Si clathrates. In this
paper, we use first-principles calculations to try to design
new structures for Si that behave more like cousins and not
just neighbors of carbon.

We use a linear combination of atomic orbitals centered at
each atomic site for the cluster wave function and hybrid
density functional theory to describe the exchange-
correlation energies. The calculations are performed using
the gaussian 98 package'” at the B3LYP level of theory'®
with the LanL.2DZ effective core potential basis set.'”?° The
applicability of the basis set and exchange correlation func-
tional is verified from calculations of the ionization poten-
tials (IP’s) of various atoms,?! which are in good agreement
with the experimental values.*>

As the stability of the geometrical structure is a key issue
and conventional geometry optimizations generally converge
to a structure in either a local minimum of the potential
energy surface or a saddle point, dynamical stability analysis
becomes an important tool. In the case of a saddle point, the
system displays one or more imaginary vibrational frequen-
cies, suggesting that the energy of the system can be lowered
by structural displacements. In our calculations, the intrinsic
stability of the structure is verified by calculation of the vi-
brational frequencies. The atomic positions are relaxed with-
out symmetry constraint and the optimization is terminated
when all the forces acting on the ions become less than 0.001
eV/A.

We considered several possibilities to stabilize the Siy,
cage: (1) Following the analogy of stabilizing Sig, by encap-
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sulating Cg,>> we placed 20 Si atoms around Cs,, but the
resulting Si cage is unstable. (2) Using the icosahedral Al,,Si
cluster, which is a well-known geometrically and electroni-
cally stable magic cluster, and considering the dual relation-
ship between the dodecahedron and icosahedron, we placed
20 silicon atoms on the 20 faces of Al;,Si. However, optimi-
zations did not lead to a stable Si cage. (3) Using 20 H atoms
to terminate the dangling Si bonds, we found that the Si,oH,,
cage is intrinsically unstable. (4) Finally, inspired by the Si
clathrates and metal-encapsulated cage clusters of silicon, we
found that Ba, Sr, Ca, Zr, and Pb atoms can stabilize the cage
with a distorted dodecahedral structure.

Figure 1 shows the optimized structures together with the
vibrational frequency spectra, where the colors of the atoms
indicate the charge distributions, their values being shown on
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FIG. 1. (Color) Vibrational
spectra and charge distributions
for M @Si,,, M=Ba, Sr, Ca, Zr,
and Pb. The frequency is in cm ™!,
and the IR intensity in km/mol.
The color map (inset) shows the
charge distribution scale for the
clusters. The arrows indicate fre-
quencies arising from the metal
atom.
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the color maps, and the arrows on the frequency spectra
specify the vibrational modes with large contributions from
the metal atoms. We can see that the charge distributions in
the cage can be tuned by changing the metal atom. Further-
more, the heavier the metal atom, the lower the correspond-
ing frequency. For all the doped cages, all frequencies are
real, verifying the dynamical stability.

In Table I we show the structural data, highest-occupied—
lowest-unoccupied molecular orbital (HOMO-LUMO) gap,
embedding energy, and charge on the metal atom obtained
from natural bond orbital analysis.** For comparison, the
sum of the atomic radii*® for Si and each metal atom is also
given, and this fits the cage size quite well in the cases of Ba,
Sr, and Ca. Considering each of the studied clusters, we find
that Ba doping gives the least distorted cage (labeled as con-
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TABLE 1. The structural data and energetics of the doped Si-
caged clusters. r; (r,) is the average bond length between the sur-
face Si atoms (surface Si and the central metal atom), and r is the
sum of the radii of the metal and Si atoms (Ref. 25). A is the
embedding energy for the metal atom in the cage, which is defined
as the energy difference with respect to the empty cage and the
isolated metal atom. SE is the energy difference between configu-
ration I and configuration II. Q is the net charge on the metal atom.
Bond lengths are given in A and energy in eV.

Cluster ry ry r Gap A 0 OE

Ba@Siy, 2.438 3.409 3.410 0.991
Sr@Si,; 2.414 3.360 3.320 1.150 —1.967 +1.564 —0.437
Ca@Si,, 2.401 3.331 3.150 1.321 —2.494 +1.493 —1.662
Zr@Si,, 2360 3.269 2.770 1.466 —11.314 —1.621 —7.977
Pb@Si,, 2.411 3.333 2.920 1.231 —2.335 +0.115 —3.080

—1.348 +1.650 —0.495

figuration I in Fig. 2) due to the close fit between the cage
size (3.409 A) and the sum of atomic radii (3.410 A). Zr,
with a small atomic radius, leads to a cage with large distor-
tion, as was also found in Ref. 4. Regarding charge transfer
to and from the Si cage, due to the fact that the electronega-
tivity of Pb is just a little bit smaller than that of Si, a small
amount of charge is transferred from the doped Pb atom. For
Ba, Sr, and Ca, each with a large difference in electronega-
tivity with respect to Si, approximately two electrons are
donated to the cage. Finally, Zr receives about two electrons
of charge because of its open 4d levels.

In order to understand the stabilization of the cage struc-
ture by doping and the reasons for distortion, we consider an
ideal dodecahedron with 7, symmetry. For the ideal empty
cage, the radius is found to be 3.26 A. This large cavity
corresponds to an interatomic distance of 2.326 A between
the Si atoms on the surface of the cluster, which is nearly the
same as the interatomic distance in bulk Si [2.33 A (Ref.
25)]. There are two ways to stabilize the structure: (1) The
cage structure can be converted into smaller units (e.g., two
Sijo units) so that the cavity in the cluster is reduced and
bonding is improved. (2) The structure can be doped with a
metal atom to fill the cage cavity, the size of which should be
large enough to provide effective bonding. Further, the inter-
action energy between the metal atom and the cage should
compensate the energy loss that may arise from the change in
the atomic distances of the Si atoms.

To explain why the cages are distorted, we give the elec-
tronic states in Table II. We can see that for the ideal empty
Si, cage, the LUMO is four-fold degenerate and the HOMO
is three-fold degenerate. Only two electrons occupy the

TABLE II. Orbital information for the ideal dodecahedral struc-
tures with I, symmetry for the pure and doped Si,, clusters. The
number of electrons in each state is indicated in parentheses.

Orbital Siy SiBa SinSr SinCa SinyPb  SiyZr
LMo 6,0 6,0 G,0 G,0 G,0 G, (0
HOMO T,(2) H,(8) T,(4) T,(4) T,(4) T,(6)

HOMO-1 H, (10) T, (6) H, (10) H, (10) H, (10) H, (10)
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HOMO levels, so it is possible to dope with metal atoms in
order to fill these levels more completely. When Ba, Sr, Ca,
Pb, and Zr are doped, the orders in the energy levels are
unchanged except for the case of Ba, where the H, HOMO-1
state and T, states are exchanged. Except for Zr, the HO-
MO’s for the doped cages are not fully occupied, and there-
fore Jahn-Teller distortions take place to lower the symmetry.
For the case of Zr, however, the HOMO is fully occupied,
and distortion can be explained from geometrical arguments.
Due to the small size of the Zr atom, the cage has to be
distorted to optimize strong bonding between the cage and
the 4d states of the Zr atom.

In order to confirm that the dodecahedron is the lowest-
energy structure, we choose the two most probable structures
from the Siy, isomers already studied'' to investigate
Ba@Siy,: (1) The ground-state geometry of Si,, is com-
posed of two Si, clusters.” ! Due to its large size, Ba will
not favorably bind in the center of a Sij, cluster. Therefore,
we consider an isomer with Ba connecting the two Si( clus-
ters, labeled as configuration II in Fig. 2. However, after
optimization, this structure lies 0.495 eV higher in energy
than the Ba@ Siy, cage. (2) Similar to W@Siy,,> the high-
symmetry isomer of Siy, is tube like, composed of three
6-member rings with Si atoms at the centers of the top and
bottom rings. This isomer is just 0.165 eV higher in energy
than the ground-state geometry."! When Ba is doped into this

Config. I

E=0.0eV

FIG. 2. Isomers of Ba@ Si,,. The figures on the left (right) are
the initial (final relaxed) structures. Configuration I is the dodeca-
hedral cage isomer. Configuration II is an isomer based on the
ground state of Si,, prolate cluster. Configuration III is based on a
hexagonal prism structure of Si,, that lies close in energy to the
prolate structure. The relaxed structure has significant distortions
and lies 2.46 eV higher in energy than configuration I (taken as zero
energy). The same is also true for the other metal atoms (Sr, Ca, Zr,
and Pb).
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tubelike isomer (configuration IIT), the optimized geometry
converges to a cagelike structure, composed of pentagons,
squares, and hexagons, but the energy is 2.46 eV higher than
the dodecahedron cage of configuration I, as shown in Fig. 2.
These results show that the doped cage is energetically stable
and has the lowest energy of the structures considered. Be-
cause configuration II is close in energy to configuration I,
the energy differences between these two structures for the
other metals are shown in the last column of Table I. We find
that for the other metals, the cage structure becomes even
more energetically favorable.

Finally, since Kumar and Kawazoe® found the 16 silicon
atom cage to possess the closest packing for Zr encapsula-
tion, we studied the Zr@ Si,, cage by capping four Si atoms
on Zr@ Si, in two ways: (1) symmetrical capping of the four
pentagonal faces around one of the square faces and (2) plac-
ing two atoms on the neighboring pentagons around one
square and two atoms opposite to these. Both of these re-
laxed structures lie higher in energy than configuration I,
which again confirms the energetic stability of the Zr@ Si,,
dodecahedron cage. We should also note that Jackson and
Nellermoe®® had shown, based on the local density approxi-
mation to density functional theory, that endohedral Zr can
stabilize the Si,, cluster and that this bonding is similar to
endohedral bonding in small carbon fullerenes. However, in
their calculations, the structure was optimized keeping the 7,
symmetry, and the intrinsic stability of the structure was not
examined. The authors found that due to the d electrons in
Zr, the stabilizing energy is much larger than that of an sp
dopant, in agreement with our results.

The electronic states of Ba@ Si,, as well as the corre-
sponding pure Si,, cage are shown in Fig. 3(a). The deeper
states of the silicon cage are nearly unchanged, and signifi-
cant hybridization occurs between the states of the Si,, cage
around —7.5 eV and the Ba 6s level. The states near
—5.8 eV, grouped near the HOMO level, do not interact
significantly with Ba. However, there is a significant shift of
all the states to lower energies. The hybridization with Ba
leads to the occupancy of the LUMO level of the Si,, cage
and the opening of a larger gap. The charge density distribu-
tion of the Ba@ Siy, cluster is shown in Fig. 3(b), and analy-
sis of the molecular orbitals shows that the Si atoms are
bonded through sp-hybridized orbitals on the cage and the s
orbitals of Ba interact with the p orbitals of the Si atoms.

For silicon clathrates, there are two kinds of structural
units: Siyy+ Sisy and Siyy+ Siyg.'>7'® Can the Siy, and Siyg
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FIG. 3. (a) Eigenvalue spectra of Ba@ Si,, and the correspond-
ing spectra of the Si,, cage and Ba atom. The solid lines indicate the
occupied states and the dotted lines the unoccupied states. (b) Total
charge density distribution of Ba@Si,, with contour spacing
0.005 e/A°.

cages also be stabilized by single atom doping? We found
that due to the large size of these two cages, a single metal
atom cannot stabilize; thus Si,; seems to be the largest cage
that can be stabilized by this kind of doping. Besides Siy,
Ge,, and Sn,, are also the basic building blocks of
Ge-based* ™ and Sn-based,28 clathrates respectively. Here,
we also found that due to the larger size of Ge and Sn,
neither Ge,, nor Sn, is stabilized by doping with one metal
atom, which suggests that the growth patterns of Ge and Sn
are different from Si, as was also found in the case of large
pure Si and Ge clusters.®

In summary, our calculations indicate that by doping with
metal atoms, the dodecahedral geometry of the Si cage,
which is similar to the smallest fullerene cage C,q,>° can be
stabilized both dynamically and energetically. Therefore,
doping is an effective way to change Si from a prolate to a
caged structure that behaves like a cousin of carbon.
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