

3D ENGINE FOR IMMERSIVE VIRTUAL ENVIRONMENTS

A Thesis

by

CHRISTOPHER DEAN ANDERSON

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

December 2003

Major Subject: Visualization Sciences

 2

3D ENGINE FOR IMMERSIVE VIRTUAL ENVIRONMENTS

A Thesis

by

CHRISTOPHER DEAN ANDERSON

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved as to style and content by:

__________________________ __________________________
 Frederic I. Parke Peter F. Stiller
 (Chair of Committee) (Member)

__________________________ __________________________
 Donald H. House Phillip J. Tabb
 (Member) (Head of Department)

December 2003

Major Subject: Visualization Sciences

 iii

ABSTRACT

3D Engine for Immersive Virtual Environments. (December 2003)

Christopher Dean Anderson, B.C.S., Southwest Texas State University

Chair of Advisory Committee: Dr. Frederic I. Parke

The purpose of this project is to develop a software framework, a 3D engine,

which will generate images to be projected onto facets of a spatially immersive

display (SID). The goal is to develop a software library to support the creation of

images of specified 3D environments which are specific to the display

geometries of a polyhedral class of SIDs. Part of this goal is developing auxiliary

software to allow this library to be thoroughly tested. When properly working, the

images being displayed on adjoining faces of the SID appear spatially and

temporally consistent with one another, creating the illusion that the user is

within a surrounding three-dimensional space.

 iv

This thesis is dedicated to my favorite person, the wonderful Miss Erin.

 v

TABLE OF CONTENTS

Page

ABSTRACT ...iii

DEDICATION ..iii

TABLE OF CONTENTS... v

LIST OF FIGURES ..viii

1 INTRODUCTION ...1

2 PRIOR WORK ...5

3 PROBLEM STATEMENT AND METHODOLOGY...9

3.1 Project Goals ..10

3.2 Developed Software Functions ...11

3.3 Software Development Approach ...12

4 IMPLEMENTATION...13

4.1 Implementation Approach ...13

4.2 Model and Light Classes...15

4.2.1 Drawing Primitives ..16

4.2.2 Lights ..17

4.2.3 Surface Normals ...19

4.2.4 Colors and Lighting Calculations ..20

4.2.5 Per Vertex Colors ...22

4.2.6 Texture Mapping...23

4.2.6.1 Basic Color Mapping..23

4.2.6.2 Reflection Mapping ..24

4.2.7 Object Transformations ..25

4.2.8 Object Parenting ...26

4.2.9 Object Instancing..27

4.2.10 Object Files...28

4.2.11 Object Display...28

4.3 Scene Class..29

4.3.1 Camera Structure, Viewing Frustum...29

4.3.2 Background Color, Image and Skybox ...31

4.3.3 Fog ...33

4.3.4 Window Structure ...34

4.3.5 Scene Files...35

4.4 Cave Class..35

4.4.1 Cave Geometry ..37

4.4.2 Display Adjustment and Cave Files ..38

4.4.3 Update Viewer Transforms and Projection Matrix.............................38

 vi

Page

4.4.4 Environment Transformations...44

4.4.5 Drawing Borders ...44

4.4.6 Visual Aids..45

4.5 Networking ..45

4.6 Terrain Class...47

5 RESULTS ..47

5.1 Cave Demo Application...48

5.2 Bubble Factory Project..50

6 CONCLUSION AND FUTURE DIRECTIONS..53

REFERENCES ..55

APPENDIX A: INSTALLATION..57

APPENDIX B: USAGE...58

APPENDIX C: PROPRIETARY FILE FORMATS ..61

C.1 Cave File Format ..61

C.2 OBJ Extended 3D File Format..62

C.3 Scene File Format ..63

APPENDIX D: CLASS AND STRUCTURE REQUIREMENTS..........................64

APPENDIX E: CLASSES...65

E.1 Cave Object Class ..65

E.2 Image Class..67

E.3 Light Class..69

E.4 Model Class..70

E.5 Scene Class ...74

E.6 Singly-linked List Class...76

E.7 Terrain Class ..78

E.8 Texture Class ...78

E.9 Length 3 Vector Class ..79

APPENDIX F: STRUCTURES...86

F.1 Camera Structure..86

F.2 Fog State Structure...87

F.3 Window Structure..88

APPENDIX G: MISCELLANEOUS CODE ...89

G.1 Color Type And Definitions...89

G.2 GLUT Environment...90

G.3 OpenGL Error Checking...91

 vii

Page

G.4 Trigonometric Approximations..92

VITA...93

 viii

LIST OF FIGURES

FIGURE Page

1 CAVELib setup with no network ..5

2 CAVELib setup with network ...6

3 WireGL / Chromium general setup ..7

4 Scene data layout; the storage of virtual environments14

5 Four drawing primitives are provided...16

6a Directional light on a terrain ...18

6b Point light on the same terrain as figure 6a ...18

7a Smooth shaded models have one surface normal per vertex....................19

7b Flat shaded models have one surface normal per face19

8a Diffuse only..20

8b Specular only, shininess 5 ...20

8c Diffuse plus specular, shininess 5 ...20

8d Specular only, shininess 15 ...20

8e Diffuse plus specular, shininess 15 ...20

9 Vertex colors make cheeks blush and give the eyes pupils.......................22

10a Blank geometry..24

10b Vertex texture coordinates...24

10c Textured geometry...24

11a Spherical environment map ...25

11b Sphere with the environment map applied...25

12 The upper arm is the parent of the forearm, which is the parent of the hand,

which is the parent of the thumb and fingers ...26

13 Each egg is an instance of the same geometry but has an independent

location, orientation, and scale ..27

14a Angle of view is small (zoomed in) ..30

14b Angle of view is large (zoomed out)...30

15 Symmetric viewing frustum..31

 ix

16 A skybox image is six images in one, each looking positive or negative

along a Cartesian axis ...32

17a Linear function ...34

FIGURE Page

17b Exponential function at 0.04 density ..34

17c Exponential function at 0.1 density ..34

17d Exponential squared at 0.04 density..34

17e Exponential squared at 0.1 density..34

18a Trapezoidal Icositetrahedron ...37

18b Rhombicuboctahedron...37

18c Truncated Icosahedron (soccer ball) ...37

19a Scaled facet...38

19b Horizontally skewed facet ..38

20 The current side is the base side plus an index...39

21 A ray is shot from the viewer in the direction opposite the facet normal until

it collides with the facet..40

22 rotaxis is orthogonal to vector [collpos – viewer] and forward....................41

23 upward is rotated about rotaxis through rotation0 to determine upvector0 .41

24 upvector0 is rotated about the normal direction through rotation1 to

determine upvector1...42

25 Facet vertices are rotated by rotation0 about rotaxis and by rotation1 about

the normal direction ...43

26 Near clipping distance is the distance from the viewer to the facet in the

normal direction (collision ray) ...43

27 On the TAMU system, each machine has an identical copy of the

environment...46

28a Height map ..47

28b Terrain generated from height map ...47

 1

1 INTRODUCTION

Plato introduces the fundamental cave allegory in Book VII of The Republic [8].

In his example, humans are imprisoned in a cave whose only opening is behind

them. They are chained in such a way that they cannot turn around, so that all

they can see is the back of the cave. Their only perception of objects is the

shadows which are cast on the cave wall before them. Since they never see out

of the cave, they do not perceive that anything exists outside of it. The images

they see on the cave wall are their reality.

The act of communicating a proposed reality between groups of people has

taken on innumerable expressions. Whether through writing, playacting,

composing, painting, singing or teaching, people ranging from scientists to

artists and from children to scholars have endeavored to engage other people

and allow them to experience worlds which they have not yet known. Different

forms of expression target different senses. A concerto may give a person the

impression of being in a place she has never been, purely by sound. Theatrical

productions may play to any of the five senses. The primary target of many

mediums is vision. Movie theaters are a form of visual immersion. While an

audience watches a film on a large movie screen, they see almost nothing but

the screen. This gives them the impression that they are located in the

environment where the story is taking place.

This thesis follows the style and format of Computer Graphics.

 2

Due to the growth of computer imaging technology, new forms of visual

expression are possible. Whatever we see in the real world can be simulated in

a computer, and this virtual world can be viewed via a display device, such as a

computer monitor. This idea of creating virtual objects or a virtual environment

to represent real objects or a real environment has applications in many fields.

Engineers can construct virtual prototypes and make corrections prior to building

a real product. Astronomers can study virtual recreations of planets and

galaxies. Movie makers can create virtual sets and even virtual characters to

accomplish goals and tell stories that would not be feasible without the use of

computer graphics.

Video games have become extremely popular, and most of them rely on the

ability to give the game player the feeling that he is inside a fictitious

environment. Game environments are often designed to simulate many aspects

of the real world. They may consist of three-dimensional geometry which is

illuminated and shaded to mimic real world lighting. Objects may be textured to

give a high level of detail. Lights may cast shadows. A powerful aspect of

making an environment believable is viewer interaction. Games allow a user to

do many actions that she can relate to in the real world, such as walk, run, jump,

swim, drive a vehicle, etc.

To engage a person with imagery, it is preferable that the person be free from

distractions, so that they only see what is being presented to them. Immersing a

person in a virtual environment is preferable for many visual interactive

applications, but visual immersion has often been impractical due to the high

cost of constructing immersive display systems. Immersive and semi-immersive

displays have usually been driven by one or more high-end workstations [4],

each of which cost tens of thousands of dollars. However, with the recent

affordability of powerful graphics cards, high-speed network hardware, and

 3

faster commodity a computer, paying a high price for an immersive display is no

longer necessary [2]. Recent work has been done in the Visualization Lab at

Texas A&M University to construct spatially immersive display systems

composed of commodity hardware.

A spatially immersive display (SID) is one in which the display surfaces surround

a user or users. Renderings of three-dimensional geometry are commonly

generated to be shown on flat surfaces. That is, a digital spatial environment is

projected from three dimensions into two dimensional images. For this reason,

SID walls are typically flat. This is not realistic, in that 2D projections of a 3D

environment can only approximate what a user would see if he were actually in

the represented space. To best create the desired illusion, SID walls would be

assembled in such a way that they approximate a surrounding sphere. This

ideal display would have infinitely many facets, and each facet would be infinitely

small, resulting in a perfect sphere. The simplest practical SID geometry is a

cube. Although this is far from the ideal geometry, because of its simplicity it is

by far the most common. The CAVEtm [9] is a cubic display system developed

at the University of Illinois, and is the most common type of SID. Rarely are

more than four of the six possible display walls utilized. Other SIDs, such as the

Visionarium tm and Reality Center tm, use wrap-around (panoramic) techniques to

project images of an environment onto a single curved screen, but they are not

fully immersive. Head mounted displays (HMD) provide full immersion in that

they allow the user to look in any direction. However, they generally do not

provide peripheral vision.

 4

This project presents the development of a software framework for the display of

virtual environments on multi-faceted, spatially immersive displays. For this

project a “3D engine” is considered to be the software which visually presents a

virtual three-dimensional world to a user or users. The 3D engine presented in

this discussion consists of an application-specific portion of code, and supporting

libraries.

 5

2 PRIOR WORK

The most widely used Application Programmer's Interface (API) for developing

applications for immersive displays is CAVELib [1]. Initially designed and

developed in the Electronic Visualization Laboratory at the University of Illinois,

CAVELib is currently developed and distributed by VRCO Inc. CAVELib

supports a wide variety of immersive and non-immersive displays, including but

not limited to CAVEstm, RAVE'stm, ImmersaDeskstm, Visionariumstm, and

RealityCenterstm. Designed primarily for display systems which run on high-end

Silicon Graphics® systems, CAVELib may be configured to make use of multiple

processors and multiple graphics pipes (see figure 1). The library supports a

variety of controllers for user input, such as “wands” (3D mice). It also supports

tracking sensors which may be used to render the environment relative to the

position of the user’s head, or to track the position of the 3D mouse.

Figure 1: CAVELib setup with no network.

 6

CAVELib has been extended to provide network support (see figure 2).

Networking allows each of the display images to be rendered on a different

machine. In this type of configuration, each machine has a copy of the data

which describes the virtual world, and tracking and navigation data are shared

between machines.

Figure 2: CAVELib setup with network.

 7

WireGL, a research project at the Stanford University Computer Graphics Lab,

developed software which allows graphics applications to render on clusters of

commodity workstations [2,3]. Chromium, a software system that is derived

from WireGL, provides rendering for multi-screen displays. In addition to

providing the ability for applications to render on clusters of workstations, it has a

robust way of handling distribution of graphics calls over networks [5]. WireGL

and Chromium are implemented as an OpenGL driver. When the application

makes OpenGL calls, the specialized driver distributes these graphics

commands to servers across a network (see figure 3).

Figure 3: WireGL / Chromium general setup.

Though able to generate images for many types of displays, software such as

CAVELib and Chromium are designed only to render rectangular images. SIDs

having non-rectangular facets are not directly supported. Research and

development has been and is still being conducted in the Visualization

Laboratory at Texas A&M University (TAMU) to create SID systems which make

 8

use of non-rectangular facets [7]. These provide better approximations to a

sphere than other spatially immersive displays. Such systems have been

constructed at TAMU using clusters of workstations. The focus of this thesis

project is to develop supporting software that accommodates non-rectangular

facet, polyhedral display surfaces.

 9

3 PROBLEM STATEMENT AND METHODOLOGY

This project addresses the need for a software library that supports applications

that generate images representing 3D environments for display on the facets of

polyhedral spatially immersive displays. The software is not limited to specific

display geometry. The geometry of the display facets may be any convex

polyhedron. Unlike other immersive visualization software, facet geometry is not

restricted to being rectangular or even quadrilateral. Each display facet may be

any convex polygon. Triangles, pentagons, octagons and non-rectangular

quadrilaterals are all valid facet shapes. Facets must be planar, however. The

software is designed to work with commodity computers and projectors. This

excludes specialized and possibly non-planar image projectors or optical

systems.

The computational systems to be supported have been constructed as multiple

networked nodes, where each node consists of a computer with high-

performance display hardware, a projector, and one facet of a multi-facet

display. By distributing graphics computation across nodes, one CPU per facet,

a large number of nodes may be used with negligible speed loss. The number

of facets is not a significant factor in determining overall system frame rate. The

network communication protocol ensures that all nodes generate frames which

correspond temporally to one another. The software allows interactive update of

viewer position and orientation within the displayed virtual space.

 10

3.1 Project Goals

The goal of this project is a tested software library that supports SID applications

which:

• Generate images that are correctly oriented, clipped, and otherwise

properly conformed for projection onto the facets of a class of polyhedral

SIDs.

• Support interactive changes in position and orientation of the viewer.

Changes in position affect the way geometry is projected into two

dimensional images. Orientation changes affect the generation of stereo

images.

• Support the networking of multiple computational graphics nodes so that

all SID facet images can be displayed simultaneously and are temporally

synchronized.

• Support stereo viewing via anaglyphic rendering.

Detailed user documentation has been developed as an aid to application

development. This documentation is included as appendices to this thesis.

 11

3.2 Developed Software Functions

The functions of the 3D engine software are as follows:

• Load data from files which defines the geometry, lights, and various

display properties of the desired three-dimensional environment.

• Load data from files which specifies the geometry of the display facets

and various attributes of the display system.

• Handle interactive user input from devices such as a keyboard and a

mouse.

• Allow the geometric data to be manipulated by application software which

makes use of the 3D engine.

• Render the resulting environment geometry using the OpenGL API [10].

• Generate images that conform to the specified display geometry, which

are subsequently projected onto the corresponding display surfaces.

• Networked graphics nodes communicate utilizing the User Datagram

Protocol (UDP). Viewer position and orientation with respect to the virtual

world, and viewer position relative to the display geometry are sent by the

client machine to each of the servers for every frame.

• Image generation for each graphics node is temporally synchronized with

all other networked graphics nodes. Each server is contacted by the

client every frame and the server returns the number of frames that it has

rendered. Comparison of frame counts is used to maintain

synchronization.

 12

3.3 Software Development Approach

Modern, high quality software development practices were used to develop the

software library. This software allows maximum flexibility in supporting

application software, while maintaining high performance. The software was

created using the C++ language, making use of its object-oriented features to

keep various pieces of the software organized and intuitive. For portability,

flexibility, and acceleration in rendering 3D graphics, the OpenGL API was

chosen. It was supplemented with the OpenGL Utility Toolkit (GLUT). User

tracking and navigation data are shared by graphics nodes over a local area

network (LAN) via a basic UDP socket interface. Rendering non-rectangular

images is achieved by rendering all pixels that lie outside the boundary of each

facet as black. Stereo viewing is achieved by rendering images for the left and

right eyes in disjoint color ranges and viewing these anaglyphs through glasses

with appropriate color filters.

 13

4 IMPLEMENTATION

Prior to creating software to support specialized display geometry, initial

software was created to render a virtual world on a standard rectangular display.

By previewing a virtual world on a simple single-screen display, we have a basis

for judging how it should appear on more complex displays. We can judge how

objects appear in terms of geometry and colors, and how they relate to one

another in space. To accomplish this, a collection of libraries was created that

facilitates the storage, manipulation, and display of the various types of data that

specify the virtual world. Support was later added to facilitate displays having

polyhedral geometry.

4.1 Implementation Approach

Consistent with the object-oriented software approach, which is supported by

C++, the supporting libraries consist of a number of “classes.” Figure 4 depicts

the data layout of virtual environments. A model class was created to store

objects. Objects have geometry, which is defined in a local (object) coordinate

system. Object geometry may be lines, triangles, quads, or other polygons.

Objects may have surface normals used for shading. They may have material

colors, vertex colors, and textures. Objects may be parented, and they may

share geometry and textures. They may be read from Extended OBJ files (see

Appendix C.2).

 14

Figure 4: Scene data layout; the storage of virtual environments.

A light class was created to support lighting and shading. Lights have the

following attributes: ambient color, diffuse color, and specular color. Lights may

be directional or positional (point lights). Lights may be specified within scene

files (see Appendix C.3).

A scene class was created to contain all elements that define a virtual world. A

scene may have models, lights, terrains, and fog. A window structure defines

the type of image buffer and viewport for rendering. A camera structure

specifies the viewer location and orientation within the world. The camera also

 15

specifies the viewing frustum by a field-of-view angle, near clipping distance,

and far clipping distance. All scene elements and parameters may be specified

within scene files.

A cave class was created to provide transformation and projection calculations

for viewing through a specific facet of the specified display geometry. Output

may be rotated, scaled, or skewed. The display geometry may be viewed from

the outside, and other visual aids may be generated to help in understanding the

current cave setup. Display geometry and parameters may be specified within

cave files (see Appendix C.1). The projection calculations in the cave class

override the field-of-view angle and near clipping distance in the camera

structure.

The networking is done via UDP sockets. One machine, the client, contacts

each of the other machines, the servers, and sends viewer location and

orientation information each frame time. Each server sends a frame counter

back to the client. The client ensures that all servers have the same frame

counter that it does. This way all the display nodes are synchronized to within

one frame time.

4.2 Model and Light Classes

The purpose of our virtual world is to give the illusion of a believable world. To

do this, the world must consist of some collection of objects, and it must have

some way to simulate the illumination of those objects in at least a semi-realistic

way. The model class (see Appendix E.4) was created to store an object,

including its geometry, its position and orientation, and various attributes to

determine how the geometry is to be drawn.

 16

4.2.1 Drawing Primitives

With the OpenGL API, objects are rendered as collections of geometric

primitives. These primitives consist of individual vertices. Vertices may be

interpreted either one at a time to define points (GL_POINTS), as pairs to define

line segments (GL_LINES), as triplets to define triangles (GL_TRIANGLES), or

four at a time to define quadrilaterals (GL_QUADS). Other primitives are also

available.

Figure 5: Four drawing primitives are provided.

 17

Initially, only quadrilaterals (GL_QUADS) were used, as many models are

created as a collection of adjacent quadrilaterals. Storing geometry with only a

single primitive type was very restrictive. Support for triangles

(GL_TRIANGLES), line segments (GL_LINES), and polygons having more than

four sides (GL_POLYGON) was added (see figure 5). Throughout this

discussion, when it does not matter which type of polygon (triangles, quads,

more than four sides) is being considered, polygons will be referred to as

“faces.” All faces are interpreted as having only one visible side. Vertices are

assumed to specify faces in counter-clockwise order. If a face is oriented such

that its vertices will be drawn in counter-clockwise order, it is front-facing, and is

drawn. If its vertices are oriented in clockwise order from the point of view of the

viewer, they represent a back-face, and are not drawn (culled).

4.2.2 Lights

Many of the attributes the model class stores relate to how OpenGL calculates

colors at each vertex, and interpolates between vertex colors to find a color for

each pixel. Many of these attributes are related to lighting. The light class (see

Appendix E.3) was created to hold all of the attributes necessary to define a light

source.

 18

Figure 6a: Directional light on a terrain.
Light direction is represented by a line.

Figure 6b: Point light on the same
terrain as figure 6a. Light location is
represented by a small bright sphere.

Two types of lights; directional light sources and point light sources are

supported. Directional lights “shine” on all geometry from the same direction

(see figure 6a). Since they are defined as a direction and not a position, they

may be thought of as being infinitely far away, and are often used to simulate

sunlight. Point lights are positional. The direction from which they shine on

geometry is determined by their position relative to that geometry in space (see

figure 6b). They are also called omni-directional lights because they have no

directional element. There is no constraint as to which direction they shine.

 19

4.2.3 Surface Normals

The geometry of an object may consist of any number of surfaces. Surfaces are

groups of contiguous faces. For the lighting calculations, OpenGL must know

the surface normals of the objects. These are vectors that specify directions that

are orthogonal to the surface. If an object is to be smooth-shaded, surface

normals are specified at each vertex. Interpolation between computed vertex

colors determines surface shading (see figure 7a). This gives the impression of

a curved surface. In this case, the model class stores one normal vector per

vertex. If an object is to be flat-shaded, meaning that each normal is consistent

across a face and no interpolation is done, the model class stores one normal

vector per face. Flat shading gives the impression of a surface consisting of flat

faces (see figure 7b).

Figure 7a: Smooth shaded models
have one surface normal per vertex.

Figure 7b: Flat shaded models have
one surface normal per face.

 20

4.2.4 Colors and Lighting Calculations

Each light has the following color attributes which it contributes to the lighting

calculations: ambient color, diffuse color, and specular color. Colors, unless

otherwise specified, consist of red, green, blue, and alpha (RGBA) values.

Alpha is a measure of opacity. In addition to these “light” colors, OpenGL uses

“material” colors to calculate a color for each vertex. Although material colors

may be specified per vertex, it is often acceptable to have material colors be

consistent for an entire object, since it makes sense to treat most objects as

consisting of a single material. To support this, the model class provides

storage for the following material colors: emission, ambient, diffuse, and

specular.

Figure 8d: Specular only,
shininess 15.

Figure 8e: Diffuse plus
specular, shininess 15.

Figure 8a: Diffuse only. Figure 8b: Specular only,
shininess 5.

Figure 8c: Diffuse plus
specular, shininess 5.

 21

In calculating color for a vertex, OpenGL starts with the material emission color,

which is not dependent on lighting. Added to that is a global OpenGL ambient

color which is scaled by the material ambient color. Added to that is the color

determined by lighting calculations. This involves combining the light colors for

each light source with the material colors of the object. Ambient color is not

dependent on positions or directions, so each light’s ambient color is simply

scaled by the ambient material color.

Diffuse color is dependent on the angle between the light source direction vector

from this vertex and the surface normal vector (see figure 8a). When this angle

is zero (cosine of the angle is 1.0), the full amount of diffuse light color is used.

When the angle between the surface normal and light direction is ninety degrees

or more (cosine is less than or equal to zero), the diffuse light component is set

to zero or black. Each light’s diffuse color is scaled by the diffuse material color.

Specular color is dependent on the light direction vector, the surface normal

vector, and the vector from the current vertex to the viewer (viewpoint).

Consider shooting a ray from the viewer (your eyes), and reflecting it off of the

object. The closer that reflected ray is to being parallel to the light direction

vector, the brighter that vertex will be. This specular color component is then

raised to a power which determines how quickly the color darkens (falls off)

when the reflected ray gets further from being parallel to the light direction

vector. This exponent is called shininess. The larger it is, the quicker the light

“falls off” (see figures 8b – 8e). Conversely, a low shininess value causes the

object to appear dull. This shininess value is also stored by the model class.

 22

4.2.5 Per Vertex Colors

Although it is generally sufficient to have a single set of material colors per

object, there are cases where it is useful to specify material color per vertex. For

instance, consider a model of a human face that changes colors to represent

changes in emotion. If this character’s cheeks are to blush, a simple way to

accomplish this is to increase the red components of the vertices which make up

the cheek geometry (see figure 9). To support per vertex color, the model class

provides storage for one color per vertex. Only one color array is provided

because OpenGL provides only one color vertex array. This color array may be

used to set any one of the material colors, or to set both diffuse and ambient

colors.

Figure 9: Vertex colors make cheeks blush and give the eyes pupils.

 23

4.2.6 Texture Mapping

Specifying material colors alone is often insufficient in giving a realistic

representation of an object. In the real world, objects may have an essentially

infinite level of detail. To specify colors at higher levels of detail, it is not

sufficient to specify them per vertex. Colors must be specified between vertices.

Visual detail is added to an object via texturing. OpenGL provides many options

for texturing an object. Texturing is done using texture maps, which in OpenGL

are one, two, or three dimensional images. One dimensional textures are quite

limiting. Three dimensional (volume) textures tend to significantly increase

render times. For most purposes, two dimensional (2D) maps are sufficient, and

only they are supported for this project. A texture class (see Appendix E.8) was

created to read and store 2D texture maps. The model class provides access to

two types of texture maps, each of which is applied to surfaces in a specific way.

4.2.6.1 Basic Color Mapping

A basic color map may be used, which is a texture that gets mapped onto

surfaces via 2D texture coordinates. For each vertex, a texture coordinate

specifies the location in the texture map corresponding to that vertex (see

figures 10a, 10b). For each pixel, a texture color is calculated by interpolating

between texture coordinates of surrounding vertices (see figure 10c). After

lighting calculations, the color of each pixel is multiplied by the pixel’s color map

value.

 24

Figure 10c: Textured
geometry.

Figure 10b: Vertex
texture coordinates.

Figure 10a: Blank
geometry.

4.2.6.2 Reflection Mapping

A reflection map may be used to simulate surfaces reflecting their environment

(see figure 11a). The reflection map is interpreted as a spherical environment

map, which looks like a perfectly reflective sphere (see figure 11b). Take a ray

from the viewer and reflect it off the object’s surface at each vertex. The angle

of reflection is determined by the surface normal. The direction of the reflected

ray determines the reflection map coordinates. These coordinates change as

the orientation of the viewer changes with respect to the object, and they are

generated automatically by OpenGL. Spherical environment maps are usually

created by making a picture of a highly reflective sphere. This may be

accomplished with 3D rendering software or with an actual camera and reflective

ball.

 25

Figure 11a: Spherical environment
map.

Figure 11b: Sphere with the
environment map applied.

4.2.7 Object Transformations

Geometry is considered to be part of an object. It follows then that the geometry

of each object is specified in its local coordinates. The local (object) coordinate

system is relative to a global (world) coordinate system. The model class stores

the following properties which define an object coordinate system: position,

rotation, and scale. Position is simply an X-Y-Z point specifying the object’s

location in the global coordinate system. Rotation is actually three rotation

angles, one for each axis (X, Y, Z), which specify the object’s orientation in the

global coordinate system. Scale is a number used to scale the object along all

three local axes. Scale determines the object’s size in the global coordinate

system.

 26

4.2.8 Object Parenting

While it is often sufficient to specify an object in world coordinates, it is often

useful to specify a model relative to another model’s coordinate system. This is

called object parenting. For instance, if an arm is represented, a hand object

could be parented to a forearm object, which would be parented to an upper-arm

object, which would be relative to the world (see figure 12). So when the upper-

arm rotates, the forearm and hand rotate accordingly. When the forearm

rotates, it does so relative to the upper-arm, and the hand rotates accordingly.

An object can only be transformed relative to one coordinate system, so an

object may only have one parent. However, an object may have any number of

“children.” The hand, for example, might have five children which are its fingers.

Each finger has only one parent, the hand (see figure 12). The model class

supports parenting.

Figure 12: The upper arm is the parent of the forearm, which is the parent of the hand,
which is the parent of the thumb and fingers.

 27

4.2.9 Object Instancing

Geometry, which as previously stated is considered to be part of an object, is not

necessarily unique for each object. For instance, consider a dozen eggs. Each

egg is an object, meaning that it exists in its own coordinate system. Each egg

certainly has a different global position, and differs a bit from the other eggs in

orientation and scale (see figure 13). But it is reasonable to say that all eggs

have essentially the same shape. For rendering to be efficient, each egg object

can be stored as an instance of the same geometry. In the model class,

instances share all vertex and face data. This includes vertex coordinates,

normals, vertex colors, texture coordinates, lines, and faces.

Figure 13: Each egg is an instance of the same geometry but has an independent
location, orientation, and scale.

 28

4.2.10 Object Files

The model class provides methods which read object models from files and write

stored models to files. Initially, the Wavefront OBJ file format was chosen for its

simplicity in storing geometry, for its readability, and for its compatibility with

modeling software. Since some properties stored by the model class are not

supported by the OBJ format, the format was extended into an “Extended OBJ”

format, while keeping backwards compatibility with the original OBJ file

specification. The format was extended to support parenting, instancing, and

multiple texture maps. Backwards compatibility means that the model class will

read the original OBJ format. Also, other software that reads OBJ files can also

read “Extended OBJ” files if it simply ignores tags that are not part of the OBJ

format. The model class does not interpret an “Extended OBJ” file as defining

multiple objects, so each object file should only contain one object (see

Appendix C.2). NOTE: While the model class stores material properties, they

are not part of the “Extended OBJ” format.

4.2.11 Object Display

To properly display an object with the model class, the following must occur:

1) The proper OpenGL vertex arrays must be enabled, and corresponding

array pointers must be assigned. These arrays include a vertex

coordinate array, a surface normal array, a vertex color array, and a

texture coordinate array.

2) The OpenGL material parameters must be set to the object’s material

parameters. These are the object’s material colors and shininess.

3) The proper OpenGL texture objects must be selected. There may be a

texture object for a color map and/or a reflection map.

4) Coordinate transformations must be done to position, orient, and scale

the object relative to its parent coordinate system.

5) The primitives which constitute the object’s geometry must be drawn.

 29

The model class provides methods to accomplish each of the above individually,

and a display method which accomplishes all of the above. The display method

is recursive. It will call itself once for each child of the current object. This

means that when the display method is called with one model object, that object

and all of its children will be displayed.

4.3 Scene Class

To represent a believable world, it is not only necessary to have detailed objects,

but to have many of them. To facilitate environments having many objects and

many lights, and to store the other properties necessary to specify a virtual

world, a scene class was created. The scene class (see Appendix E.5) can

store many objects, limited only by available memory. It can also store the

maximum number of lights as specified by the OpenGL implementation. It can

also maintain a texture list, which allows objects to share textures. A terrain list,

which will be explained later, is also provided.

4.3.1 Camera Structure, Viewing Frustum

The scene class provides access to a camera structure (see Appendix F.1)

which stores attributes that define the viewer within the virtual world. A camera

has location and orientation. Changing the location and orientation of the

camera based on user input allows the user to navigate the virtual world. A

camera has a field-of-view angle. This can be thought of as a zoom factor,

where narrow angles appear zoomed in (see figure 14a), and wide angles

appear zoomed out (see figure 14b).

 30

Figure 14b: Angle of view is large
(zoomed out).

Figure 14a: Angle of view is small
(zoomed in).

The camera structure also provides near and far clipping distances. Collectively,

the field-of-view, near clipping distance, and far clipping distance define a

viewing frustum (see figure 15). OpenGL only renders geometry within the

defined viewing frustum. All geometry outside the frustum is clipped. A frustum

is a shape like a truncated pyramid. The viewer (camera) is located at the apex

of the pyramid. What the viewer sees is within the frustum. The distance from

the viewer to the top of the frustum is the near clipping distance. The distance

from the viewer to the bottom of the frustum is the far clipping distance.

 31

Figure 15: Symmetric viewing frustum.

4.3.2 Background Color, Image and Skybox

The scene class provides three ways of determining what is rendered behind all

of the specified geometry. By default, the background is rendered black. The

simplest way to change this is to set a different background color. Rather than a

constant color, a background image may be loaded. However, this is not

realistic, as the background image does not change as viewer orientation

changes. The most realistic way to represent a background environment is to

use a skybox. The scene class provides methods for loading and configuring a

background image and a skybox.

 32

A skybox is a cube that is rendered behind (surrounding) all other geometry.

Each side of the cube is textured with an image. These environment images are

created from the same point of view, looking in the six axial directions, each

having a field-of-view of ninety degrees. The edges of the images should match,

so the result is a contiguous backdrop which always appears infinitely far away.

Figure 16: A skybox image is six images in one, each looking positive or negative along a
Cartesian axis.

 33

A skybox image is six images in one. Each image is a view along a Cartesian

axis. Three views are along the axes in positive directions, and three are along

the axes in negative directions. The skybox setup function expects these

images to be oriented and ordered as shown in figure 16. The order is –X, +Z,

+X on top, and –Y, +Y, -Z on bottom. The skybox is rendered such that these

images are oriented along their respective axes in world coordinates.

4.3.3 Fog

The real world cannot be fully represented by objects, light sources, and nice

backgrounds alone. Atmosphere plays a part as well. Fog or haze may cause a

lack of transparency of the air. OpenGL provides a simple method for simulating

fog, where each pixel color is combined with a fog color. The resulting amount

of original pixel color versus fog color is determined by applying a fog function to

the pixel’s depth, which is stored in the depth buffer. The further away the pixel

is, the more it will take on the color of the fog. The fog function may be linear,

exponential, or exponential squared. With the linear fog function, the amount of

fog color a pixel has is directly proportional to its depth (see figure 17a). With

the exponential functions, the pixels do not take on the fog color at a constant

rate. The resulting effect is that pixels appear to be enveloped in fog quicker

than they do with the linear function.

 34

Figure 17b: Exponential
function at 0.04 density.

Figure 17a: Linear
function.

Figure 17c: Exponential
function at 0.1 density.

Figure 17d: Exponential
squared at 0.04 density.

Figure 17e: Exponential
squared at 0.1 density.

The scene class provides access to a fog_state (see Appendix F.2) structure,

which stores the fog color, the distance from the viewer at which the fog function

takes effect, the corresponding ending distance, the density of the fog, and the

fog function. The density affects the steepness of the exponential functions, and

therefore how quickly the fog “thickens” over the given distance (see figures 17b,

17c, 17d, and 17e).

4.3.4 Window Structure

The scene class provides access to a window structure (see Appendix F.3)

which specifies what “window” the virtual world is rendered into. The window

structure stores the viewport, which is the screen coordinate rectangle that

OpenGL renders within. It also stores the display mode, which specifies what

types of image buffers are used. Commonly, OpenGL programs render into an

 35

RGBA color buffer and use a depth buffer (z buffer) for depth testing. Depth

testing ensures that the correct geometry appears in front when geometry

overlaps. Scenes such as those we are considering involve a lot of motion and

should use double-buffering. With double-buffering, drawing is done to a “back”

buffer. After the scene is drawn the buffers are swapped. The contents of the

back buffer become the contents of the front buffer. The front buffer is the one

displayed.

4.3.5 Scene Files

The scene class provides a method for reading scene data from a file. Object

files to be imported may be specified in scene files. Variables for material

properties may be set within scene files. Current (last read) material properties

are applied to objects when they are loaded. Lights may be specified in scene

files. Camera, background, fog, and window parameters may be specified within

scene files.

As elements of the virtual world are imported by the read method they are stored

within the scene object. Lights are imported into a light array. Model objects are

added to a model list. Terrain objects are added to a terrain list. Model object

textures are added to a texture list. The application from which the read method

was called may then traverse each array. Changes may be made to the data,

and element display methods may be called to draw the virtual world.

4.4 Cave Class

In this context, the term cave does not refer to the CAVEtm display developed at

the University of Illinois. Cave is being used here in a more general sense to

refer to polyhedral immersive display geometry and the cave class (see

Appendix E.1) that has been developed to support it. After developing initial

software that rendered a virtual world for a standard rectangular display, a cave

 36

class was created to extend the software to render a virtual world as it appears

for a particular specified facet of a polyhedral spatially immersive display (SID).

To accomplish this, the viewer is rotated such that the viewer’s line-of-sight is

parallel to the normal vector of the specified facet. By default, the viewer is also

rotated about the line-of-sight so that the longest side of the facet appears along

the bottom of the viewport. For some geometry, this helps to maximize the facet

area in the viewport. A viewing frustum is created such that the near clipping

plane is coincident with the facet. The cave geometry is used to determine near

clipping distances. No geometry inside the display geometry will be visible. By

default the facet is rendered to the screen in a way that maximizes its screen

area while maintaining its aspect ratio. Everything in the viewport that is inside

the facet is rendered normally. Everything in the viewport that is outside the

facet boundary is rendered as black. Display parameter defaults may be

changed via the adjustments described in Section 4.4.2.

 37

4.4.1 Cave Geometry

Geometry for the desired polyhedral display is imported as an OBJ file via the

model class. This file is created using external software. Like any model class

object, the display system geometry may consist of faces (facets) having any

number of sides. Technically, this geometry may be anything, but limiting it to a

convex polyhedron (see figures 18a, 18b, and 18c) with all facets facing inward

ensures that each facet is visible from any position within the SID. If this

limitation is not met, the rendered image for a display facet whose front (as

described in Section

4.2.1) is not visible to the viewer is undefined.

Figure 18c: Truncated
Icosahedron (soccer ball).

Figure 18b:
Rhombicuboctahedron.

Figure 18a: Trapezoidal
Icositetrahedron.

 38

4.4.2 Display Adjustment and Cave Files

The cave class has variables which are adjusted to accommodate different

projectors and screens. The current facet index is set. The side of the facet that

is oriented along the bottom of the screen is specified. The output may be

scaled (see figure 19a) horizontally and vertically. It may also be skewed (see

figure 19b) horizontally and vertically. The output may also be rotated. Each of

these attributes and the name of the OBJ file representing the display geometry

may be specified in a cave file. The cave class provides a method for reading

cave files (see Appendix C.1).

Figure 19a: Scaled facet. Figure 19b: Horizontally skewed facet.

4.4.3 Update Viewer Transforms and Projection Matrix

Interactive viewer tracking is supported, in that the viewer position and

orientation relative to the display geometry may be changed by the application

for each frame time. Because of this, some of the cave class variables are re-

calculated every frame via the update method. The default viewer position is the

origin of the display geometry. For stereo viewing, the viewer position is offset

 39

for each eye. For each new frame time, the actions described in the following

lists occur.

If the facet index has changed from the previous frame:

1. The number of edges of the facet is determined.

2. New “working” vertices are allocated. Working vertices are a copy of the

facet vertices that will be transformed into screen space and used to set

up the perspective matrix.

3. The “base” facet edge is set to be the longest facet edge.

Regardless of a change in the facet index, the following actions are done for

each frame:

1. The current facet edge is set to be the base facet side plus the current

side index. This is the facet edge which by default is rendered along the

bottom of the viewport. See figure 20.

Figure 20: The current side is the base side plus an index. In this case the index is one.

2. The working vertices are set to be the facet vertices relative to the viewer

position. See figure 20.

 40

3. Using a ray from the viewer position in the direction opposite to the facet

normal vector, the point where the ray collides with the facet, collpos, is

calculated. See figure 21.

Figure 21: A ray is shot from the viewer in the direction opposite the facet normal until it

collides with the facet. Call that collpos.

4. A rotation axis vector rotaxis is calculated to be orthogonal to the

collision vector and the forward [0,0,-1] vector (right handed world

coordinates). If rotaxis is invalid (not-a-number), which will occur if the

collision ray (described above) is parallel to the forward vector, it is set to

the upward [0,1,0] vector (world coordinates). See figure 22.

5. rotation0 is the angle between the negated facet normal and the forward

vector. See figure 22.

 41

6. upvector0 is the upward vector rotated through rotation0 about

rotaxis. See figure 23.

Figure 22: rotaxis is orthogonal to vector [collpos – viewer] and forward. rotation0 is
the angle between the negated normal (collision direction) and forward.

Figure 23: upward is rotated about rotaxis through rotation0 to determine upvector0.

7. ortho is a vector orthogonal to the current facet edge and the facet

normal. See figure 24.

 42

8. rotation1 is the angle between upvector0 and ortho, plus an optional

cave class Z-rotation angle. See figure 24.

9. upvector1 is set to upvector0 rotated through rotation1 about the facet

normal direction. If upvector1 is not parallel to ortho, rotation1 is

negated and upvector1 is recalculated. See figure 24.

Figure 24: upvector0 is rotated about the normal direction through rotation1 to determine
upvector1.

10. The working vertices are rotated by rotation1 about the facet normal and

by rotation0 about rotaxis. This results in the facet defined by the

working vertices being co-planar to the display window. See figure 25.

 43

If cave mode is on, then…

11. The near clipping distance in the camera structure is set to the distance

from the viewer to collpos. See figure 26.

Figure 25: Facet vertices are rotated by rotation0 about rotaxis and by rotation1 about
the normal direction. Conversely, the viewer is depicted as rotated relative to the facet.

Figure 26: Near clipping distance is the distance from the viewer to the facet in the normal
direction (collision ray).

12. The variables which define the viewing frustum are set so that the entire

facet will be visible on screen, and that it will utilize the maximum

 44

available screen area, while keeping the facet’s aspect ratio relative to the

viewport aspect ratio. The current near and far clipping distances are

used.

13. The frustum is scaled horizontally and vertically with the current scaling

values.

Set the projection matrix…

14. The projection matrix is flipped horizontally to accommodate back-

projection.

15. The projection matrix is skewed via a skew matrix which is generated

from horizontal and vertical skew factors.

4.4.4 Environment Transformations

For a standard rectangular display, the camera structure (Section 4.3.1) is used

to position and orient the viewer relative to the virtual world. When generating

images for a specified display (cave mode), the camera is used to position and

orient the display geometry relative to the virtual world. Then the viewer is

translated and rotated relative to the display geometry. The translation method

translates the viewer relative to the origin of the display geometry. The rotation

method rotates the viewer as described in Section 4.4.3.

4.4.5 Drawing Borders

After transformations are applied and the projection matrix is set, the world that

is visible through the facet is drawn, and the rest of the viewport is black. To

accomplish this, two approaches were tested. One approach uses arbitrary

clipping planes. Clipping planes were defined so that only the geometry visible

through the facet was drawn, and everything outside the facet boundary was

clipped. While accomplishing the goal, this resulted in significantly increased

render times and unacceptable rendering artifacts at the facet boundary. In the

second, preferred approach, the virtual world is drawn to the entire viewport.

 45

Then a black border is drawn to blacken all pixels outside the facet boundary.

4.4.6 Visual Aids

To understand how the viewer is oriented with respect to the display geometry,

especially to see which facet the viewer is looking through, it is helpful to view

the display geometry from outside. To support this, the cave class includes a

testing method which draws the following visual references: the display

geometry, the current facet, the facet normal, a cone representing the viewer,

and the vectors that are set by the update method. This testing method is used

to visualize the viewer relative to the cave geometry while viewing them within

the virtual world rendered on a standard rectangular display.

4.5 Networking

To support interactive changes in position and orientation of the viewer,

including position relative to the world and position relative to the display, data is

communicated between graphics nodes which are connected via a local area

network (LAN). When the software is initiated, one node is designated the client

and is given the network hostname or IP address of each of the other graphics

nodes (see figure 27). All non-client nodes are designated servers, and every

frame time they receive packets of navigational data from the client. The client

sends a data packet to each server and waits for a response from each server

before it continues. The response from the servers is a data packet containing a

frame counter. If a server’s frame counter does not match the client’s frame

counter, the client generates an error. This insures that all node displays are

never more than one frame time out of synchronization.

 46

Figure 27: On the TAMU system, each machine has an identical copy of the environment.
The client sends navigational and frame number data to the servers every frame time.

The servers expect data packets to be of a specific size. If a server receives a

packet of an incorrect size, it dies. So when the client exits, it kills all servers by

sending them packets which are smaller than the expected packet size.

The network code does not exist as a network class or library. Due to its

simplicity, it has been implemented within the main application code. The

network code may be changed or removed by the application developer.

 47

4.6 Terrain Class

Initially, viewer navigation was very simple. The viewer was allowed to walk

(translate) on a plane and rotate, which gives the impression of floating and

looking in controllable directions while staying at a fixed height. To facilitate

applications in which the user is given the impression of moving across an

uneven surface, a terrain class (see Appendix E.7) was created. It allows a

grayscale image to be imported and used as a height map. A height map is an

image whose pixel values are used to determine surface elevation (see figure

28a). Lighter pixels (larger values) correspond to greater height. A square

surface grid, having one vertex for each pixel in the height map, is generated.

Each pixel of the image is multiplied by a height factor to determine the height

(Y-location) of its corresponding vertex of the grid (see figure 28b). As the

viewer walks/moves across the grid, the vertices of the grid cell that the viewer is

above are interpolated with respect to the horizontal viewer position and a new

height is calculated. The viewer position is set based on this terrain height, so

the viewer moves up and down following the terrain elevation.

Figure 28a: Height map Figure 28b: Terrain generated from
height map.

 48

5 RESULTS

Two applications have been developed which make use of the software

framework of libraries and network code described above. A demonstration

application has been in constant development. Its purpose is to thoroughly test

each portion of code that has been developed for this project. A second

application was developed to provide specific interaction between the user and

the environment.

5.1 Cave Demo Application

The Cave Demo application has been updated throughout the development of

the software. With the addition of each object class or data structure, the

application has been updated to test the new code. The Demo application also

provides display-specific networking as described in Section 4.5, and supports

anaglyphic stereo capability.

This application is able to read and display all of the defined elements of a

sample virtual environment. At start-up, it processes command-line arguments

and reads all valid specified files. For each OBJ (or Extended OBJ) file, it calls

the read method of the model class. For each scene file, it calls the read

method of the scene class. And for each cave file, it calls the read method of

the cave class. All model objects are subsequently organized into a hierarchy

determined by parent-child relationships. This allows each object to be

transformed by the coordinate system of its parent. At each frame time, the

sample application performs the following display tasks:

1. Draw the background color, background image, or skybox.

2. Information is updated for each enabled light in the light array. This

means that all enabled lights are applied to all geometry in the virtual

world.

3. The display method of the model class is called for each object at the

 49

base of the model hierarchy; that is, each object that has no parent.

Since the display method is applied recursively to parented objects, all

objects in the hierarchy are drawn.

4. The display method of the terrain class is called for each object in the

terrain list.

The Demo application allows the user to navigate the virtual environment using

a mouse and/or keyboard. Pressing mouse buttons or keyboard arrow keys

translates the viewer in left, right, forward, and backward directions (NOTE: To

work properly, this requires a three-button mouse). Two buttons or keys may be

held simultaneously to move the user diagonally. Moving the mouse changes

the orientation of the viewer. Forward and backward mouse movements tilt the

viewer down and up, respectively. Left and right mouse movement pan the

viewer. The user may navigate vertically with the plus and minus keys on the

number pad of the keyboard. However, any change in vertical location (Z-

position) of the viewer is lost when the viewer is moved horizontally if its height

is being determined by a terrain.

The Demo application provides anaglyphic stereo rendering. Two viewer eye

positions are defined, equidistant to the left and right of the non-stereo viewer

position. All geometry in the virtual world except for the background is drawn

twice, once for each eye position. Drawing for the left eye position is masked so

that only the red color channel is drawn to. Drawing for the right eye position is

masked so that only the cyan (blue and green) color channels are drawn to. An

effect of depth is achieved when this anaglyphic rendering is viewed with red-

cyan filtered glasses.

The Demo application includes keyboard commands which allow the user to

change various display parameters. These changes include toggling surface

 50

normal display, changing drawing modes (filled polygons, wireframe, vertex

points), turning off smooth shading, toggling lighting, etc. When generating

images which conform to a specified display facet (cave mode), commands are

available to scale and skew output, change facets, etc. Commands are

available for toggling anaglyphic stereo display mode, and for setting the

distance of the stereo eye positions from the standard viewer position. These

and other commands are documented in Appendix B.

The Demo application can be run in standard rectangular display mode, or in

cave display mode. “Cave mode” means that the display geometry is

determined by input from an OBJ file, which is specified within a cave file. The

application may be run on a single machine, or on a network of graphics nodes

(see figure 26).

Several object models and scene files have been created to test this application.

In addition, two cave files for two different display facet geometries have been

tested. The first test was on a three-facet section of a surrounding twenty-four

facet polyhedron. The second test was on a three-facet section of a ten-facet

surrounding “cylindrical” prism.

5.2 Bubble Factory Project

The Bubble Factory Project was created for the Texas A&M Visualization

program’s “Time Based Media” course. The goal was to create an underwater

environment containing machinery that a user could interact with. Development

for the Bubble Factory Project began with specific goals for user interaction that

are more complex than what the Demo application provides. The user input was

to seem as “hands-on” as possible using a mouse and keyboard. This meant

that if a user were to “walk” up to a machine with a handle, he could then move

the mouse in a forward (up) motion, and then in a backward (down) motion to

 51

simulate a hand reaching up and pulling down. The grasping and releasing of

the handle by the hand might be accomplished by pressing and releasing a

button.

The project code began with a copy of the then current Cave Demo Application.

So the Bubble Factory application incorporated most of the functionality

described in Section 5.1. It loads lights and geometry via scene files and OBJ

files. It goes through display steps which are similar to those of the Demo

application: draw the background, update OpenGL for each light, and draw each

model object.

One of the requirements of an environment with interactive machinery was that

pieces of machines needed to move relative to other pieces. Having everything

in global coordinates was insufficient. This was the reason for upgrading the

model class to support parenting where each object may have any number of

children, and where parent-child hierarchies may be arbitrarily deep.

An aesthetic requirement of the Bubble Factory Project was that the user feels

as if she were walking on a rugged surface. The environment was to have a

hilly terrain, so the viewer would not be limited to a constant elevation. The

simplistic navigation of the Demo application did not provide this kind of

adaptation to landscape, so the terrain class was created. The Bubble Plant

application, and eventually the Demo application were updated to calculate the

viewer height relative to a terrain, as described in the Terrain Class section.

It was observed that some machinery has many parts which have essentially the

same geometry, such as bolts and rods. To make the storage and display of

such objects more efficient, the model class was updated to allow object

instancing. The Bubble Factory itself is a building in the virtual environment

 52

which has a control rod. When the handle of the control rod is “pulled down,” the

Factory generates a bubble which floats out of a stack on top. The application

stores one default bubble object. Each time the Bubble Factory’s control handle

is pulled down, a new instance of the default bubble object is generated.

The Bubble Factory Project was not designed to make use of multiple graphics

nodes. It may be run over a network because it incorporates the same

networking capability as the sample application. This means that user

navigational data is shared across the network, but updates to the virtual

environment only occur on one machine, the client. Future work might include

support for updating copies of the virtual environment across the network.

 53

6 CONCLUSION AND FUTURE DIRECTIONS

The goals of this project have been accomplished. Using the developed

libraries, applications were created that generate images that are properly

conformed for projection onto facets of polyhedral spatially immersive displays.

The software supports interactive changes in viewer position and orientation. It

supports the networking and synchronization of an arbitrary number of graphics

nodes. Anaglyphic stereo viewing was added to the Cave Demo application.

Detailed documentation was written, and is available as appendices to this

document.

The work done in this thesis could be extended as follows:

• The developed software framework could be used to support a variety of

applications. Feedback from this would then determine what changes

and additions should be made to support a wider range of applications.

• A better approach could be devised for calibrating and adjusting the

display parameters to compensate for non-linearity and distortion in

projection systems.

• Support interactive manipulation of the virtual environment. This may

include allowing the user to interactively edit geometry, change shading

properties, change texturing, change lighting properties, adjust fog

attributes, or make any other changes to the virtual environment which

need to be consistent across all of the networked nodes.

• Provide support for active, time-sequential stereo viewing. This might be

accomplished by updating the software to generate images for left-eye

and right-eye sequentially, and by viewing the display through shutter

glasses which are synchronized with the display refresh. This would be

difficult if not impossible to achieve with multiple displays, as the refresh

of each projector would need to be synchronized.

 54

• Support passive stereo viewing. This could be accomplished by using

two projectors per facet with polarizing filters, or by using one projector

with a time sequencing polarizing filter per facet. Resulting images would

be viewed through polarized glasses.

• Extend support for a wider range of interactive devices such as

joysticks/gamepads. This would involve upgrading the software to

determine the type of interactive devices being used and act accordingly.

• Support user motion tracking using systems such as the Ascension Flock

Of Birds [6]. Utilizing a motion tracking system would allow for interactive

changes of the user position and/or orientation in relation to the display

geometry. The result of user position tracking would be geometrically

correct projection of the scene geometry into an image for each facet,

regardless of the user’s location within the SID space. The result of

orientation tracking would be correctly generated stereographic images,

regardless of the direction the user is looking.

• Implement support for physically-based simulation. Interaction with an

environment, such as hitting walls, falling off edges, or doing anything

which causes an object to react in a physically-based way, help the user

feel as if he is in a tangible world.

• Provide more robust network error handling.

• Support cast shadows.

 55

REFERENCES

[1] CAVELib Users Manual. VRCO Inc., October 1999.

http://www.gup.uni-linz.ac.at/vrcave/CAVELibManual.pdf

[2] Humphreys, G., I. Buck, M. Eldridge and P. Hanrahan. “Distributed

Rendering for Scalable Displays,” Proceedings SC2000: High Performance

Networking and Computing, pp. 60, November 2000.

[3] Humphreys, G., M. Eldridge, I. Buck, G. Stoll, M. Everett and P. Hanrahan.

“WireGL: A Scalable Graphics System for Clusters,” Proceedings

SIGGRAPH 2001, pp. 129—140, August 2001.

[4] Humphreys, G. and P. Hanrahan. “A Distributed Graphics System for

Large Tiled Displays,” Proceedings IEEE Visualization, pp. 215—224,

October 1999.

[5] Humphreys, G., M. Houston, R. Ng, R. Frank, S. Ahern, P.D. Kirchner and

J.T. Klosowski. “Chromium: A Stream-Processing Framework for

Interactive Rendering on Clusters,” Proceedings SIGGRAPH 2002, pp.

693-702, July 2002.

[6] Motion Star: Installation and Operations Guide. Ascension Technology,

1996.

[7] Parke, F.I. “Next Generation Immersive Visualization Environments,”

Proceedings Sigradi 2002, pp. 163—166, May 2002.

[8] Plato. B. Jowett, Trans. The Republic, chapter 7, pp. 514a—520a, The

Colonial Press, 1901.

 56

[9] Schönbrunner, O. “Human-Computer Interface in the CAVE,” Proceedings

4th Central European Seminar on Computer Graphics (CESCG), pp.

11—20, May 2000.

[10] Woo, M., J. Neider, T. Davis and D. Shreiner. OpenGL Programming

Guide, 3rd ed., Addison-Wesley, 1999.

 57

APPENDIX A

INSTALLATION

There's not much as far as installation, but here are simple
instructions on how to decompress and build the software, assuming you
have a gzipped tar archive.

3Dengine (3Deng for Linux)
Author: Chris Anderson

BUILD INSTRUCTIONS

Decompress a gzipped archive...
extract(x), unzip(z), with verbose(v) output, file(f) matching
3Deng*.tar.gz:
> tar xzvf 3Deng*.tar.gz

Change to the base 3Dengine directory:
> cd 3Dengine

Remove old executables and objects:
> make clean

Compile code:
> make

If no errors occur during the make, a '3Deng' executable is created.

CHANGE APPLICATION

The main application code is pointed to by src/main.cpp. It is a
symbolic link:

main.cpp -> ../app_src/cave.cpp

To change which application is compiled, change main.cpp:
> cd src
> ln -sf ../app_src/another_app.cpp main.cpp
> cd ..

Then recompile:
> make clean
> make

 58

APPENDIX B

USAGE

Here is how to run the default cave application, including its various
runtime commands.

3Deng [--server | --server=hostname | --server=IP_address] \
 [cavefile(.cave)] [scenefiles(.sce)] [modelfiles(.obj)]

DESCRIPTION

3Deng is a fullscreen OpenGL application. All of the inputs are
optional. This document describes 3Deng when compiled as the Cave Demo
application.

--server Indicates that the application is a server, which

means that it receives navigational information from
a client which is responsible for connecting to it
over the network.

--server=IP
--server=host Indicates that the application is a client, which

connects to a server at the given hostname or IP
address. A client should have one of these
parameters per server to which it connects.

cavefile (.cave) Cave configuration files are used to set cave

attributes and to specify a cave model.

modelfiles (.obj) Model files specify models to be loaded into a scene,

aside from those in the scene files.

scenefiles (.sce) Scene files specify a scene, including lights,

models, and terrains. They can set the field-of-
view, the viewport, the fog state, etc.

GENERAL RUNTIME COMMANDS

Ctrl-c toggle control mode

The idea of control mode is that there are two sets of
input. One set is the input that sets display properties
and provides display adjustment. The second set is the
user input as specified by a particular application. When
control mode is on, the following display adjustment
commands are available. It is on/true by default.

 59

c toggle cave mode

 When cave mode is on/true, the scene is rendered from the

point of view of the viewer looking through a cave facet.
When cave mode is off/false, the scene is rendered for a
standard rectangular display.

F toggle fog
s toggle smooth shading
n toggle surface normal display
Ctrl-d toggle light token display
Ctrl-l toggle lighting
p toggle pause
t toggle stereo mode

f draw surfaces as filled polygons (default)
P draw surfaces as vertex points
w draw surfaces as lines(wireframe)

arrow keys translate the viewer
mouse buttons translate the viewer
mouse movement rotates viewer

Esc exit program
 --client exit envokes exit on each server

CAVE ADJUSTMENT

M < > ? Xscale (default = 1)
m , . / Yscale (default = 1)
K L : " Xskew (default = 0)
k l ; ' Yskew (default = 0)

 For the above commands, the far left adjustments

(M M K k) make large decrements. The near left commands
(< , L l) make small decrements. The far right commands
(? / " ') make large increments. The near right commands
(> . : ;) make small increments.

PgUp increment cave facet index number
PgDown decrement cave facet index number

Facet indeces are from zero to one less than the total
number of facets.

S increment base side of cave facet

Home rotate long facet side -> bottom
End rotate long facet side -> top (default)

 60

STEREO ADJUSTMENT

{ [] } eye spacing

As with cave scaling and skewing above, the outer keys are
large adjustments; the inner keys are small adjustments.

 61

APPENDIX C

PROPRIETARY FILE FORMATS

C.1 Cave File Format

#comment

model model_file(.obj) # cave geometry

facet[%u] # index of facet
 # Default: 0

side[%u] # index of side of facet
 # Default: 0

Xscale[%f] # horizontal field-of-view scale
 # Default: 1

Yscale[%f] # vertical field-of-view scale
 # Default: 1

Xskew[%f] # degree of horizontal skew
 # Default: 0

Yskew[%f] # degree of vertical skew
 # Default: 0

Zrotation[%f] # rotation about line-of-sight
 # Default: 0

3D ENGINE NOTES

All of the above are optional. Multiple cave files may be used in
succession. The only data in the cave geometry OBJ file that is used
is the vertices and faces. No other transformation or display tags are
considered. Zrotation cannot be set until a model has been specified.
Cave files must end in ".cave".

 62

C.2 OBJ Extended 3D File Format

#comment

v %f %f %f # vertex coordinate
vt %f %f # 2D texture coordinate
vn %f %f %f # vertex normal
vc %i %i %i %i # RGBA vertex color

l v/vt/vn v/vt/vn
 Specify a line segment with vertex indeces.
 Indeces for vt and vn are optional.

f v/vt/vn v/vt/vn v/vt/vn [v/vt/vn]
 Specify a 3 or 4 vertex face with vertex indeces.
 Indeces for vt and vn are optional.

o object_name
parent parent_object_name
instanceof source_object_name

position %f %f %f
rotation %f %f %f
scale %f %f %f

usemap texture_file [color|reflect|bump]
 If neither color, reflect, or bump is
 specified, texture maps should be
 interpreted in said order(first color,
 then reflect, then bump).

3D ENGINE NOTES

Textures may be raw PPM, raw PGM, JPEG, or TARGA(raw or RLE).
Uniform scale only.
Bump textures are not yet implemented.
vc alpha values are not currently used.
Model files must end in ".obj".

 63

C.3 Scene File Format

#comment

viewport position[%d,%d] resolution[%d,%d]
projection fov[%f] nearclip[%f] farclip[%f]

eyespacing[%lf] # stereo, distance between eyes
 # Default: 0.04

bgcolor[%i,%i,%i] # background color
background texture_file # background flat image
skybox 3X2_texture_file # six piece environment map

fog start[%f] end[%f] density[%f] color[%i,%i,%i] function[exp | exp2 |
linear]

mapmin[%f,%f,%f] # minimum/maximum "geographic" location for
mapmax[%f,%f,%f] # viewer position and light adjustment

position[%f,%f,%f] # initial viewer position
rotation[%f,%f,%f] # initial viewer orientation

positionchange[%f] # viewer movement speed factor
rotationchange[%f] # viewer rotation speed factor

light position[%f,%f,%f,%f] ambient[%i,%i,%i] diffuse[%i,%i,%i]
specular[%i,%i,%i]

Material State #
emission[%i,%i,%i]
ambient[%i,%i,%i]
diffuse[%i,%i,%i]
specular[%i,%i,%i]
shininess[%f]

import model_file(.obj) # import a single model(.obj)
importdir directory # import all model(.obj) files in directory
terrain gray_texture_file amplitude[%f] position[%f,%f,%f]

3D ENGINE NOTES

Any attributes may be left off and will be set to default values.
Attributes may be specified in any order. Textures may be raw PPM, raw
PGM, JPEG, or TARGA(raw or RLE). Scene files must end in ".sce".

 64

APPENDIX D

CLASS AND STRUCTURE REQUIREMENTS

Classes are circled. Structures are squared. Arrows denote which
class/struct each class/struct requires. That is, class A requires
(points to) class B.

 65

APPENDIX E

CLASSES

E.1 Cave Object Class

Files: cave.h, cave.cpp

Class cave_object stores cave attributes and provides methods to read
cave files, and to update, draw, and test a cave.

State

bool mode cave mode flag, signifies whether cave rendering
 (transforms and drawing) is currently enabled
 Default: false

model *mdl pointer to cave geometry

uint *facetptr pointer to indeces to the vertices of the
 currentfacet

uint facet index to the current facet

uint nfacets number of facets contained in 'mdl'

uint nsides number of sides of current facet

uint plus_side indexes current side of current facet relative to the
 long side

float Xscale scales the output image horizontally
 Default: 1

float Yscale scales the output image vertically
 Default: 1

float Xskew angle, in degrees, of horizontal skew
 Default: 0

float Yskew angle, in degrees, of vertical skew
 Default: 0

 66

Methods

 cave_object()

Set default values as listed above. Pointers are set to
NULL. Unless specified above, numbers are set to zero.

void dump(char* append="")

 Dump cave information, most of which can be used in a
 cave(.cave) file, then print the given append string.

int read(char *pathname)

 Read a cave(.cave) file and sets any attributes which it
 specifies.

 Return zero upon success, less-than-zero upon failure.

void update(window *win, camera *cam)

Update the projection matrix and variables which are used
for cave transformations. Set the camera structure's
nearclip based on the distance from the viewer position to
the current facet, and use the new nearclip and the given
farclip to set up the viewing frustum. The window
structure is needed to get the window/screen aspect ratio.

void translation()

Translate based on the viewer position relative to the
cave. This should be applied to all objects in the scene
whose location can change.

void rotation()

Rotate such that the line-of-sight is orthogonal to the
current facet. This should be applied to all objects in
the scene whose orientation can change.

void draw()

Draw the cave border. This should be the last drawing
function called, and should be called without depth
testing.

void testing()

Draw visual aids: wireframe cave, filled current facet,
facet normal, cone representing the viewer, etc.

 Note: This should only be called when cave mode is
off(false).

 67

E.2 Image Class

Files: image.h, image.cpp

Class image stores an image and provides methods for reading, writing,
and manipulating images. It requires libjpeg, which is installed by
default with most Linux distributions. More info on libjpeg may be
found here. The following formats are supported:

raw PGM read/write
raw PPM read/write
JPEG(RGB or gray) read/write
raw TARGA(gray, RGB or RGBA) read
rle TARGA(gray, RGB or RGBA) read

State

uint width image width in pixels

uint height image height in pixels

uint depth number of color channels(bytes) per pixel. Though

the I/O methods only use depths [1, 4], the image
manipulation methods handle arbitrary depths.

ulong size total bytes needed to store the image: width by

height by depth

byte *pixmap pointer to pixel map

Methods

 image()

 Set numbers to zero, pointer to NULL.

 ~image()

 Free pixel map memory.

void dump(FILE *OUT=stdout)

 Dump resolution and size information to the given file

pointer.

image&
 operator=(const image &img)

 Allocate a new pixel map and copy all data.
 Return a reference to the current image.

 68

void fliph()

 Flip image horizontally.

void flipv()

 Flip image vertically.

image*
 conform(uint width, uint height, char crop_align=0)

 Crop and scale to the given width and height.
 Crop alignment may be 'c'(center), 'l'(left), 'r'(right),
 't'(top), or 'b'(bottom), or zero(no cropping).

 Return a pointer to the new image.

int read_PNM(FILE *IN)

 Read a raw PGM(P5) or raw PPM(P6) image from the given file
 pointer.

 Return zero upon success, less-than-zero upon failure.

int write_PNM(FILE *OUT)

Write a raw PGM(P5) if depth is 1, or a raw PPM(P6) if
depth is 3, to the given file pointer.

 Return zero upon success, less-than-zero upon failure.

int read_JPEG(FILE *IN)

Read a JPEG file, which may be RGB or grayscale, from the
given file pointer.

 Return zero upon success, less-than-zero upon failure.

int write_JPEG(FILE *OUT, int quality=75)

Write a JPEG file, which may be RGB or grayscale, at the
given quality, to the given file pointer.

 Return zero upon success, less-than-zero upon failure.

 69

int read_TARGA(FILE *IN)

 Read a TARGA image from the given file pointer.
 The following TARGA types are supported:

 2 raw RGB(A)
 3 raw grayscale
 10 rle RGB(A)
 11 rle grayscale

 Return zero upon success, less-than-zero upon failure.

int read(char *path)

Read any type suppored by the above read functions by
calling the appropriate one, depending on the suffix(pgm,
ppm, jpg, tga) of the given path.

 Return zero upon success, less-than-zero upon failure.

E.3 Light Class

File: light.h

Class light stores light attributes including position/direction and
colors and provides a method to enable a light.

State

bool on flag for whether or not light is on
 Default: false

Glenum
 ID OpenGL number of the light

float position[4]

 position of the light in homogeneous
coordinates (x,y,z,w). Generally the fourth value is
zero or one. If it is zero, the light it a
directional light. Otherwise it is a point light.

Color ambient ambient RGBA intensity of the light

Color diffuse diffuse RGBA intensity of the light

Color specular specular RGBA intensity of the light

 70

Methods

 light()

 Set the default 'on' to false.

void enable()

 Enable the light and update the graphics API with its color
 states.

See OpenGL function glLight.

E.4 Model Class

Files: model.h, model.cpp

Class model reads and writes OBJ-like files, and provides methods used
to display models.

State

char *filename path to the OBJ-like file the model was read from

char *name name of the model, either from the filename or as
 specified within the file

model *parent pointer to the parent model, or NULL if it has no

parent

model *instanceof

 pointer to the model that the current model is an
 instance of, or NULL if the current model is not an
 instance

sllist
 *children pointer to a list of children models, or NULL if the
 current model has no children

bool smooth true if the model has smooth-shaded normals(one

normal per vertex), or false if the model has flat-
shaded normals(one normal per face).

 Default: false

bool forcedisplay

true if the object should always be displayed,
ignoring the visible flag.

 Default: false

 71

bool visible true if the object is visible and should therefore be
 displayed.
 Default: true

vectd position position(X, Y, Z) of the object
 Default [0, 0, 0]

vectd rotation Euler rotation angles(X, Y, Z), in degrees
 Default [0, 0, 0]

scalar
 scale uniform scale
 Default: 1

vectd *verts pointer vertex coordinates

vectd *norms pointer normals

texture

*colormap color texture map pointer

texture

*reflectmap
reflection map pointer

texture

*bumpmap bump map pointer.
 Bump mapping is not currently implemented.

uint displaylist

 integer name of the OpenGL display list.
 Default: 0

uint **lines pointer to indices for lines

uint **tris pointer to indices for triangles

uint **quads pointer to indices for quad faces

uint **polys pointer to indices for polygon faces

uint nverts number of vertices

uint nlines number of lines

uint ntris number of triangles

uint nquads number of quad faces

uint npolys number of polygon faces

float **texcoords

 pointer to texture coordinates

 72

byte *npolyverts
 array of numbers of polygon vertices, one for

each polygon

byte **colors pointer to bytes representing RGBA colors for

each vertex

byte displaymask

bit mask specifying how to interpret the display
list. The display mask indicates what sorts of
commands a display list contains, and may be a
bitwise combination of the following bit masks:

 TRANSFORM_LIST coordinate transform commands

 MATERIAL_LIST material state settings
 TEXTURE_LIST texture state settings
 DRAW_LIST drawing commands

 or
 FULL_LIST all of the above

 Default: 0

Color ambient ambient RGBA reflectance of the material
 Default [1, 1, 1, 1] (white)

Color diffuse diffuse RGBA reflectance of the material
 Default [1, 1, 1, 1] (white)

Color specular specular RGBA reflectance of the material
 Default [1, 1, 1, 1] (white)

Color emission emissive RGBA reflectance of the material
 Default [1, 1, 1, 1] (white)

float shininess specular falloff of the material
 Default: 0

Methods

 model()

 Set default values as listed above. Pointers are set to

NULL. Unless specified above, numbers are set to zero.

void dump(char *str="")

 Dump various information from the model's state.

 73

int read(char *pathname, sllist *modellist=NULL, sllist
 *texturelist=NULL)

 Read a model(.obj) file, add it to 'modellist' if given,
 and add its texture(s) to 'texturelist' if given.
 Return zero upon success, less-than-zero upon failure.

int write(char *pathname)

 Write a model(.obj) file.
 Return zero upon success, less-than-zero upon failure.

void material_settings()

Set the OpenGL state according to the material properties
of the model.

void texture_settings(GLint color=GL_MODULATE, GLint

 reflection=GL_DECAL, GLint bump=GL_MODULATE)

 Set the OpenGL state according to the texture properties of

the model, and specify how textures are to be used via
three texture function parameters. For more information on
the available texture functions, see the OpenGL function
glTexEnv.

void transforms()

 Translate, rotate, and scale.

void draw_elements()

 Draw elements(lines, trianges, quads, polys) of a model.

void draw_norms(float normsize)

 Draw normals of a model, and recursively draw normals of

its children.

void set_array_states()

 Set states of vertex arrays prior to drawing a model.

Possible arrays to set are the vertex array, normal
array(if smooth shaded), texture coordinate array(if color
texture mapped), and color array(if model has vertex
colors).

void display()

 Display a model, and recursively display its children.
 display() calls transforms(), texture_settings(),
 material_settings(), and draw_elements().

 74

void displaylist_setup(GLenum listmode=GL_COMPILE)

 Set up a display list for a model, depending on the model's
 displaymask.

 ~model()

 free all dynamically allocated memory

E.5 Scene Class

Files: scene.h, scene.cpp

Class scene encapsulates a lot of 3Dengine data. It provides a method
for reading scene files, and methods for setting up background images
and environment cubes(skyboxes). A method for writing scene files will
be added eventually.

State

window
 *win window pointer

camera
 *cam camara pointer

Color bgcolor background color
 Default [0, 0, 0, 0] (black)

Color ambient ambient material color which is applied to

newly imported models
 Default [.2, .2, .2, 1] (dark gray)

Color diffuse diffuse material color which is applied to

newly imported models
 Default [.8, .8, .8, 1] (light gray)

Color specular specular material color which is applied to newly
 imported models
 Default [0, 0, 0, 0] (black)

Color emission emissive material color which is applied to newly
 imported models
 Default [0, 0, 0, 0] (black)

float shininess specular falloff which is applied to newly imported
 models
 Default: 1

 75

vectd mapmin minumum XYZ coordinates of the scene
 Default: -1000
 Element range: double precision floating point

numbers

vectd mapmax maximum XYZ coordinates of the scene
 Default: 1000
 Element range: double precision floating point

numbers

double
 speed speed factor for changes in camera position
 Default: 25
 Suggested range [1, 100]

double
 rotspeed speed factor for changes in camera rotation
 Default: 0.25
 Suggested range [0, 1]

double
 rotaccel acceleration factor for changes in camera rotation
 Default: 7.5
 Suggested range [1, 20]

double
 eyespacing distance between eyes for stereo rendering
 Default: 0.04
 Suggested range [.01, .1]

model *background

 pointer to a model consisting of a textured quad to
be used as a static background image

model *skybox pointer to a model consisting of a textured cube to

be use as an environment cube

sllist
 *terrainlist

 list off terrains contained in the scene

sllist
 *modellist list of models contained in the scene

sllist
 *hierarchy list of models without parents contained in the scene

sllist
 *texturelist

 list of textures contained in the scene

light lights[GL_MAX_LIGHTS]

 array of lights

 76

fog_state
*fog fog state structure

Methods

scene()

Set default values as listed above. Pointers are set to
NULL.

void read(FILE *ENV)

 Read a scene(.sce) file from the given file pointer.

void write(FILE *SCE)

 Write a scene(.sce) file to the given file pointer.
 --not implemented at the moment :(

void background_setup()

 Setup a background flat, compiling it into a displaylist.

int skybox_setup(cave_object *cave)

 Setup a skybox(env cube), compiling it into a displaylist.

 Return zero upon success, less-than-zero upon failure.

E.6 Singly-linked List Class

File: sllist.h

Template class sllist provides dynamic storage for any type of
elements.

State

T *ptr pointer to the stored element
sllist *next pointer to the next node in the list

Methods

 sllist()

 Set pointers to NULL.

 77

unsigned int
 size()

 Return the number of items in the list.

T* head()

 Return a pointer to the first element, or NULL if the list

is empty.

T* get(int target)

 Return the item indexed from first of list by target.
 Note: step() is faster for retrieving each item
 sequentially.

T* step(int stride=1)

 Return the item indexed from previous step call by stride.
 Note: step contains a static variable, so don't "mix" step
 calls! Use step(0) to rewind.

int count(T *key)

 Return the number of instances of key in the list.

int push(T *newptr)

 Push a new node with a pointer to newptr onto the list.

 Return the number of items in the list.

int insert(T *afterme, T *newptr)

Insert a new node with a pointer to newptr into the list
after the first node which points to afterme, if there is
one.

 Return the number of items in the list.

T* pop()

 Pop the top node off the list.

Return a pointer to the top node, or NULL if the list is
empty.

 78

int remove(T *bad, int deletes=-1)

Remove nodes pointing to bad element. If deletes is non-
negative, then it specifies the maximum number of nodes to
be deleted. Otherwise all nodes matching bad are deleted.

 Return the number of nodes deleted.

E.7 Terrain Class

Files: terrain.h, terrain.cpp

Class terrain provides methods to read a grayscale image and display it
as a terrain by interpreting it as a heightmap. Its state and methods
are very similar to class model.

WARNING: This class is weak and displays very slowly. Avoid using it.

E.8 Texture Class

Files: texture.h, texture.cpp

Class texture provides a method for reading an image and storing it in
a new 2D texture object.

State

char *filename path to the image file
uint ID texture object ID number

Methods

 texture()

 Set default values.

void dump(char *append="")

 Dump texture state, followed by the append string.

uint read_2D(char *filename)

 Read an image file into a new texture object.

 Return ID upon success, zero upon failure.

 79

E.9 Length 3 Vector Class

File: vect.h

Template class vect<> provides logical, arithmetic, and assignment
operations, as well as other vector math functions for manipulating
vectors consisting of three floating point elements. It is advisable
to use the type defines 'vectf' and 'vectd' instead of using vect<>
directly.

Type Definitions

typedef vect vectf
typedef vect vectd

Defines

PI = 3.1415926535897
SMALLNUM = 1.0e-6
BIGNUM = 1.0e6

Global Constants

static const int X = 0
static const int Y = 1
static const int Z = 2

Methods - constructors, set, access operator, and dump

 vect()

 Initialize to [0,0,0].

 vect(scalar s)

 Initialize to [s,s,s].

 vect(scalar x, scalar y, scalar z)

 Initialize to [x,y,z].

 vect(const vect &v)

 Initialize to v.

 80

const
vect& set(scalar x, scalar y, scalar z)

 Set vector to [x,y,z].

 Return vector.

scalar&
 operator[](int i)

 Return vector element i.

void dump(char *append="")

 Dump [vector] followed by append.

Methods - component-wise scalar & vector arithmetic

vect operator+(scalar s, const vect &v)
vect operator+(scalar s)

 Return vector s + v or v + s.

vect operator-(scalar s, const vect &v)
vect operator-(scalar s)

 Return vector s - v or v - s.

vect operator*(scalar s, const vect &v)
vect operator*(scalar s)

 Return vector s * v or v * s.

vect operator/(scalar s, const vect &v)
vect operator/(scalar s)

 Return vector s / v or v / s.

Methods - component-wise scalar & vector arithmetic assignment

const
vect& operator =(scalar s)

 Set vector to [s,s,s] and return it.

const
vect& operator+=(scalar s)

 Set vector to v + s and return it.

 81

const
vect& operator-=(scalar s)

 Set vector to v - s and return it.

const
vect& operator*=(scalar s)

 Set vector to v * s and return it.

const
vect& operator/=(scalar s)

 Set vector to v / s and return it.

Methods - component-wise vector arithmetic

vect operator-()

 Return vector with components negated.

vect operator+(const vect &v)

 Return v1 + v2.

vect operator-(const vect &v)

 Return v1 - v2.

vect operator^(const vect &v)

 Return v1 ^ v2 (multiply component-wise).

vect operator/(const vect &v)

 Return v1 / v2.

Methods - dot product and cross product

scalar
 operator*(const vect &v)

 Return v1 dot v2.

vect operator%(const vect &v)

 Return v1 cross v2.

 82

Methods - vector arithmetic assigment

const
vect& operator =(const vect &v)

 Assign vector to v and return vector.

const
vect& operator+=(const vect &v)

 Assign vector to v1 + v2 and return vector.

const
vect& operator-=(const vect &v)

 Assign vector to v1 - v2 and return vector.

const
vect& operator^=(const vect &v)

 Assign vector to v1 ^ v2 and return vector.

const
vect& operator/=(const vect &v)

 Assign vector to v1 / v2 and return vector.

const
vect& operator%=(const vect &v)

 Assign vector to v1 % v2 and return vector.

Methods - relational

bool operator==(const vect &v)

 Return true if v1 equals v2, else return false.

bool operator!=(const vect &v)

 Return true if v1 does not equal v2, else return false.

bool operator< (const vect &v)

Return true if each element of v1 is less than each
respective element of v2, else return false.

bool operator<=(const vect &v)

Return true if each element of v1 is less than or equal to
each respective element of v2, else return false.

 83

bool operator> (const vect &v)

 Return true if each element of v1 is greater than each
 respective element of v2, else return false.

bool operator>=(const vect &v)

Return true if each element of v1 is greater than or equal
to each respective element of v2, else return false.

int parallel(vect B)

Return 1 if vector A is parallel to vector B and they point
in the same direction. Return -1 if they are parallel but
point in opposing directions. Return zero if they are not
parallel.

Methods

void swap(vect &v1, vect &v2)

 Swap two vectors.

vect minimum(const vect &v1, const vect &v2)

Return a vector having the minimum X-Y-Z components of the
two.

vect minimum(vect *v, unsigned long i)

 Return a vector having the minimum X-Y-Z components of all
 vectors in an array.

vect maximum(const vect &v1, const vect &v2)

Return a vector having the maximum X-Y-Z components of the
two.

vect maximum(vect *v, unsigned long i)

 Return a vector having the maximum X-Y-Z components of all
 vectors in an array.

vect average(const vect &v1, const vect &v2)

Return a vector having the average X-Y-Z components of the
two.

 vect average(vect *v, unsigned long i)

 Return a vector having the average X-Y-Z components of all
 vectors in an array.

 84

vect abs(const vect &v)

Return a vector having the absolute value X-Y-Z components
of v.

const vect& abs(vect *v)

 Set v to its own absolute value and return it.

vect sqr(const vect &v)

 Return a vector consisting of the components of v, squared.

const vect& sqr(vect *v)

 Square the components of v and return it.

scalar
 M(const vect &v)

 Return the magnitude of v.

scalar
 Msqr(const vect &v)

 Return the magnitude of v, squared.

vect N(vect v)

 Return the normal of v.

const
vect& N(vect *v)

 Normalize v and return it.

scalar
 D(vect v1, vect v2)

 Return the distance between two vectors.

scalar
 Dsqr(vect v1, vect v2){

 Return the distance between two vectors, squared.

scalar
 angle_between(vect v1, vect v2)

 Return the angle between two vectors, in degrees.

 85

void quat_mult(scalar *dstw, vect *dstv,
 scalar w0,vect v0,scalar w1,vect v1)

 Multiply quaternions w0 + v0 and w1 + v1, and store the new
 quaternion in dstw + dstv.

vect rotate(vect v, scalar a, vect axis)

 Rotate v by "a" degrees about axis.
 Note: Axis must be normalized.

 86

APPENDIX F

STRUCTURES

F.1 Camera Structure

File: camera.h

Structure camera stores location and orientation of a viewer, as well
as field-of-view and clipping attributes which define a viewing
frustum.

vectd position location of camera
 Default [0,0,0]

vectd rotation orientation of camera - Euler rotation angles

(X, Y, Z), in degrees
 Default [0,0,0]

float fov field of view in degrees, unused in cave mode
 Default: 60

float nearclip distance to the near clipping plane
 Default: 0.1

float farclip distance to the far clipping plane

 Default: 1000

 87

F.2 Fog State Structure

File: fog.h

Structure fog_state stores parameters of distance, density, function,
and color of fog.

double
 start GL_FOG_START - starting distance of the fog

double
 end GL_FOG_END - ending distance of the fog

double
 density GL_FOG_DENSITY - density of the fog

GLint mode GL_FOG_MODE - fog function: GL_EXP, GL_EXP2, or

GL_LINEAR

Color fcolor GL_FOG_COLOR - fog color

See OpenGL function glFog.

 88

F.3 Window Structure

File: window.h

Structure window stores position and size of a window/viewport, the
window's ID number, and a bit mask specifying it's display mode.

Gluint
 ID window ID number as returned by the windowing system.
 See GLUT function glutCreateWindow.

Gluint
 displaymode

bit mask for display and depth buffer configuration.
 See GLUT function glutInitDisplayMode.

Gluint
 xpos horizontal origin of viewport

Gluint
 ypos vertical origin of viewport
 See GLUT function glutInitWindowPosition.

Gluint
 width width of viewport

Gluint
 height height of viewport

See GLUT function glutInitWindowSize.

 89

APPENDIX G

MISCELLANEOUS CODE

G.1 Color Type And Definitions

File: colors.h

Color Type Definition

typedef float Color [4]

Type Color is an array of 4 floats. They are meant to be interpreted
as red, blue, green, alpha, with color ranges normalized from zero to
one.

Constant Color Definitions

Aqua 0.00, 1.00, 1.00, 1
Black 0.00, 0.00, 0.00, 1
Blue 0.00, 0.00, 1.00, 1
Fuchsia 1.00, 0.00, 1.00, 1
Gray 0.50, 0.50, 0.50, 1
Green 0.00, 0.50, 0.00, 1
Lime 0.00, 1.00, 0.00, 1
Maroon 0.50, 0.00, 0.00, 1
Navy 0.00, 0.00, 0.50, 1
Olive 0.50, 0.50, 0.00, 1
Purple 0.50, 0.00, 0.50, 1
Red 1.00, 0.00, 0.00, 1
Silver 0.75, 0.75, 0.75, 1
Teal 0.00, 0.50, 0.50, 1
White 1.00, 1.00, 1.00, 1
Yellow 1.00, 1.00, 0.00, 1
Light 0.90, 0.90, 0.90, 1
Dark 0.10, 0.10, 0.10, 1
Clear 0.00, 0.00, 0.00, 0

 90

G.2 GLUT Environment

Files: env_glut.h, env_glut.cpp

This is an effort to abstract GLUT calls out of the main application
code. The following handler functions must be defined externally:

void visibility(int state)
void reshape(int w, int h)
void display()
void idle()
void mouse(int button, int state, int x, int y)
void motion(int x, int y)
void passive(int x, int y)
void keydown(unsigned char key, int x, int y)
void keyup(unsigned char key, int x, int y)
void specialdown(int key, int x, int y)
void specialup(int key, int x, int y)

Defines

LEFT_ARROW = 100
UP_ARROW = 101
RIGHT_ARROW = 102
DOWN_ARROW = 103

DOUBLE_RGBA_DEPTH = GLUT_DOUBLE | GLUT_RGBA | GLUT_DEPTH
WinsysInit(x, y) = glutInit(x, y)
InitDisplayMode(mode)

 = glutInitDisplayMode(mode)
WarpPointer(x, y) = glutWarpPointer(x, y)
SwapBuffers() = glutSwapBuffers()
GetWindowWidth() = glutGet(GLUT_WINDOW_WIDTH)
GetWindowHeight() = glutGet(GLUT_WINDOW_HEIGHT)
HideCursor() = glutSetCursor(GLUT_CURSOR_NONE)
ShowCursor() = glutSetCursor(GLUT_CURSOR_INHERIT)
KeyRepeatOn() = glutSetKeyRepeat(GLUT_KEY_REPEAT_ON)
KeyRepeatOff() = glutSetKeyRepeat(GLUT_KEY_REPEAT_OFF)
MainLoop() = glutMainLoop()
EnterGameMode() = glutEnterGameMode()
LeaveGameMode() = glutLeaveGameMode()

Functions

void non_display()

 Don't display anything.

void SetHandlers()

 Set all callback handlers to default functions.

 91

void Pause()

Nullify most callback handlers and set the display callback
to non_display().

void Unpause()

Set all callback handlers to default functions--
SetHandlers().

G.3 OpenGL Error Checking

Files: errorcheck.h, errorcheck.cpp

If OpenGL has thrown an error, errorcheck prints the error code and
optional message, then exits the program.

Function

void errorcheck(const char msg[]=NULL)

 92

G.4 Trigonometric Approximations

Files: trig_approximations.h, trig_approximations.cpp

These functions provide fast access to approximations of the desired
trigonometric values. Angles are in degrees.

Defines

PI = 3.1415926535897
SMALLNUM = 1.0e-6

Functions

void TrigApproxInit()

 TrigApproxInit() must be called prior to using the other
 functionsor macros. It

double Sin(double angle)

 Return sine approximations.

double
 Cos(double angle)

 Return cosine approximations.

double
 Tan(double angle)

 Return tangent approximations.

Macros

Csc(angle) = (1.0/Sin(angle))

 Return cosecant approximations.

Sec(angle) = (1.0/Cos(angle))

 Return secant approximations.

Cot(angle) = (1.0/Tan(angle))

 Return cotangent approximations.

 93

VITA

Christopher Dean Anderson

418 Oak Springs Dr.

Seguin, TX 78155

Bachelor of Science in Computer Science

Southwest Texas State University

May 2000

Master of Science in Visualization Sciences

Texas A&M University

December 2003

