Section 1.3

Function Notation

Writing functions in an equation form.

Example 1

Let
$$f(x) = x^2 - 3x + 4$$

a) Find $f(2)$
 $f(2) = 2^2 - 3(2) + 4 = 4 - 6 + 4 = 2$
b) $f(-3)$
 $f(-3) = (-3)^2 - 3(-3) + 4 = 9 + 9 + 4 = 22$
c) $f(2d)$
 $f(2d) = (2d)^2 - 3(2d) + 4 = 4d^2 - 6d + 4$

Composition of two functions

 $f \circ g(x) = f(g(x))$ $g \circ f(x) = g(f(x))$

Example 2

Given $f(x) = x^2 + 4x$ and g(x) = 3x - 4, find the following functions.

a) Find g(2)

$$g(2) = 3(2) - 4 = 6 - 4 = 2$$

- b) Find f(-3)
- $f(-3) = (-3)^2 + 4(-3) = 9 12 = -3$

c) Find
$$g(3a)$$

 $g(3a) = 3(3a) - 4 = 9a - 9$
d) Find $f \circ g(x)$
 $f \circ g(x) = f(g(x))$
 $f \circ g(x) = f(3x - 4)$
 $f \circ g(x) = (3x - 4)^2 + 4(3x - 4)$
 $f \circ g(x) = (3x - 4)(3x - 4) + 12x - 16$
 $f \circ g(x) = 9x^2 - 12x - 12x + 16 + 12x - 16$
 $f \circ g(x) = 9x^2 - 12x$

Inverse Functions

An **inverse function** $f^{-1}(x)$ of a function f(x) is function that maps each point range back to the domain where $f^{-1}(f(x)) = x$ and $f(f^{-1}(x)) = x$

Find the inverse function of the function $f = \{(1,4), (2,6), (3,4), (4,5)\}$

Solution: Just switch the x and y components.

Thus, the inverse function would be $f^{-1} = \{(4,1), (6,2), (4,3), (5,4)\}$

Example 3 Find the inverse function of f(x) = 3x - 4

Solution: Replace f(x) with y, switch x and y, and then solve for y:

$$f(x) = 3x - 4 \implies y = 3x - 4$$

Switch x and $y \implies x = 3y - 4$
Solve for y
$$x = 3y - 4$$

$$x + 4 = 3y - 4 + 4$$

$$x + 4 = 3y$$

$$\frac{x + 4}{3} = \frac{3y}{3}$$

$$\frac{x + 4}{3} = y \implies f^{-1}(x) = \frac{x + 4}{3}$$

Example 4

Find the inverse function of $f(x) = x^3 - 1$ and then sketch a graph of f(x) and $f^{-1}(x)$

$$f(x) = x^{3} - 1 \implies y = x^{3} - 1$$

Switch x and $y \implies x = y^{3} - 1$
Solve for y
 $x = y^{3} - 1$
 $x + 1 = y^{3} - 1 + 1$
 $x + 1 = y^{3}$
 $\sqrt[3]{x+1} = \sqrt[3]{y^{3}}$
 $\sqrt[3]{x+1} = y \implies f^{-1}(x) = \sqrt[3]{x+1}$

Graph of f(x) and $f^{-1}(x)$

Find the inverse function of $f(x) = x^2 + 3$

$$f(x) = x^{2} + 3 \implies y = x^{2} + 3$$

Switch x and $y \implies x = y^{2} + 3$
Solve for y
$$x = y^{2} + 3$$

$$x - 3 = y^{2} + 3 - 3$$

$$x - 3 = y^{2}$$

$$\sqrt{x - 3} = \sqrt{y^{2}}$$

$$\implies \pm \sqrt[2]{x + 1} = y$$
 However, $\pm \sqrt{x - 3}$ is not a function

Therefore, f does not have an inverse function

Graphing Equations

Sketching Graphs

Basic Families of Graphs

Example 1 (The Standard Parabola)

Graph $y = x^2$

Х	у
-2	$(-2)^2 = 4$
-1	$(-1)^2 = 1$
0	$(0)^2 = 0$
1	$(1)^2 = 1$
2	$(2)^2 = 4$

Plot the following values (-2,4),(-1,1),(0,0),(1,1),(2,4) from the table will give the following graph.

Example 2 (The standard "cubic" graph)

Graph $y = x^3$

x	$y = x^3$
-2	$(-2)^3 = -8$
-1	$(-1)^3 = -1$
0	$0^3 = 0$
1	$1^3 = 1$
2	$2^3 = 8$

Plot the values from the table will result in the following graph

Example 3 (The Standard Absolute Value Graph) Graph y = |x|

x	y = x
-2	-2 = 2
-1	-1 = 1
0	0 = 0
1	1 = 1
2	2 = 2

Plot the values from the table will give you a v-shaped graph

Example 4 (Standard Square Root Graph)

Graph $y = \sqrt{x}$

Again, use a table of values to make a graph of the equation

x	$y = \sqrt{x}$
0	$\sqrt{0} = 0$
1	$\sqrt{1} = 1$
4	$\sqrt{4} = 2$
9	$\sqrt{9} = 3$

Resulting Graph

The graph of $y = \sqrt[3]{x}$

Horizontal and Vertical Translations (Shifts)

Horizontal Translation: An operation that moves the graph of an equation to the left or right while at the same time preserves the shape of the graph.

Vertical Translation: An operation that moves the graph of an equation to the up or down while at the same time preserves the shape of the graph.

Example of a Vertical Translation

$$y = x^3 - 2$$

Since the -2 lies outside the x^3 term, the value -2 indicates a vertical translation of 2 units. The negative sign in value of -2 indicates that the translation will move the graph of $y = x^3$ down two units as shown below:

The graph of $y = x^3 - 2$

The graph of $y = x^3 - 2$ shifted down to units

Example of a Horizontal Translation

$$y = (x - 2)^2$$

In this example, the -2 inside the parentheses indicates that there is a horizontal translation of two units to the right. A negative sign inside the parentheses will always result in a shift to the right.

The original graph of $y = x^2$

The graph of $y = x^2$ after a horizontal translation of 2 units to the right

The graph of $y = (x-1)^3 + 3$

Example 9 The graph of $y = -x^2$

The graph of $y = -x^2$ is the inverted graph of $y = x^2$. The negative sign in front of the x^2 term simple turns the graph of $y = x^2$ upside down.

