Chapter 7 Language of Chemistry Lecture Outline Chem 1075

Slide 2-3 **Classification of Compounds**

- Most ______ compounds do not contain the element ______
- The exceptions are ______, and carbonates which contain • the ion
- There are 5 common classes of inorganic compounds (see flow chart):

Slide 4 **Ionic Compounds**

- Ionic compounds contain
 _______.

 <u>Binary ionic</u> compounds contain
 _______elements: one
 _______and one

 •
 - KCl and AlCl₃ are binary ionic compounds.
- *Ternary ionic* compounds contain ______ elements, at least one ______ and one
 - KNO₃ and Al(NO₃)₃ are ternary ionic compounds

Slide 5 Molecular Compounds

- *Molecular compounds* contain ______. *Binary molecular* compounds contain ______ elements and <u>both</u> are ______. - Some examples of binary molecular compounds are:

Slide 6 **Aqueous Acids**

- An *aqueous solution* is produced when a compound and is indicated by the symbol .
- An *aqueous acid* is any substance that produces when dissolved in water.
- A *binary acid* is an ______ solution of a compound containing ______ and one other _____. HCl (aq) is a binary acid.
- A *ternary oxyacid* is an _______solution of a compound containing ______, and one other ______. HNO₃ is a ternary oxyacid.

Slide 7 Practice

- Determine whether each of the following would be ionic, molecular or aqueous acid. Then tell if it is binary or ternary.
 - $1. Na_2S$ 2. H₂CO₃ 3. BaCl₂ 4. HBr

 - 5. PCl₃ 6. AlPO₄
 - 7. CO

Slide 8-9 Classification of Ions

- Recall, an *ion* is an or with a .
- A _____ charged ion is called a *cation*.
- A _____ charged ion is called an *anion*. A _____ bound together which has an _____ is a polyatomic ion.

Slide 10 Monatomic Cations

- _____atoms can_____valence electrons and become _____ cations. Cations are named using the ______ followed by the word "ion". Na⁺ is named _____ Al³⁺ is named Al³⁺ is named ______ This rule applies for metals that usually ______. This includes the main group metals (except ______) along with Ag⁺, Zn^{2+,} and Cd^{2+.} Slide 11 Metals That Form Multiple Ions If a metal can form more than one cation, it is named using the followed by the charge in ______ in parentheses followed by the word "ion". Fe²⁺ is the _____
 - Fe³⁺ is the _____ of naming cations.

• An a	lternative method of naming	involves using the	followed by
	• for le	esser charge OR	for greater charge
	Fe^{2+} is the	· · ·	0 0
	Fe^{3+} is the		
• This	is called the	of na	aming cations.
• Note	e: If there is no Latin name, us	e	(i.e. cobalt)
Slide 13	Common Monatomic Cati	ons (See Textbook)	
Slide 14	Monatomic Anions		
•	can	valence electrons a	and become
anio	ns.		
• Mor	oatomic anions are named by		of the element name
and	adding the suffix	_·	
	Br^{-} is the bromide ion		
	$O^{2^{-}}$ is the oxide ion		
	N^{3-} is the nitride ion		
Slide 15	Predicting Cation Formula	S	
Group IA/1			
Group IIA/2			
Group IIIA/	13		
Group IVA	/14		
	r . 1		

Transition Metals

Slide 16 Common Cation Charges

Slide 17 Predicting Anion charges

Group VIIA/17 Group VIA/16 Group VA/15

Slide 18 **Polyatomic Anions**

٠	Polyatomic anions generally contain one or more elements combined with
	These anions are called

• Most polyatomic anions have names that end in the suffix or .

PO_4^{3-} is the	ion	PO_3^{3-} is the	ion
SO_4^{2-} is the	ion	SO_3^{2-} is the	ion
NO ₃ is the	ion	NO_2 is the	ion

Slide 19 **Polyatomic Anions**

- What is the **same** comparing *-ate* and *-ite* ions?
- What is **different**?
- The oxyanions that end in _____ have _____ oxygen than the oxyanions than end in .

Slide 20 More Polyatomic Anions

The formula for the chlorate ion is ClO_3^{1-} . What is the formula for the chlorite ion?

There are two polyatomic ions that end in :

Slide 21 Some Common Polyatomic ions (SEE INSIDE BACK COVER OF TEXT)

Slide 22 Writing Ionic formulas

- An ionic compound is composed of ______ and _____ ions. of an ionic • A *formula unit* is the compound (simplest way to write the formula or simplest ratio of cation to anion).
- A formula unit is ______, so the ______ charge must equal the ______ charge in the formula unit. When writing chemical formulas, the ______ (_____) always goes first and the ______ (_____) always goes second.

Slide 23 Formulas for Ionic Compounds

If the ions in the ionic compound have the same charge, the formula unit contains one of each • ion.

 Na^+ and Cl^- combine to form ______. Mg^{2+} and S^{2-} combine to form ______. Al^{3+} and P^{3-} combine to form ______.

Slide 24 Formulas of Ionic Compounds

• If the charges are not equal, we must ______ the positive and negative charges.

Ca²⁺ and Cl⁻ combine to give what formula?

 Ca^{2+} needs two Cl⁻ to balance charge:

The Formula would be .

Slide 25 Formulas for Ionic compounds

 Al^{3+} and O^{2-} combine to give what formula?

The formula would be_____. Don't show ______ in final formula.

Slide 26 **Criss-Cross Method**

- You can quickly verify that the chemical formula is written correctly by
- You can quickly verify that the charge on each ion. The charge on the aluminum ion becomes the ______ for the oxygen, and the ______ for the aluminum ion.

Slide 27 Practice

- Write the formulas for the ionic compounds containing:
- 1. lithium and bromine
- 2. magnesium and nitrogen
- 3. calcium and oxygen
- 4. aluminum and iodine
- 5. potassium and phosphorus
- 6. barium and sulfur

Slide 28 Formulas with Polyatomic Ions

• Follow the same rules as binary ionic compounds; if the charges are , the formula has of each ion.

 Mg^{2+} and SO_4^{2-} combine to form _____.

K⁺ and ClO₃⁻ combine to form _____.
If the charges are ______ equal, the total charge must equal _____. If you have more than one polyatomic ion, it is placed in _____. Al^{3+} and CO_3^{2-} combine to form _____.

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

Slide 29 Practice

- Write the formulas for the ionic compounds containing:
 - 1. barium ion and nitrate ion
 - 2. rubidium ion and sulfite ion
 - 3. tin(II) ion and phosphate ion
 - 4. lead(IV) ion and carbonate ion
 - 5. calcium ion and bicarbonate ion
 - 6. iron(III) ion and hydroxide ion

Slide 30 Determining Ionic Charge

- If an ionic compound contains a metal which can have ______ than _____ ionic charge, we must determine the ______ on the ion. The sum total charge of an ionic compound must equal ______.
- What is the charge on the iron ion in Fe₂O₃?

Slide 31 Naming Binary Ionic Compounds

- When naming ionic compounds, we combine the ______ and _____ name (drop the word "ion") with the cation ______ and the anion ______.
- MgO is composed of magnesium ion and oxide ion, therefore the name is ______
- What is the name of cinnabar, HgS?______

Slide 32 Determining Formulas for Binary Ionic Compounds

What is the formula of iron (III) fluoride?

1.

- 2.
- 3.
- 4.

Slide 33 Naming Ternary Ionic compounds

- We name ternary ionic compounds like binary ionic compounds: the cation name followed by the anion name.
- K₂CO₃ is named _____.
- Al(NO₃)₃ is named ______.

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

- If we have a metal that can have more than one oxidation state, we have to determine the charge on the metal.
- Co(ClO₃)₃ is composed of ______ and is named

Slide 34 Predicting Formulas for Ionic compounds

What is the formula for radium carbonate given that calcium carbonate is CaCO₃?

The formula for radium carbonate is ______.

Slide 35 Binary Molecular Compounds

Binary molecular compounds are composed of_____

A ______ is the simplest representative particle of a binary ______ compound.

Slide 36 Naming Binary Molecular Compounds

- The first element in the compound is named first and the second element has the suffix -ide.
- The number of atoms of each element must be indicated by Greek prefixes.

1	6
2	7
3	8
4	9
5	10

Slide 37 Names of Binary Molecular Compounds

The molecular compound P_4S_3 is used on match tips. What is the name?

What is the name for Br₃O₈?

Slide 38 An Exception

There is one exception to the use of the Greek prefixes when naming binary molecular compounds.

If there is only _____atom of the first element, the ______ is not used. The prefix ______ is always used for the second element.

CO is_____

IF₆ is _____

Slide 39 Binary Acids

A binary acid is an aqueous solution of a compound containing ________
 and a ______.

PDF created with FinePrint pdfFactory trial version http://www.pdffactory.com

•	The formula of an acid always begins with:	HF (aq)	
---	--	---------	--

• Binary acids are named by using the prefix ______ before the element stem and adding the suffix

HF (aq) is _	
H ₂ S (aq) is	

Slide 40 Ternary Oxyacids

- Ternary oxyacids are aqueous solution of a compound containing ______ and an
- If the acid is derived from an oxyanion ending in _____, the suffix is changed to
- HNO₃ (aq) is _____ (from NO₃⁻, nitrate ion)
 If the acid is derived from an oxyanion ending in _____, the suffix is changed to
- If the acid is derived from an oxyanion ending in _____, the suffix is changed to _____.

HNO₂ (aq) is ______ (from NO₂⁻, nitrite ion)

Slide 41-42 Practice

Formula	Cation	Anion	Name
HBr			
	$\mathrm{H}^{\!+}$	SO_{3}^{2}	
			Chloric acid
HBrO			