Name \qquad Math 1302 - Exam I - Feb. 10, 2006--Total Absences \qquad

1. Give me an example of
a) the associative law of addition \rightarrow \qquad
b) a rational number that is not an integer \qquad
c) an integer that is not a whole number \qquad
2. Complete each of the following
a) by using the commutative law of multiplication (3•x)= \qquad
b) the additive identity of the set of real numbers \rightarrow \qquad
c) the multiplicative inverse of the number (-4) \rightarrow \qquad
3. Simplify to a single number in simplest form. If a number does not have a real number value, then write NO REAL VALUE - Do NOT USE a CALCULATOR in this section.
a) $\left(-4^{0}\right)=$ \qquad b) $-25^{-1 / 2}=$
c) $0^{1}=$ \qquad
d) $(-8 / 27)^{-2 / 3}=$ \qquad
e) $\sqrt{24}=$ \qquad
f) $\sqrt[3]{-16}=$ \qquad
4. Evaluate if $x=-2$ and $y=-1$ and write in simplest form.
a) $-\mathrm{x}^{\mathrm{y}}=$ \qquad
b) $\frac{x-y}{x+y^{0}}=$ \qquad
5. Find each of the following absolute values. . Write without absolute value symbols and without parenthesis or grouping symbols of any kind. Exact answers - no calculator .
a) $4-|3-\sqrt{5}|=$ \qquad b) $4-(|8|-|-10|)=$ \qquad
6. True or False.
a) All natural numbers are greater than 0 .
b) The product of any two real numbers is either positive or negative.
c) $\mathrm{x}^{2}+9=(\mathrm{x}-3)(\mathrm{x}+3)$
7. Perform the given operations and simplify.
a) $4-3[-2-(4-5)]=$ \qquad b) $4-2^{2} \cdot(-4+8) \div 2=$ \qquad
8. Use the rules of exponents to simplify. Leave your results with nonnegative exponents - Do not write in terms of radicals. Simplify coefficients as much as possible.
a) $\left(3 x^{-2}\right)^{3}=$ \qquad b) $\left(3 x^{2}\right)\left(-2 x^{-3} y\right)=$ \qquad
c) $\left(-2 x^{-3}\right)^{2} \cdot\left(4 x^{3}\right)^{2}=$ \qquad
d) $\left(9 x^{-2} y^{4}\right)^{-1 / 2}=$ \qquad
f) $\frac{4 x^{2} y^{5}}{12 x^{5} y^{3}}=$ \qquad
g) $\frac{-4 x^{-1} y^{-3}}{2 x^{-3} y^{2}}=$ \qquad
h) $\left(\frac{-6 x^{-2} y^{-3}}{2 x^{2} y^{-4}}\right)^{2}=$ \qquad
9. Use the rules of radicals and fractional exponents to simplify.
a) $V \overline{49 x^{4} y^{2}}=$ \qquad b) $\stackrel{3}{\sqrt{-8}} \overline{8 x^{6}}=$ \qquad
c) $\sqrt{9+16}=$ \qquad
d) $2 \sqrt{8}-3 \sqrt{18}=$ \qquad
10. Perform the given operation -- Do not factor.
a) $\left(3 x^{2}-4 x+6\right)-2\left(x^{2}-2 x+3\right)=$
b) $3 x^{2} y(x+2 y)=$ \qquad c) $x-2(x+2)=$ \qquad
d) $(x-3 y)^{2}=$ \qquad
11. Find the GCF of the following
a) $\operatorname{GCF}(80,125)=$ \qquad b) $\operatorname{GCF}\left(12 x^{2} y^{4}, 20 x y^{5}\right)=$
12. Find the LCM of
a) $\operatorname{LCM}(16,12)=$ \qquad
b) $\operatorname{LCM}\left(6 x y^{2}, 8 x^{3} y^{4}\right)=$ \qquad
13. Factor each of the following polynomials - If polynomial does not factor, then write PRIME to indicate that it is a prime polynomial.
a) $\mathrm{x}^{2}+\mathrm{x}+100=$ \qquad b) $3(x-2 y)+5 y(x-2 y)=$ \qquad
c) $32 x^{4}+4 x=$ \qquad d) $\mathrm{x}^{4}-16 y^{4}=$ \qquad
e) $x y+x+2 y+2=$ \qquad
f) $x^{2}-24 x+144=$ \qquad
g) $\mathrm{x}^{2}-12 \mathrm{x}+32=$ \qquad h) $2 x^{2}+7 x-4=$ \qquad
14. Find the degree of each of the following polynomials.
a) $8^{2} x^{3} y^{5} \rightarrow$ \qquad b) $1+5 x^{8}-2 x^{4} y^{5} \rightarrow$ \qquad
15. Reduce each of the following algebraic fractions to lowest terms - by factoring and then canceling.
a) $\frac{x^{3}+y^{3}}{x^{2}-y^{2}}=$ \qquad
b) $\frac{x^{2}-x-6}{3 x-9}=$
c) $\frac{|x|-|1-x|}{|x|}=$ \qquad if x is known to be greater than 1 .
16. More radicals - exact answers required.
a) $\sqrt[4]{64 x^{6} y^{3}} \cdot \sqrt[4]{4 x^{2} y}=$
b) $\sqrt[6]{4 x^{2} y^{4}}=$
c) $\sqrt[3]{40}=$ \qquad
d) $\sqrt[3]{\sqrt[4]{64}}=$ \qquad
17. More Radicals.
a) $\frac{6}{\sqrt{4 x}}=$ \qquad c) $\sqrt[3]{4} \cdot \sqrt{2}=$ \qquad

Omit(d) $\frac{4}{1-\sqrt{5}}=$ \qquad e) $\sqrt[3]{\frac{2}{36 x}}=$
18. A dress sells for $\$ 62$ and there is an 8% sales tax. How much change will you get back if you paid with three twenties and a ten dollar bill?
19. Simplify by using the rules of exponents. No radicals in your final solution. No negative exponents in your final solution.
a) $\mathbf{x}^{1 / 2} \mathbf{x}^{1 / 4}=$ \qquad b) $x^{1 / 4} \div x^{1 / 2}=$ \qquad
20. If x is assumed to be any real number then
what is
a) $\sqrt{x^{2}}=$ \qquad
b) $\sqrt[3]{-x^{3}}=$ \qquad
c) $\sqrt{-4}=$ \qquad
21. Use a number line to sketch each of the following
a) $x>-4$
b) $\mathbf{x} \leq 2$
\qquad

22. Is this a commutative idea -
" studying for a test : taking the test"? Explain !
23. Write the numbers in scientific notation.
a) $\mathbf{2 3 4 . 2}=$ \qquad b) $0.0032=$ \qquad
24. An item is selling at Price P. The item is reduced by 10%. After not selling for a week, it is reduced an additional 10% off from the reduced price. If it sells at this point, what percentage of the original price was the item sold for before taxes?
25. Find the area of the shaded region.

