Name	Math 1302 – Exam I – Feb. 10, 2006Total Absences	
1. Give me an example of		
a) the associative law of addition	∣→	
b) a ra	itional number that is not an integer	
	c) an integer th	at is not a whole number
2. Complete each of the following		
a) by using the commutative law o	of multiplication $(3 \cdot x) =$	
b) the ac	dditive identity of the set of real numbers –	→
	c) the multiplicative inverse of t	the number $(-4) \rightarrow $
3. Simplify to a single number in sin then write NO REAL VALU	mplest form. If a number does not have a JE – Do NOT USE a CALCULATOR in t	real number value, this section.
a) $(-4^{0}) =$	b) $-25^{-\frac{1}{2}} =$	c) $0^{-1} = $
d) (- 8 / 27) ^{-2/3} =	e) $\sqrt{24} =$	$f) \sqrt[3]{-16} =$
4. Evaluate if $x = -2$ and $y = -1$ and	id write in simplest form.	

- **a)** $-x^y =$ _____ **b)** $\frac{x y}{x + y^0} =$ _____
- 5. Find each of the following absolute values. Write without absolute value symbols and without parenthesis or grouping symbols of any kind. Exact answers no calculator .
 - a) $4 |3 \sqrt{5}| =$ _____ b) 4 (|8| |-10|) =_____

6. True or False.

a) All natural numbers are greater than 0.
b) The product of any two real numbers is either positive or negative.
c) x² + 9 = (x - 3)(x + 3)

7. Perform the given operations and simplify.

a)
$$4-3[-2-(4-5)] =$$
 _____ b) $4-2^2 \bullet (-4+8) \div 2 =$ _____

- 8. Use the rules of exponents to simplify. Leave your results with nonnegative exponents Do not write in terms of radicals. Simplify coefficients as much as possible.
 - a) $(3x^{-2})^3 =$ _____ b) $(3x^2)(-2x^{-3}y) =$ _____

c)
$$(-2x^{-3})^2 \bullet (4x^3)^2 =$$
_____ d) $(9x^{-2}y^4)^{-1/2} =$ _____

f)
$$\frac{4x^2y^5}{12x^5y^3} =$$
_____ g) $\frac{-4x^{-1}y^{-3}}{2x^{-3}y^2} =$ _____

h)
$$\left(\frac{-6x^{-2}y^{-3}}{2x^{2}y^{-4}}\right)^{2}$$
 = _____

- 9. Use the rules of radicals and fractional exponents to simplify.
 - a) $\forall \ \overline{49x^4y^2} =$ _____ b) $\sqrt[3]{-8x^6} =$ _____

c)
$$\sqrt{9+16}$$
 = _____ d) $2\sqrt{8} - 3\sqrt{18}$ = _____

- 10. Perform the given operation -- Do not factor.
 - a) $(3x^2 4x + 6) 2(x^2 2x + 3) =$ _____
 - b) $3x^2y(x+2y) =$ ______ c) x-2(x+2) =_____
 - d) $(x-3y)^2 =$ _____
- 11. Find the GCF of the following
- a) GCF(80,125) = _____

b) GCF($12x^2y^4$, $20xy^5$) = _____

12. Find the LCM of

a) LCM (16, 12) = _____

b) LCM ($6xy^2$, $8x^3y^4$) = _____

a) $x^2 + x + 100 =$	b) $3(x-2y) + 5y(x-2y) =$
c) $32x^4 + 4x =$	d) $x^4 - 16y^4 =$
e) $xy + x + 2y + 2 =$	f) $x^2 - 24x + 144 =$
g) $x^2 - 12x + 32 =$	h) $2x^2 + 7x - 4 =$

13. Factor each of the following polynomials - If polynomial does not factor, then write PRIME to indicate that it is a prime polynomial.

14. Find the degree of each of the following polynomials.

a)
$$8^2 x^3 y^5 \Rightarrow$$
 _____ b) $1 + 5x^8 - 2x^4 y^5 \Rightarrow$ _____

15. Reduce each of the following algebraic fractions to lowest terms – by factoring and then canceling.

a)
$$\frac{x^3 + y^3}{x^2 - y^2} =$$
_____ b) $\frac{x^2 - x - 6}{3x - 9} =$ _____

c) $\frac{|x| - |1 - x|}{|x|} =$ ______ if x is known to be greater than 1.

16. More radicals - exact answers required.

a)
$$\sqrt[4]{64x^6y^3} \cdot \sqrt[4]{4x^2y} =$$
_____ b) $\sqrt[6]{4x^2y^4} =$ _____

c)
$$\sqrt[3]{40} =$$

d)
$$\sqrt[3]{\sqrt[4]{64}} =$$

17. More Radicals.

a)
$$\frac{6}{\sqrt{4x}} =$$

c)
$$\sqrt[3]{4} \cdot \sqrt{2} =$$

Omit(d)
$$\frac{4}{1-\sqrt{5}} =$$

a) $x^{1/2} x^{1/4} =$ _____

e)
$$\sqrt[3]{\frac{2}{36x}} =$$

18. A dress sells for \$62 and there is an 8 % sales tax. How much change will you get back if you paid with three twenties and a ten dollar bill ?

19. Simplify by using the rules of exponents. No radicals in your final solution. No negative exponents in your final solution.

b)
$$x^{1/4} \div x^{1/2} =$$

20. If x is assumed to be any real number then

what is

21. Use a number line to sketch each of the following

a) x > -4 b) $x \le 2$

- 22. Is this a commutative idea "studying for a test : taking the test"? Explain !
- 23. Write the numbers in scientific notation.
 - a) 234.2 = _____ b) 0.0032 = ____
- 24. An item is selling at Price P. The item is reduced by 10 %. After not selling for a week, it is reduced an additional 10 % off from the reduced price. If it sells at this point, what percentage of the original price was the item sold for before taxes ?
- 25. Find the area of the shaded region.

