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Abstract 

Traditional models of perceptual learning usually assume that 
learning occurs through changes of weights to fixed primitive 
features or dimensions. A new model for perceptual learning 
is presented which relies on simple and physiologically 
plausible mechanisms. The model suggests how flexible 
features can be dynamically derived from input characteristics 
in the course of learning and how diagnostic shape 
representations could be formed due to conceptual influences. 

Keywords: perceptual learning, neural networks, 
categorization, concept learning. 

Introduction 

Perceptual learning refers to performance improvement in 

different sensory tasks as a result of practice, training, or 

simple exposure. In the domain of visual perception, these 

tasks range from simple detection and discrimination of 

geometric shapes to more complex tasks like face 

recognition and object categorization. One important 

question concerns the nature of the processes that lead to 

perceptual learning. Evidence has been provided for a wide 

range of changes – from input based representation 

modifications to influences of expectation, attention, or task. 

Because of the highly complex and intertwined interactions 

of different processes, a deliberate blurring of the boundary 

between concepts and percepts has been proposed 

(Goldstone & Barsalou, 1998). There is a need for theories 

and models that account for conceptual influences on 

perceptual learning.  

Computational modeling is often used to simulate 

perceptual learning processes (e.g., Mozer, Zemel, 

Behrmann, & Williams, 1992; Petrov, Dosher, & Lu, 2005; 

Poggio, Fahle, & Edelman, 1992). Modeling places 

important constraints on explanations about perceptual 

learning and pushes theoretical accounts to be more 

quantitative and concrete. Testable behavioral predictions 

are often derived from simulations. Models of perceptual 

learning, however, rarely try to account for performance in 

different tasks at the same time. They should be able to 

operate in the absence as well as in the presence of reward 

feedback. In addition, many of the models rely on a finite 

number of fixed representations (primitives) as the 

elementary building blocks for composing concepts. Such 

accounts fall short of capturing the richness of visual pattern 

learning phenomena. There is experimental evidence 

suggesting that perceivers not only learn to selectively 

weight existing dimensions, but also learn to isolate 

dimensions that were originally psychologically fused 

together (Goldstone & Steyvers, 2001), and reorganize 

visual inputs into new units (Behrmann, Zemel, & Mozer, 

1998; Goldstone, 2000).  

In the present article, a neural network model is described 

which relies on the physiologically plausible learning 

mechanisms of competitive and Hebbian learning. The 

model focuses on simulating results from task-dependent 

perceptual learning, which may involve both a higher-level 

conceptual influence and a lower-level perceptual 

reorganization. Studies with adults show that perceptual 

learning is influenced by the feedback presented to learners 

(Shiu & Pashler, 1992) but can also take place without 

feedback (Watanabe, Náñez, & Sasaki, 2001). Experimental 

data from infants show also that perceptual learning can 

occur without feedback (Quinn, Schyns, & Goldstone, 

2006). Accordingly both supervised and unsupervised 

learning should be incorporated into a full model of 

environmentally induced perceptual plasticity. The model 

for perceptual learning presented below is able to simulate 

both influences. 

Several simulations are reported that correspond to 

empirical results from behavioral studies. Finally, 

conclusions are put forward about the way statistics from 

visual patterns can lead to the building of flexible primitive 

features and how higher-level conceptual tasks can 

influence the formation of complex shape representations.             



The Model where L is the learning rate for the winning unit (0.1 for all 

simulations), M is the learning rate for the losing unit – it is 

set to 0.001 for all simulations. ,
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j kI  is the activation of the 

retina pixel j from receptive field d when input k is 

presented, and  is the weight between pixel j from 

receptive field d and competitive unit i. The stimuli are 

presented as activation patterns on the retina, where each 

pixel is either 1 (active) or 0. Activation of competitive 

units is normalized so that the winning unit’s activation is 1 

and all the losing units from the cluster sharing the same 

receptive field are inhibited to have zero activation. The 

horizontal Hebbian weights learn according to the Hebbian 

rule:  
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The model for perceptual learning consists of two main 

layers and an artificial input retina (Figure 1). The first layer 

is based on the competitive learning paradigm (Rumelhart & 

Zipser, 1985). However units compete only for a small part 

of the input⎯that is, each unit has a receptive field and 

competes only with other units with the same receptive 

field. In the current implementation of the model there is no 

overlap between receptive fields. Competing units are 

organized in inhibitory clusters⎯two units with the same 

receptive field cannot be active at the same time. Only the 

winner for this receptive field is active. A competitive unit 

is connected with horizontal Hebbian weights to all units 

from the other inhibitory clusters. The horizontal Hebbian 

connections link the parts of an input pattern in terms of 

coactivation of the competitive units that are specialized to 

those parts. The activation of a competitive unit is computed 

in two time-steps according to the following equations: 
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where , ( )d

i kA t  is the activation of unit i from cluster d in 

moment t when input pattern k is presented, ,

d

j kI  is the 

activation of input pixel j from receptive field d for pattern 

k,  is the weight of the connection between unit i and 

pixel j, 

,

d
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, ( )p

l kA t  is the activation in moment t of competitive 

unit l from cluster p for pattern k,  is the weight of the 

horizontal connection between unit i from cluster d and unit 

l from cluster p, n is the number of pixels in receptive field 

d, s is the number of competitive units from cluster p, and c 

is the number of clusters. In the following simulations, s is 

the same for all clusters, that is, the number of competitive 

units in the different clusters is constant. The parameter η is 

set to 0.1 and represents the smaller contribution of the 

horizontal connections compared to the bottom-up 

activation. The winner from each cluster is determined as 

the most active unit inside the cluster. The output units have 

sigmoid activation functions. 
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Learning for the connections between an input receptive 

field and the competitive units from the corresponding 

inhibitory cluster follows the classical formula: 
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where α is the learning rate, 
d

iA is the activation of unit i 

from cluster d, 
p

lA  is the activation of unit l from cluster p, 

and D is the decay rate of the weights. 

The competitive layer is fully connected to the output 

layer with Hebbian weights that learn according to the same 

rule as the horizontal connections, with the exception that 

they have different decay and learning rates. All Hebbian 

weights were set to zero in the beginning of a simulation.  

 

 

 

 
 

Figure 1: The model for perceptual learning. Only some of 

the connections are shown for visualization purposes. See 

the text for full details. 
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The network learns after each pattern. The competitive layer 

corresponds to lower-level cells with small receptive fields 

that cover only small parts of an input, while the output 

units correspond to more complex structures that are 

thought to participate in higher-level cognitive tasks 

Simulations and Results 

Two types of simulations are possible with the described 

model. The first type corresponds to learning without 

feedback. In this operational mode, the output layer is 

activated at random since no teacher signal is available. In 

other words, this is unsupervised learning of the competitive 

layer, based only on the characteristics of the input space. 

When feedback is available, a particular pattern of 

activation appears on the output layer as a teacher signal. 

This signal represents the influence of higher-level 

conceptual processes on learning.  

Unsupervised Learning 

The unsupervised learning of the competitive layer alone 

was simulated with stimuli close to those used in Quinn and 

Schyns (2003) and Quinn et al. (2006). Using an 

unsupervised model to simulate empirical results from 

infants seems like a natural correspondence given that 

infants in the first few months of life do not receive 

instruction on how to organize their visual experiences. A 

series of experiments were conducted to determine whether 

infants, like adults, can perceive visual patterns in terms of 

parts extracted through category learning rather than parts 

that would be derived from adherence to gestalt 

organizational principles.  

 

 

When 3- to 4-month-olds were presented with visual 

patterns consisting of overlapping circle and polygon shapes 

(Figure 2A), the infants tended to interpret these forms in 

terms of a polygon and circle, consistent with a good 

continuation principle. This was evidenced by infants being 

more surprised (looking longer) by a subsequently presented 

pacman shape (Figure 2C) than a circle (Figure 2D).  

However, when a separate group of 3- to 4-month-olds was 

first presented with a series of patterns containing the three-

quarter “pacman” shapes (Figure 2B), and then 

subsequently with the patterns shown in Figure 2A, the 

infants interpreted the ambiguous patterns in Figure 2A as 

containing a pacman instead of a circle, as evidenced by 

their greater looking times for the circle than the pacman. 

These experimental results strongly suggest that 

unsupervised learning is capable of overriding gestalt laws 

of organization such as good continuation if the prior 

learning history supports an alternative organization. 

The model can provide a computational account for these 

empirical findings. The competitive layer is capable of 

extracting elements and statistical dependencies from the 

input structure even if no feedback is available. Thus the 

gestalt law of continuity was simulated with presentation of 

simple forms at different positions on the retina. Ten such 

patterns (three vertical lines, three horizontal lines, and four 

circles) were presented in random order for 2000 cycles. 

This pre-training phase simulated the infant’s perceptual 

experience prior to arrival at the laboratory and conceivably 

corresponds with the experiences of young infants as they 

encounter visual patterns in the environment. We were 

interested in the ability of the model to acquire perceptual 

constraints from commonly occurring patterns instead of 

explicitly building in the good continuation principle. This 

could also be interpreted as the evolved representation of 

naturally occurring statistics in visual patterns (Olshausen & 

Field, 1996). 

 The input retina consisted of 225 pixels organized in a 

15x15 square matrix. There were 9 non-overlapping square 

5x5 receptive fields with 8 units in an inhibitory cluster 

competing over each of the receptive fields, which makes 

for a total of 72 nodes in the competitive layer. The learning 

rate of the horizontal Hebbian weights was 0.05 and the 

decay rate was set to 0.009. After the pre-training phase, 

some of the competitive units specialized for parts of lines, 

while others specialized for arcs of a circle. Then an 

ambiguous pattern (Figure 3A) was presented. This portion 

of network training and testing corresponded to the first 

familiarization test phase in the study with infants, when 

similar patterns each consisting of an overlapping circle and 

a polygon were presented which led to the segmentation of 

the circle and the polygon by infants. The ambiguous 

pattern given to the model activated four “arc” and two 

“line” nodes from the competitive layer, thus forming a 

good, continuous circle and some parts of a polygon which 

was consistent with the infants’ behavior.  The activation 

pattern over the competitive layer is visualized in Figure 3B 

with the following algorithm – each pixel represents the  

A 
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Figure 2: Stimuli from Quinn and colleagues, 2006. 



 
 

 

Figure 3: Unsupervised learning simulation 

 

weight between this pixel and the competitive unit 

multiplied by the competitive unit’s activation. This 

visualization is intended to show that the competitive units 

were not activated accidentally but represented both the 

structure of the presented pattern and a learned continuity 

principle for a circle shape. The polygon shape triggered 

only the activation of two separate line segments, because 

the network had never been exposed to any polygon shape 

and thus did not have the chance to acquire any polygon 

representation during its pre-training. This result shows that 

the network does not simply imitate the presented pattern 

but is affected by its previous knowledge about perceptual 

grouping that has been stored in the horizontal connections.  

The same network was fed for 200 cycles with two 

patterns containing pacman shapes (Figure 3C, 3D) and 

again was presented with the ambiguous pattern 3E. This 

corresponded to the two-part procedure in which the infants 

were first presented with pacman shapes and subsequently 

with circle shapes (2B followed by 2A). Once again the 

model behavior was very similar to what the experimental 

results suggested. This time the pacman shape was strongly 

active and some polygon segmentation appeared but was 

less active than the pacman (Figure 3F). The pacman shape 

actually was represented by three competitive units 

specialized for arcs and one specialized for an angle. The 

“arc” units were initially connected to the fourth arc unit 

which completed the active circle from Figure 3B; however, 

after the patterns containing the pacman shapes were 

repeatedly shown to the network, the angle unit became 

more active than the arc unit over the same receptive field, 

which led to the angle unit winning for this receptive field. 

This could be interpreted as a spontaneous formation of a 

virtual pacman shape detector that is constructed from 

smaller low-level representations of three arcs and one angle 

segment.  

B A Supervised Learning 

Supervised learning is often used in studies of adult 

perceptual learning and can influence the course of learning. 

Previous experiments (Pevtzow & Goldstone, 1994) have 

suggested that observers seem to develop perceptual 

detectors for stimulus elements that are diagnostic of task-

critical categorization while they learn to categorize simple 

patterns. The same patterns, when they receive different 

categorizations, result in different psychological features 

being constructed.  The nature of the detectors depends not 

only on the input patterns as in the previous simulation, but 

on the categorization task as well. As an example, the 

ambiguous scene in Figure 3A was more likely to be 

segmented into a circle and polygon when the circle was 

previously relevant for categorization, and more likely to be 

segmented into a pacman when the pacman was relevant. 

D C 

The experimental results from Pevtzow and Goldstone 

(1994) have been simulated with a model similar to the one 

presented here (Goldstone, 2000). The previous model 

however relied on built-in perceptual constraints and input 

patterns competing to be accommodated by a competitive 

unit. The present model adds plausible Hebbian learning to 

the competitive learning mechanism used in Goldstone 

(2000). The present model also uses more local competition 

for small parts of an input inside a receptive field instead of 

competition for the whole input. This leads to a somewhat 

different interpretation of a detector – in the present model a 

detector is composed of several smaller competitive units 

from different receptive fields that form together a coherent 

shape detector over the whole input retina.  

E F 

In the following simulations the formation of such 

detectors was influenced not only by the input properties as 

in the unsupervised learning but also by a conceptual 

teacher signal that led to the formation of categorization-

relevant detectors at the output layer of the network. A 

teacher signal was directly presented as a pattern of 

activation on the output layer during the supervised training. 

This was done for simplicity since the influence of higher-

level categorization or judgment structures can be simulated 

in different ways – one possible mechanism that was used 

by Goldstone (2000) was top-down influence from a 

categorization layer to the detector layer. 

A 256 square 16x16 pixel retina was used; competitive 

units’ receptive fields were square 8x8 non-overlapping 

matrices, which yielded a total of four receptive fields. Each 

inhibitory cluster consisted of 4 units competing with one 

another. The output layer had two units. Learning rate for 

the output Hebbian weights was set to 0.1 and the decay rate 

was 0.04. The horizontal Hebbian connections had the same 

learning and decay rates as in the previous simulation.  



 
 

Figure 4: Inputs for the categorization task simulation 

 

Four input patterns were presented to the network (Figure 

4). First, feedback was given to the network that 4A and 4B 

belong to one category (1, 0) and 4C, 4D belong to another 

(0, 1). With this horizontal categorization rule, 50 cycles 

were run with the four input patterns presented in a random 

order during each cycle. The mean squared error of the 

output units displayed a rapid decrease (Figure 5B). The 

network learned to distinguish 4A and 4B as members of 

one category from 4C and 4D belonging to another. That is, 

when 4A or 4B were presented, output unit 1 was active and 

unit 2 was not. On the contrary, when 4C or 4D were 

presented, output unit 2 was active and unit 1 was off. The 

two output units can be considered detectors for the two 

categories. The learned weights of the connections between 

the competitive layer and each of the two output units are 

shown on Figure 5A. Only two of the competitive units had 

positive weights to output unit 1 and the other two had 

positive weights to output unit 2. Thus the output units had 

learned to ignore the responses of those lower-level nodes 

that were not relevant for categorization and combined 

together those parts which were relevant, forming diagnostic 

shape detectors (Figure 5C, 5D). The formation of the 

detectors was not influenced by the number of lower-level 

competitive units that participated in the shape 

representation. The result was the same with smaller 4x4 

receptive fields. This change led only to the same diagnostic 

shape detectors being composed of four instead of two 

competitive units. The competitive units participating in a 

detector’s representation were specialized for small input 

patterns contained within their receptive fields. The global 

representation activated by the whole input pattern, 

however, was a continuous shape honoring the Gestalt 

principle of Good Continuation. 

In a second simulation, a vertical categorization rule was 

applied to a network with identical parameters. This time 

patterns 4A and 4C were from the same category (1, 0) 

while patterns 4B and 4D were from the other (0, 1).  

 
 

 

Figure 5: Panel A – weights between the competitive layer 

and the two output nodes. Panel B – mean square error for 

the output nodes. Panel C – the pixel-to-unit weights for the 

two competitive units with positive weights to output unit 1. 

Panel D – the pixel-to-unit weights for the two competitive 

units with positive weights to output unit 2. 

 

The results from the second simulation are compared to the 

outcomes of the first simulation in Figure 6. For 

visualization purposes the output layer weights are 

multiplied by the competitive layer weights, which represent 

the participation of each pixel in the diagnostic shape 

detectors that were formed at the output layer. The same 

patterns led to the formation of different detectors when the 

vertical categorization rule was applied. This result was very 

stable over simulations and replicated the type of results 

reported by Pevtzow and Goldstone (1994).  

 

 

 
Figure 6: Detectors built according to a horizontal and 

vertical categorization rule.  
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Inspection of all specialized competitive units showed that 

there was no difference in their representation after the 

vertical and horizontal rule simulations. This means that the 

general structure of the input space was captured every time 

by the competitive units. Correct categorization was due to 

the formation of a diagnostic shape detector at the output 

layer.  

General Discussion 

The model shows a reliable ability to replicate at least two 

empirical results with minimal changes in parameters. Both 

unsupervised and supervised learning is possible. A general 

conclusion from the simulation results is that there are 

automatic low-level changes that capture the structure of 

visual stimuli irrespective of the given task. However when 

feedback is available, a more complex shape representation 

is constructed at a higher-level to accommodate the task 

requirements.  

Another interesting conclusion comes from the 

unsupervised behavior of the network. The simple and 

plausible mechanism of competitive learning, reinforced by 

the horizontal Hebbian connections, is able to extract 

perceptual categories that are statistically present in the 

input space. This strongly supports empirical findings that 

Gestalt principles of perceptual organization can at times be 

overruled by category learning. The model also suggests a 

way in which even certain Gestalt principles like continuity 

can be learned, rather than built-in, as a consequence of 

experience with a learning environment that includes visual 

patterned stimulation (Quinn & Bhatt, 2005; Spelke, 1982).  

The presented simulations have shown that it is 

computationally possible to account for both supervised and 

unsupervised perceptual learning without using built-in 

primitive features at the level that is eventually diagnostic 

for categorization. This was achieved by a fairly simple 

structure and by plausible mechanisms. The suggested 

model for perceptual learning is a first step toward a more 

global approach to learning that intends to bring together 

concepts and perception.  
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