
5. Greedy and other efficient

optimization algorithms

David Keil Analysis of Algorithms 1/12

David M. Keil
Framingham State University

5. Greedy and other fast5. Greedy and other fast
optimization algorithms

1. Optimal-substructure property

2. Greedy graph algorithms

1David Keil Analysis of Algorithms 5. Greedy algorithms 1/12

2. Greedy graph algorithms

3. Compression and packing

4. Space/time tradeoffs and dynamic programming

5. Transform and conquer Reading: Ch. 7-8

Constraint and

optimization problems
• Constraint problem: To find some value that

satisfies a set of constraints or conditionssatisfies a set of constraints or conditions

• Optimization problem: to find maximum or
minimum valued solution to a constraint
problem, among all solutions

• Minimizing cost function f:
min(f) = m s t f (m) = min N{y | y = f (x)}

2David Keil Analysis of Algorithms 5. Greedy algorithms 1/12

min(f) m s.t. f (m) minx∈N{y | y f (x)}

• Greedy algorithms iteratively build a minimal-
cost structure by choosing a step that minimizes
cost function

5. Greedy and other efficient

optimization algorithms

David Keil Analysis of Algorithms 1/12

Coin changing

• For some sets of n denominations, this

algorithm makes change with a minimum

b f inumber of coins

Make-change (amt, Denom)

i ← |Denom|

while i > 0 and amt > 0

write ⎣amt ÷ Denom[i] ⎦

3David Keil Analysis of Algorithms 5. Greedy algorithms 1/12

write ⎣amt ÷ Denom[i] ⎦
amt ← amt mod Denom[i]

i ← i − 1

Topic objectives

5a. Explain the greedy approach to algorithm

design

5b E l i h i l b5b. Explain the optimal-substructure property

5c. Describe a greedy algorithm for graphs

5d. Explain an instance of the dynamic-

programming approach

l i i f h f d

4

5e. Explain an instance of the transform-and-

conquer approach

David Keil Analysis of Algorithms 5. Greedy algorithms 1/12

5. Greedy and other efficient

optimization algorithms

David Keil Analysis of Algorithms 1/12

Inquiry

• Is time scalability a good way to measure

the performance of computing systems?p p g y

• How much does studying design

approaches help us create efficient

solutions?

• How hard is optimization?

5

• How hard is optimization?

David Keil Analysis of Algorithms 5. Greedy algorithms 1/12

Greedy algorithms
• Solve optimization problems by seeking local

optima as the next step of a state-space search

• Greedy algorithms expand a partial solution until• Greedy algorithms expand a partial solution until

problem is solved

• Choice at each step is feasible, irrevocable

• Not all greedy algorithms produce optimal results,

or even results meeting minimal constraints

C M ki h t l ith t fi d

6David Keil Analysis of Algorithms 5. Greedy algorithms 1/12

• Cases: Making change; two algorithms to find

minimal spanning tree; Dijkstra’s for shortest path;

Huffman coding

5. Greedy and other efficient

optimization algorithms

David Keil Analysis of Algorithms 1/12

• A problem π has the optimal-substructure

property iff any structure S, that is an optimal

1. Optimal-substructure property

solution to π, is composed of optimal solutions

to subproblems of π
• This property holds for some problems, e.g.,

change making with U.S. denominations,

graph coloring shortest path

7David Keil Analysis of Algorithms 5. Greedy algorithms 1/12

graph coloring, shortest path

• It is the property required for greedy

algorithms

Local optima in search
• State-space search: Finds global optimum in a

very large set of possible solutions (states)

• Search goes from state to state• Search goes from state to state

• Example: Finding highest location in a county

– Greedy algorithm follows uphill path until

at the top of a hill

– Low hills are local optima; highest hill is

8

global optimum

– Greedy algorithm alone does not find global

optimum

David Keil Analysis of Algorithms 5. Greedy algorithms 1/12

5. Greedy and other efficient

optimization algorithms

David Keil Analysis of Algorithms 1/12

Example of optimal-

substructure property
• Imagine a hill that has no dips anywhere from

the base to the summitthe base to the summit

• Thus, to get to the summit from any point on the

side of the hill, the right way to go is always to

choose an upward direction

• Thus any subpart of a path to a higher elevation

9

is also a path to a relatively higher elevation

• The problem of climbing that hill has the

optimal-substructure property

David Keil Analysis of Algorithms 5. Greedy algorithms 1/12

Generalized greedy algorithm

y ← null

RepeatRepeat

augment y by appending “best”

available value from some set

until y satisfies the problem’s constraints

return y

10David Keil Analysis of Algorithms 5. Greedy algorithms 1/12

y is a structure, e.g., a path in a graph

5. Greedy and other efficient

optimization algorithms

David Keil Analysis of Algorithms 1/12

• Some problems lack optimal-substructure property

• Examples: In baseball, chess, or checkers, a short-

term sacrifice (e g bunt) may bring long-term net

Limits of the greedy approach

term sacrifice (e.g., bunt) may bring long term net

benefit

• Generalized state-space search is of an

n-dimensional landscape full of local optima that are

not global optima

E l Cli bi hi h d lki

11David Keil Analysis of Algorithms 5. Greedy algorithms 1/12

• Example: Climbing to a higher ground or walking

toward destination do not always optimally help us

reach objective

• Graph coloring: color the vertices so that no

adjacent vertices have the same color

2. Greedy graph algorithms

• Minimal spanning tree: Smallest-weight tree

containing all vertices in a weighted graph

• Single-source shortest path: Dijkstra’s

algorithm builds a tree of shortest paths, starting

from the source vertex. The problem of finding

12

from the source vertex. The problem of finding

the shortest path to one destination is reducible

to the problem of finding shortest paths to all

David Keil Analysis of Algorithms 5. Greedy algorithms 1/12

5. Greedy and other efficient

optimization algorithms

David Keil Analysis of Algorithms 1/12

Graph coloring problem
• An optimization problem

• What is the minimum number of colors needed
to color all the vertices of a graph (equivalentto color all the vertices of a graph (equivalent
to a map), such that no two adjacent vertices
have same color?

• Country on a map is equivalent to vertex in
graph; borders between countries are
equivalent to edges in graph

13David Keil Analysis of Algorithms 5. Greedy algorithms 1/12

equivalent to edges in graph

• The compiler-design problem of register
allocation is equivalent to the graph coloring
problem

Greedy-coloring (G)
• Assumes an ordered sequence of colors

• Gives (possibly non-optimal) solution to
graph coloring problemgraph-coloring problem

• Q: What is the fastest algorithm that solves
the coloring problem optimally?

for i ← 1 to |G.V|

[i] l

14David Keil Analysis of Algorithms 5. Greedy algorithms 1/12

v [i].color ←
min { c | c is not the color of a

vertex in G adjacent to v [i] }

5. Greedy and other efficient

optimization algorithms

David Keil Analysis of Algorithms 1/12

• MST is a subgraph of a graph

• Example: road or rail system connecting n

l ti ith l t t ti t

Minimal spanning tree

locations with lowest construction cost

• Not every path in MST is minimal; only the

whole tree is minimal

• [pic]

15David Keil Analysis of Algorithms 5. Greedy algorithms 1/12

Prim’s algorithm for
minimal spanning tree

[R.C. Prim]

16David Keil Analysis of Algorithms 5. Greedy algorithms 1/12

Strategy: repeatedly add to the growing tree the

lowest-weight available edge adjacent to a vertex

already in the tree w/o forming cycle

[R.C. Prim]

5. Greedy and other efficient

optimization algorithms

David Keil Analysis of Algorithms 1/12

Prim’s algorithm

Prim (G) G = (V, E)

VT ← { v0 } // any vertex

E ← ∅ET ← ∅
while |VT | < |V | do

e ← min-wt-edge (E) s.t.

e = (v, u) ∧ (v ∈ VT) ∧ (u ∈ V – VT)

VT ← VT ∪ { v }

E E { }

17David Keil Analysis of Algorithms 5. Greedy algorithms 1/12

ET ← ET ∪ { e }

Return (VT , ET)

Kruskal’s algorithm
• Builds minimal spanning tree, bottom up, as

an expanding sequence of subgraphs

• These are not necessarily connected until theThese are not necessarily connected until the

algorithm terminates

• Greed applies to a weight-sorted list of all

edges

• Each step connects two trees (possibly trivial)

18David Keil Analysis of Algorithms 5. Greedy algorithms 1/12

by the next edge in weight order

• Makes use of optimal-substructure property

5. Greedy and other efficient

optimization algorithms

David Keil Analysis of Algorithms 1/12

Kruskal (G) G = (V, E)

ET ← ∅
Sort edges E into array e in weight order

k ← 1, count ← 0

while count < min{|E| |V | 1} dowhile count < min{|E|, |V | – 1} do

If (VT, ET ∪ { ek }) is acyclic

ET ← ET ∪ { ek }

k ← k + 1

count ← count + 1

Return (V, ET)

19David Keil Analysis of Algorithms 5. Greedy algorithms 1/12

Return (V, ET)

• Sorting time dominates run time, hence run time is

Θ(|E| lg |E|)

• Alternative code: Johnsonbaugh, pp. 277, 280

• In any weighted graph, from any source vertex,

a tree exists composed of the set of shortest

paths from the source to each other vertex

Single-source shortest path

p

• The problem of a single shortest path reduces

to building this tree (which is not the MST)

• Dijkstra’s algorithm builds this tree of shortest

paths, starting from the source vertex

20David Keil Analysis of Algorithms 5. Greedy algorithms 1/12

5. Greedy and other efficient

optimization algorithms

David Keil Analysis of Algorithms 1/12

The Dijkstra algorithm
• Uses breadth-first search, beginning by

examining the edge from the source to each

adjacent vertex then from each of these to itsadjacent vertex, then from each of these to its

neighbors

• Builds solution tree along path of least

immediate cost (greedy)

• If current path from source to a vertex v is

21David Keil Analysis of Algorithms 5. Greedy algorithms 1/12

If current path from source to a vertex v is

found to be costlier than path to u plus path

from u to v, adds v to a minimum-path-so-far

array, relaxing the estimate on path length

A shortest path’s subpaths

are minimal
• Optimal-substructure property applies to

shortest-path problem as follows

• If path (u, …, u’, …, v’,…, v) is minimal, then

(u’,v’) is minimal too (why?)

• So to minimize path u..v, find shorter segments
u’..v’

22David Keil Analysis of Algorithms 5. Greedy algorithms 1/12

• Note: more than one shortest path may connect

two given vertices

5. Greedy and other efficient

optimization algorithms

David Keil Analysis of Algorithms 1/12

Dijkstra (graph, weights, source)

For i ← 1 to |V | do
estimate[i] ← ∞

PQ-insert(Q, i) // weight attribute is PQ key
estimate [source] ← 0estimate [source] ← 0
While ¬empty(Q)

u ← Extract-min (Q) //Greedy choice
For each vertex v adjacent to u

If estimate[v] > estimate[u] + weight (u,v)
estimate[v] ← estimate[u] + weight (u,v)

23David Keil Analysis of Algorithms 5. Greedy algorithms 1/12

• Vector estimate..|V |] stores set of shortest known

path lengths from source to each vertex

• Key to priority queue Q is estimate[u]

Application of Dijkstra algorithm
Distance from a

Step Q u v a b c d e
1. abcde a b 0 3 ∞ ∞ ∞

e 0 3 ∞ ∞ 5
2. bcde b c 0 3 9 ∞ 5

d 0 3 9 5 5
3. cde c d 0 3 9 5 5
4. de d e 0 3 9 5 5

c 0 3 9 5 5
5. e e d 0 3 9 5 5

24David Keil Analysis of Algorithms 5. Greedy algorithms 1/12

Problem Solution

5. Greedy and other efficient

optimization algorithms

David Keil Analysis of Algorithms 1/12

Dijkstra details

• Output is estimate array

• How are paths extracted from this array?p y

25David Keil Analysis of Algorithms 5. Greedy algorithms 1/12

Find shortest paths
Wash Bos NY Phila Chi

Wash 400 200 150 1050

Bos 225 300 1200

NY 1000NY 1000

Phila

Chi

26David Keil Analysis of Algorithms 5. Greedy algorithms 1/12

5. Greedy and other efficient

optimization algorithms

David Keil Analysis of Algorithms 1/12

Correctness and analysis of Dijkstra

• Theorem: The Dijkstra algorithm finds a

shortest path from source to u for all u ∈ V

H ld thi b d?• How would this be proved?

• Output is estimate array

• How are paths extracted from this array?

• Running time, using heap, worst case:

O((n+m) lg n)

27

O((n+m) lg n)

O(n2 lg n) if m = n2

where n is # vertices, m is # edges

David Keil Analysis of Algorithms 5. Greedy algorithms 1/12

• Compression problem: Map alphabet to a set

of variable-length bit encodings s.t. most

f tl d h t t d

3. Compression and packing

frequently used characters are represented

by shortest encodings

• Packing problem (knapsack): Find a

maximum-valued set of items, each with

weights and values, that fit into a container

28David Keil Analysis of Algorithms 5. Greedy algorithms 1/12

g ,

with a given maximum weight

5. Greedy and other efficient

optimization algorithms

David Keil Analysis of Algorithms 1/12

Prefix-free variable-length codes
• Problem: Find a space-optimal variable-length bit

encoding for an alphabet, given a distribution of

occurrences of characters in strings to be encoded

• Example: Morse Code solves a simpler problem in

which character delimiters are allowed

• Constraint: Codes must be prefix-free, no

codeword is a prefix of another codeword

• Binary tree can represent the code, where left

29David Keil Analysis of Algorithms 5. Greedy algorithms 1/12

branches are labeled 0 and right ones labeled 1

• A Huffman code is a prefix-free code represented

by a binary tree

Create one-node trees, one for each character

Label nodes by character and its probability

Repeat until all trees are one:

Huffman’s compression algorithm

Repeat until all trees are one:

Find two trees with minimum weight so far

Pair them as subtrees of a new node

Weight (parent) ← sum of weights of subtrees

This greed algorithm achie es an encoding

30David Keil Analysis of Algorithms 5. Greedy algorithms 1/12

• This greedy algorithm achieves an encoding

with optimum compression ratio by generating

an optimal binary tree
[Pic Levitin, p. 326]

5. Greedy and other efficient

optimization algorithms

David Keil Analysis of Algorithms 1/12

Greedy solution to
continuous-knapsack problem
• Problem: Find maximum-valued subset of a set of

weighted items, totaling less than weight w

• Parameters: A[1..n], where each element of A has

value and weight attributes; max-wt ∈ R

• Solution:

1. Sort A by ratio of value to weight

2 While total weight so far is less than max-wt

31David Keil Analysis of Algorithms 5. Greedy algorithms 1/12

2. While total weight so far is less than max wt

select next element of sorted A

increment total weight so far

3. Select some part of next element of A

4. Space/time tradeoffs and

dynamic programming
• Time efficiency can sometimes be gained

b ki fby making use of storage space

• Tables or larger tree nodes may be used to

obtain improved running times

• Cases:

– Sorting by counting

32

Sorting by counting

– String matching

– Hashing

– B trees

David Keil Analysis of Algorithms 5. Greedy algorithms 1/12

5. Greedy and other efficient

optimization algorithms

David Keil Analysis of Algorithms 1/12

Sorting by counting
• Suppose problem is to sort an array composed

only of values in 1..m

• Then a solution is to count the occurrences of

each value in 1..m and store in a table T

• Then write to the array T[1] 1’s,

T[2] 2’s, etc.

• Running time O(n) is better than any compar

33

• Running time O(n) is better than any compar-

ison-based sort, provided that m ≤ O(n)

• 2 5 1 2 8 7 5 1 5 ⇒ 1 1 2 2 5 5 7 8

David Keil Analysis of Algorithms 5. Greedy algorithms 1/12

String matching
• Problem: Find first occurrence of string of length m

in string of longer length

• Brute-force solution: Perform (n – m + 1) string f () g

comparisons, each of length m

• Faster Boyer-Moore algorithm (simplified):

– Construct a 26-element shift table for the search

key, saying how far from the right of the key each

letter is

34

– Do string comparison from the right

– Use the shift table to skip most string comparisons

• Average case: Θ(n) but “obviously faster”

David Keil Analysis of Algorithms 5. Greedy algorithms 1/12

5. Greedy and other efficient

optimization algorithms

David Keil Analysis of Algorithms 1/12

Hashing
• Dictionary is array in which index is computed

from key value

• Desirable attributes of hash function:

speed, even distribution of keys

• Two implementations: Open addressing with

linear probe; array of buckets (linked lists)

• Load factor: ratio of number of entries to table

size

35

size

• Time/space tradeoff: High load factor costs

time, low load factor wastes space

David Keil Analysis of Algorithms 5. Greedy algorithms 1/12

B trees

• Each node has m children

• All data is stored in leaves

• All leaves are at same tree level

• Used to store very large indexes for

databases stored on disk

• Advantage: extremely short paths to

36

Advantage: extremely short paths to

leaves (lgmn)

• Disadvantage: Wasted space

David Keil Analysis of Algorithms 5. Greedy algorithms 1/12

5. Greedy and other efficient

optimization algorithms

David Keil Analysis of Algorithms 1/12

Dynamic programming
• Some problems (e.g., Fibonacci) have

overlapping subproblems

• Dynamic programming suggests solving each y p g g gg g

subproblem only once and storing solution in a

table for later reference

• Cases:

– Fibonacci

Binomial coefficient

37

– Binomial coefficient

– Warshall’s and Floyd’s algorithms (graphs)

– Optimal BSTs

– Knapsack problem

David Keil Analysis of Algorithms 5. Greedy algorithms 1/12

Fibonacci
• Recall Fib(x) =

1 if x ≤ 1

Fib(x – 1) + Fib(x – 2) otherwiseFib(x – 1) + Fib(x – 2) otherwise

• Running time is Θ(2x)

• Dynamic-programming algorithm is Θ(x):

DP-Fib(x)
F [0] ← 1 F [1] ← 1

38

F [0] ← 1, F [1] ← 1
For i ← 2 to x do

F [i] ← F [i – 1] + F [i – 2]

Return F [x]

David Keil Analysis of Algorithms 5. Greedy algorithms 1/12

5. Greedy and other efficient

optimization algorithms

David Keil Analysis of Algorithms 1/12

Longest common subsequence

• Given sequences x1, x2, what is the

longest subsequence y s.t. y is a

subsequence of both x1 and x2?

• Elements of subsequences are not

necessarily contiguous, e.g., “dab” is a

subsequence of “database”

39

• Dynamic programming solution: see

Goodrich-Tamassia, pp. 568-572

David Keil Analysis of Algorithms 5. Greedy algorithms 1/12

Binomial coefficient

• C (n, k) is the number of combinations

(subsets) of k elements chosen from a

set of n elements

• C (n, k) =

1 if k = 0 or k = n

C (n − 1, k − 1) +

40

()

C (n − 1, k) otherwise

David Keil Analysis of Algorithms 5. Greedy algorithms 1/12

5. Greedy and other efficient

optimization algorithms

David Keil Analysis of Algorithms 1/12

Binomial (n, k)
for i ← 0 to n do

for j ← 0 to min{i, k} do
if j = 0 or j = kif j 0 or j k

C [i, j] ← 1
else

C [i, j] ← C [i − 1, j − 1] +C [i − 1, j]
Return C [n, k]

41

Time complexity: _______

Space complexity: _______

David Keil Analysis of Algorithms 5. Greedy algorithms 1/12

Warshall’s algorithm
• Computes transitive closure (reachability

matrix) of a digraph from its adjacency matrix

• Faster alternative to DFS or BFS for each pair

l f i h bl f d k i• Principle: If vertex j is reachable from i, and k is

reachable from j, then k is reachable from i

Warshall (M [n, n])
for i ← 1 to n do

for j ← 1 to n do
f k 1 t d

Source vertex

Intermediate vertex

Destination vertex

42

for k ← 1 to n do
if M [i, j] ∧ M [j, k]

M [i, k] ← true;
Return M

Running

time: Θ(___)

David Keil Analysis of Algorithms 5. Greedy algorithms 1/12

5. Greedy and other efficient

optimization algorithms

David Keil Analysis of Algorithms 1/12

Floyd’s algorithm
• Finds shortest paths between any pair of

vertices in a weighted graph

• Computes a distance, cost, or weight matrix

i i l d i d if h• Principle: reduce cost estimate dik if shorter

path found (greedy)

Floyd (G [n, n])
D ← G.W // weights matrix
for i ← 1 to n do

f j 1 t d

43

for j ← 1 to n do
for k ← 1 to n do

D [i, k] ← min {D [i, k], D [i, j] + D [j, k] }
Return D

David Keil Analysis of Algorithms 5. Greedy algorithms 1/12

Optimal BSTs

• Problem: Given probabilities that certain
values will be search keys, find BST with
minimum average search timeminimum average search time

• Solution: Construct optimal subtree as one
node with optimal left and right subtrees

• Dynamic-programming approach uses a
table of average number of comparisons for
a range of nodes

44

a range of nodes

• Space complexity: Θ(n2)

• Time complexity: Θ(n3)

David Keil Analysis of Algorithms 5. Greedy algorithms 1/12

5. Greedy and other efficient

optimization algorithms

David Keil Analysis of Algorithms 1/12

Knapsack with table
• Problem: Given a set of n items with weights w1

.. wn and values v1 .. vn , find greatest-valued set

of items that fit in knapsack of capacity Wp p y

• Solution: Let Vij be the optimal value of the first i

items in a knapsack of capacity j

• V [i, j] =

max { V [i – 1, j],

v + V [i 1 j w] } if j > w

45

vi + V [i – 1, j – wi] } if j > wi

V [i – 1, j] otherwise

• Time and space complexity: Θ(nW)

David Keil Analysis of Algorithms 5. Greedy algorithms 1/12

• A bioinformatics problem, in which

phylogenetic (family) relationships

Sequence matching

p y g (y) p

among protein sequences in DNA are

found by comparing

• It is a more sophisticated type of string

comparison

46

p

David Keil Analysis of Algorithms 5. Greedy algorithms 1/12

5. Greedy and other efficient

optimization algorithms

David Keil Analysis of Algorithms 1/12

DNA and computation

• Atoms and molecules have discrete forms

• Example: DNA strands are built from only four

different molecules; alphabet is {C, A, G, P}

• In replicating, dividing, and recombining, DNA

can be said to compute on discrete symbolic

values as a digital computer computes, or as a

mind manipulates symbols logically

47

mind manipulates symbols logically

David Keil Analysis of Algorithms 5. Greedy algorithms 1/12

Phylogenetic trees
• Definition: “typically a graphical representation

of the evolutionary relationship among three or

more genes or organisms” (p. 80)g g (p)

• Terminal nodes are from empirical data, internal

nodes are inferred common ancestors

• Newick format: ((a, b), (c, (d, e))) =

c

48

• May reflect substitutions in sequences:

ABCD (ZBCD (ABYD, ZBCQ), ABXD)

a b
c

d e

David Keil Analysis of Algorithms 5. Greedy algorithms 1/12

5. Greedy and other efficient

optimization algorithms

David Keil Analysis of Algorithms 1/12

Alignment between 2 sequences
• Definition: “a pairwise match between the

characters of each sequence”

(Krane and Raymer, p. 35)(Krane and Raymer, p. 35)

• Significance: An alignment corresponds to a

hypothesis about the evolutionary history

connecting the sequences

• Objective: To find the best alignments between

two sequences

49

two sequences

• Techniques for alignment comparison of

sequences are “a cornerstone of bioinformatics”

David Keil Analysis of Algorithms 5. Greedy algorithms 1/12

Alignment techniques
• Want to align a given two elements of language:

Σ* where Σ = {C, G, A, P}

• Objective: To insert gaps in either of two DNA• Objective: To insert gaps in either of two DNA

sequences to maximize pairwise matches

• Example: align AATCTATA

with AAGATA

• Possible solution: AATCTATA

AA--GATA

50

AA--GATA

• A scoring method accounts for matches,

mismatches, and gaps

David Keil Analysis of Algorithms 5. Greedy algorithms 1/12

5. Greedy and other efficient

optimization algorithms

David Keil Analysis of Algorithms 1/12

Needleman-Wunsch algorithm
• Overview: Break down alignment problem into

smaller problems by finding best alignment of

subsequences; storing them in a table rather than

i dlcomputing repeatedly

• Example: Align CACGA, CGA (p. 42)

• There are 3 ways to start, beginning at the left:

(1) C (…A…C…G…A)

C (…G…A)
(2) (C A C G A)

51

(2) - (…C…A…C…G…A)

C (…G…A)

(2) C (…A…C…G…A)
- (…C…G…A)

David Keil Analysis of Algorithms 5. Greedy algorithms 1/12

Needleman-Wunsch

• Global sequence alignment algorithm

• Assume match score is 1, mismatch is 0,
gap is (-1)gap is (1)

• To evaluate alignments above,

score(1) is +1 (C matches C) plus alignment

score of ACGA and CGA

score(2) = –1 + score(CACGA, CGA)

52

score(3) = –1 + score(ACGA, CCGA)

• Fill out table: […]

David Keil Analysis of Algorithms 5. Greedy algorithms 1/12

5. Greedy and other efficient

optimization algorithms

David Keil Analysis of Algorithms 1/12

Match bonus: 1 Gap penalty: -1

Needleman-Wunsch table

g t c a t a g a c g

0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10

t -1 0 0 -1 -2 -3 -4 -5 -6 -7 -8

c -2 -1 0 1 0 -1 -2 -3 -4 -5 -6

a -3 -2 -1 0 2 1 0 -1 -2 -3 -4

53

t -4 -3 -1 -1 1 3 2 1 0 -1 -2

a -5 -4 -2 -1 0 2 4 3 2 1 0

David Keil Analysis of Algorithms 5. Greedy algorithms 1/12

5. Transform and conquer

Transformations:

• Instance simplification

• Representation change

• Problem reduction

Principle: Performance advantages can be

gained by changing the form of the input

P bl Uniq eness mode matri in erses

54

Problems: Uniqueness, mode, matrix inverses,

determinants, BST balancing, polynomial

evaluation, least common multiple

David Keil Analysis of Algorithms 5. Greedy algorithms 1/12

5. Greedy and other efficient

optimization algorithms

David Keil Analysis of Algorithms 1/12

Reductions of problems

• Transform-and-conquer approach uses
reducibility of some problems to others

• Example: Least common multiple problem• Example: Least common multiple problem
is reducible to greatest-common-divisor:

lcm(m, n) = mn / gcd(m, n)

• Finding extrema of some functions is
reducible to finding derivative

P bl lik lf bb (L i i

55

• Problems like wolf-goat-cabbage (Levitin,
p. 17, Problem 1) are reducible to state-
space (graph) problems

David Keil Analysis of Algorithms 5. Greedy algorithms 1/12

Algorithms using presorted arrays

• Uniqueness verification is linear-time after
array is transformed by presorting

• Compare brute-force O(n2) algorithm with C p O() g
algorithm using sorted array:

Uniqueness (A [0 .. n – 1])

Sort (A)

For i ← 0 to n – 2 do

56

if A[i] = A[i + 1]

return false

Return true

David Keil Analysis of Algorithms 5. Greedy algorithms 1/12

5. Greedy and other efficient

optimization algorithms

David Keil Analysis of Algorithms 1/12

Finding mode
• Mode: most common element in array

• Worst-case: no duplications –

brute force makes Θ(n2) comparisons to

compile list of frequencies of elements

[explain]

• Better algorithm using sorted array: Find

longest run of equal values Θ(n)

57

longest run of equal values – Θ(n)

• Complexity: Θ(n lg n) including sort

David Keil Analysis of Algorithms 5. Greedy algorithms 1/12

Mode (A [0 .. n – 1])
Sort (A)
i ← 0, mode_frequency ← 0
while i ≤ n – 1 do

run length ← 1run_length ← 1
run_value ← A[i]
while i + run_length ≤ n – 1 and

A[run] = run_value do
run_length ← run_length + 1
if run_length > mode_frequency

d f l th

58

mode_frequency ← run_length
mode_value ← run_value

i ← i + run_length
Return mode_value

David Keil Analysis of Algorithms 5. Greedy algorithms 1/12

5. Greedy and other efficient

optimization algorithms

David Keil Analysis of Algorithms 1/12

Gaussian elimination
• Can find inverses and determinants of

matrices by GE

• Assume linear equations

a11x + a12y = b1

a21x + a22y = b2

• Can solve by transforming equations into a

system with an upper-triangular matrix with

59

system with an upper triangular matrix with

zeroes below the diagonal, solvable by

backward substitution

David Keil Analysis of Algorithms 5. Greedy algorithms 1/12

BST balancing

• A case of instance simplification

• Note: Transformation from a set to a BST

is itself a case of representation change

• Problem: preserve O(lg n) properties of a

balanced BST as it is built and updated

• AVL tree: BST with left,

60

right subtrees differing

in height by not

more than 1

David Keil Analysis of Algorithms 5. Greedy algorithms 1/12

5. Greedy and other efficient

optimization algorithms

David Keil Analysis of Algorithms 1/12

AVL trees
• Unbalanced BST subtree is transformed by

rotation around root

• 4 kinds of rotation:• 4 kinds of rotation:

Single

Left Right

[Mirror

images

61

Double

images

of Left]

David Keil Analysis of Algorithms 5. Greedy algorithms 1/12

Horner’s Rule
• Algorithm to evaluate a polynomial:

Horner (P [0.. n], x)x
> P[0..n] are coefficients of degree-n polynomialg y
p ← P [n]
for i ← n – 1 downto 0 do

p ← xp + P [i]
return p

• Complexity: Θ(n)

C l i f b f i Θ(2)

62

• Complexity of brute-force version: Θ(n2)

• H’s Rule can be used to do binary

exponentiation in Θ(lg n) time

David Keil Analysis of Algorithms 5. Greedy algorithms 1/12

5. Greedy and other efficient

optimization algorithms

David Keil Analysis of Algorithms 1/12

Concepts (greedy)

acyclic graph

Dijkstra’s algorithm

global optimum

minimal spanning tree

optimization problem

optimal-substructure property

greedy algorithm

Huffman coding

Kruskal’s algorithm

local optima

prefix-free encoding

Prim’s algorithm

single-source shortest path

state-space search

63David Keil Analysis of Algorithms 5. Greedy algorithms 1/12

Concepts (dynamic, transform)
adjacency matrix

AVL tree

binomial coefficient

Boyer-Moore algorithm

Heapify

Heap-Sort

Horner’s Rule

least common multiple

BST balancing

B-trees

Build-Heap

dynamic programming

dynamic-programming Knapsack algorithm

Extract-min

Fibonacci

linear probe

load factor

minimum heap

mode

open addressing

optimal BST

reachability matrix

64

Floyd’s algorithm

Gaussian elimination

hash function

hashing

sequence matching

time/space tradeoff

transform and conquer

uniqueness verification

Warshall’s algorithm

David Keil Analysis of Algorithms 5. Greedy algorithms 1/12

5. Greedy and other efficient

optimization algorithms

David Keil Analysis of Algorithms 1/12

References

T. Cormen, C. Leiserson, R. Rivest. Introduction

to Algorithms. MIT Press, 1990.

A. Levitin. The Design and Analysis of

Algorithms, 2nd ed. Addison Wesley, 2007.

Chapters 7-8, 10.

R. Johnsonbaugh and M. Schaefer. Algorithms.

P P ti H ll 2004

65

Pearson Prentice Hall, 2004.

David Keil Analysis of Algorithms 5. Greedy algorithms 1/12

