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2. Greedy graph algorithms

3. Compression and packing

4. Space/time tradeoffs and dynamic programming

5. Transform and conquer Reading: Ch. 7-8

Constraint and 

optimization problems
• Constraint problem: To find some value that 

satisfies a set of constraints or conditionssatisfies a set of constraints or conditions

• Optimization problem: to find maximum or 
minimum valued solution to a constraint 
problem, among all solutions

• Minimizing cost function f:
min( f ) = m s t f (m) = min N{y | y = f (x)}
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min( f )  m s.t. f (m)  minx∈N{y | y  f (x)}

• Greedy algorithms iteratively build a minimal-
cost structure by choosing a step that minimizes 
cost function
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Coin changing

• For some sets of n denominations, this 

algorithm makes change with a minimum 

b f inumber of coins

Make-change (amt, Denom)

i ← |Denom|

while i > 0 and amt > 0

write ⎣amt ÷ Denom[ i ] ⎦
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write ⎣amt ÷ Denom[ i ] ⎦
amt ← amt mod Denom[ i ]

i ← i − 1

Topic objectives

5a. Explain the greedy approach to algorithm 

design 

5b E l i h i l b5b. Explain the optimal-substructure property

5c. Describe a greedy algorithm for graphs 

5d. Explain an instance of the dynamic-

programming approach 

l i i f h f d

4

5e. Explain an instance of the transform-and-

conquer approach
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Inquiry

• Is time scalability a good way to measure 

the performance of computing systems?p p g y

• How much does studying design 

approaches help us create efficient 

solutions?

• How hard is optimization?

5

• How hard is optimization?
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Greedy algorithms
• Solve optimization problems by seeking local 

optima as the next step of a state-space search

• Greedy algorithms expand a partial solution until• Greedy algorithms expand a partial solution until 

problem is solved

• Choice at each step is feasible, irrevocable

• Not all greedy algorithms produce optimal results, 

or even results meeting minimal constraints

C M ki h t l ith t fi d
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• Cases: Making change; two algorithms to find 

minimal spanning tree; Dijkstra’s for shortest path; 

Huffman coding
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• A problem π has the optimal-substructure 

property iff any structure S, that is an optimal 

1. Optimal-substructure property

solution to π, is composed of optimal solutions 

to subproblems of π
• This property holds for some problems, e.g., 

change making with U.S. denominations, 

graph coloring shortest path
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graph coloring, shortest path

• It is the property required for greedy 

algorithms

Local optima in search
• State-space search: Finds global optimum in a 

very large set of possible solutions (states)

• Search goes from state to state• Search goes from state to state

• Example: Finding highest location in a county

– Greedy algorithm follows uphill path until 

at the top of a hill

– Low hills are local optima; highest hill is 

8

global optimum

– Greedy algorithm alone does not find global 

optimum
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Example of optimal-

substructure property
• Imagine a hill that has no dips anywhere from 

the base to the summitthe base to the summit

• Thus, to get to the summit from any point on the 

side of the hill, the right way to go is always to 

choose an upward direction

• Thus any subpart of a path to a higher elevation 

9

is also a path to a relatively higher elevation

• The problem of climbing that hill has the 

optimal-substructure property
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Generalized greedy algorithm

y ← null

RepeatRepeat

augment y by appending “best”

available value from some set

until y satisfies the problem’s constraints

return y

10David Keil               Analysis of Algorithms             5. Greedy algorithms      1/12

y is a structure, e.g., a path in a graph
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• Some problems lack optimal-substructure property

• Examples: In baseball, chess, or checkers, a short-

term sacrifice (e g bunt) may bring long-term net

Limits of the greedy approach

term sacrifice (e.g., bunt) may bring long term net 

benefit

• Generalized state-space search is of an 

n-dimensional landscape full of local optima that are 

not global optima

E l Cli bi hi h d lki

11David Keil               Analysis of Algorithms             5. Greedy algorithms      1/12

• Example: Climbing to a higher ground or walking 

toward destination do not always optimally help us 

reach objective

• Graph coloring: color the vertices so that no 

adjacent vertices have the same color

2. Greedy graph algorithms

• Minimal spanning tree: Smallest-weight tree 

containing all vertices in a weighted graph

• Single-source shortest path: Dijkstra’s 

algorithm builds a tree of shortest paths, starting 

from the source vertex. The problem of finding

12

from the source vertex. The problem of finding 

the shortest path to one  destination is reducible 

to the problem of finding shortest paths to all 
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Graph coloring problem
• An optimization problem

• What is the minimum number of colors needed 
to color all the vertices of a graph (equivalentto color all the vertices of a graph (equivalent 
to a map), such that no two adjacent vertices 
have same color?

• Country on a map is equivalent to vertex in 
graph; borders between countries are 
equivalent to edges in graph
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equivalent to edges in graph

• The compiler-design problem of register 
allocation is equivalent to the graph coloring 
problem

Greedy-coloring (G)
• Assumes an ordered sequence of colors 

• Gives (possibly non-optimal) solution to 
graph coloring problemgraph-coloring problem

• Q: What is the fastest algorithm that solves 
the coloring problem optimally?

for i ← 1 to |G.V|

[ i ] l
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v [ i ].color ←
min { c | c is not the color of a

vertex in G adjacent to v [ i ] } 
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• MST is a subgraph of a graph

• Example: road or rail system connecting n

l ti ith l t t ti t

Minimal spanning tree

locations with lowest construction cost

• Not every path in MST is minimal; only the 

whole tree is minimal

• [pic]
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Prim’s algorithm for 
minimal spanning tree

[R.C. Prim]

16David Keil               Analysis of Algorithms             5. Greedy algorithms      1/12

Strategy: repeatedly add to the growing tree the 

lowest-weight available edge adjacent to a vertex 

already in the tree w/o forming cycle

[R.C. Prim]
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Prim’s algorithm

Prim (G) G = (V, E)

VT ← { v0 }  // any vertex

E ← ∅ET ← ∅
while |VT | < |V | do

e ← min-wt-edge (E) s.t.

e = (v, u) ∧ (v ∈ VT ) ∧ (u ∈ V – VT ) 

VT  ← VT   ∪ { v }

E E { }
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ET  ← ET   ∪ { e }

Return (VT , ET)

Kruskal’s algorithm
• Builds minimal spanning tree, bottom up, as 

an expanding sequence of subgraphs

• These are not necessarily connected until theThese are not necessarily connected until the 

algorithm terminates

• Greed applies to a weight-sorted list of all 

edges

• Each step connects two trees (possibly trivial) 
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by the next edge in weight order

• Makes use of optimal-substructure property
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Kruskal (G) G = (V, E)

ET ← ∅
Sort edges E into array e in weight order

k ← 1, count ← 0

while count < min{|E| |V | 1} dowhile count < min{|E|, |V | – 1} do

If (VT, ET  ∪ { ek }) is acyclic

ET  ← ET   ∪ { ek }

k ← k + 1

count ← count + 1

Return (V, ET)
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Return (V, ET)

• Sorting time dominates run time, hence run time is 

Θ(|E| lg |E|)

• Alternative code: Johnsonbaugh, pp. 277, 280

• In any weighted graph, from any source vertex, 

a tree exists composed of the set of shortest 

paths from the source to each other vertex

Single-source shortest path

p

• The problem of a single shortest path reduces 

to building this tree (which is not the MST)

• Dijkstra’s algorithm builds this tree of shortest 

paths, starting from the source vertex
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The Dijkstra algorithm
• Uses breadth-first search, beginning by 

examining the edge from the source to each 

adjacent vertex then from each of these to itsadjacent vertex, then from each of these to its 

neighbors

• Builds solution tree along path of least 

immediate cost (greedy)

• If current path from source to a vertex v is
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If current path from source to a vertex v is 

found to be costlier than path to u plus path 

from u to v, adds v to a minimum-path-so-far 

array, relaxing the estimate on path length

A shortest path’s subpaths 

are minimal
• Optimal-substructure property applies to 

shortest-path problem as follows

• If path (u, …, u’, …, v’,…, v) is minimal, then 

(u’,v’) is minimal too (why?)

• So to minimize path u..v, find shorter segments 
u’..v’
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• Note: more than one shortest path may connect 

two given vertices
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Dijkstra (graph, weights, source)

For i ← 1 to |V | do
estimate[ i ] ← ∞

PQ-insert(Q, i )   // weight attribute is PQ key
estimate [source] ← 0estimate [source] ← 0
While ¬empty(Q)

u ← Extract-min (Q )  //Greedy choice
For each vertex v adjacent to u

If estimate[v] > estimate[u] + weight (u,v)
estimate[v] ← estimate[u] + weight (u,v)
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• Vector estimate..|V |] stores set of shortest known 

path lengths from source to each vertex

• Key to priority queue Q is estimate[u]

Application of Dijkstra algorithm
Distance from a

Step Q u v a b c d e
1. abcde a b 0 3 ∞ ∞ ∞

e 0 3 ∞ ∞ 5
2. bcde b c 0 3 9 ∞ 5

d 0 3 9 5 5
3. cde c d 0 3 9 5 5
4. de d e 0 3 9 5 5

c 0 3 9 5 5
5. e e d 0 3 9 5 5
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Problem Solution
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Dijkstra details

• Output is estimate array

• How are paths extracted from this array?p y
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Find shortest paths
Wash Bos NY Phila Chi

Wash 400 200 150 1050

Bos 225 300 1200

NY 1000NY 1000

Phila

Chi
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Correctness and analysis of Dijkstra

• Theorem: The Dijkstra algorithm finds a  

shortest path from source to u for all u ∈ V

H ld thi b d?• How would this be proved?

• Output is estimate array

• How are paths extracted from this array?

• Running time, using heap, worst case:

O((n+m) lg n)

27

O((n+m) lg n)

O(n2 lg n) if m = n2

where n is # vertices, m is # edges
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• Compression problem: Map alphabet to a set 

of variable-length bit encodings s.t. most 

f tl d h t t d

3. Compression and packing

frequently used characters are represented  

by shortest encodings

• Packing problem (knapsack): Find a 

maximum-valued set of items, each with 

weights and values, that fit into a container 
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g ,

with a given maximum weight
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Prefix-free variable-length codes
• Problem: Find a space-optimal variable-length bit 

encoding for an alphabet, given a distribution of 

occurrences of characters in strings to be encoded

• Example: Morse Code solves a simpler problem in 

which character delimiters are allowed

• Constraint: Codes must be prefix-free, no 

codeword is a prefix of another codeword

• Binary tree can represent the code, where left 
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branches are labeled 0 and right ones labeled 1

• A Huffman code is a prefix-free code represented 

by a binary tree

Create one-node trees, one for each character

Label nodes by character and its probability

Repeat until all trees are one:

Huffman’s compression algorithm

Repeat until all trees are one:

Find two trees with minimum weight so far

Pair them as subtrees of a new node

Weight (parent) ← sum of weights of subtrees

This greed algorithm achie es an encoding
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• This greedy algorithm achieves an encoding 

with optimum compression ratio by generating 

an optimal binary tree
[Pic Levitin, p. 326]
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Greedy solution to
continuous-knapsack problem
• Problem: Find maximum-valued subset of a set of 

weighted items, totaling less than weight w

• Parameters: A[1..n], where each element of A has 

value and weight attributes; max-wt ∈ R

• Solution:

1. Sort A by ratio of value to weight

2 While total weight so far is less than max-wt
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2. While total weight so far is less than max wt

select next element of sorted A

increment total weight so far

3. Select some part of next element of A

4. Space/time tradeoffs and 

dynamic programming
• Time efficiency can sometimes be gained 

b ki fby making use of storage space

• Tables or larger tree nodes may be used to 

obtain improved running times

• Cases:

– Sorting by counting

32

Sorting by counting

– String matching

– Hashing

– B trees
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Sorting by counting
• Suppose problem is to sort an array composed 

only of values in 1..m

• Then a solution is to count the occurrences of  

each value in 1..m and store in a table T

• Then write to the array T[1] 1’s, 

T[2] 2’s, etc.

• Running time O(n) is better than any compar

33

• Running time O(n) is better than any compar-

ison-based sort, provided that m ≤ O(n)

• 2 5 1 2 8 7 5 1 5 ⇒ 1 1  2 2 5 5 7 8
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String matching
• Problem: Find first occurrence of string of length m

in string of longer length

• Brute-force solution: Perform (n – m + 1) string f ( ) g

comparisons, each of length m

• Faster Boyer-Moore algorithm (simplified): 

– Construct a 26-element shift table for the search 

key, saying how far from the right of the key each 

letter is

34

– Do string comparison from the right

– Use the shift table to skip most string comparisons

• Average case: Θ(n) but “obviously faster” 
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Hashing
• Dictionary is array in which index is computed 

from key value

• Desirable attributes of hash function: 

speed, even distribution of keys

• Two implementations: Open addressing with 

linear probe; array of buckets (linked lists)

• Load factor: ratio of number of entries to table 

size

35

size

• Time/space tradeoff: High load factor costs 

time, low load factor wastes space
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B trees

• Each node has m children

• All data is stored in leaves

• All leaves are at same tree level

• Used to store very large indexes for 

databases stored on disk

• Advantage: extremely short paths to

36

Advantage: extremely short paths to 

leaves (lgmn)

• Disadvantage: Wasted space
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Dynamic programming
• Some problems (e.g., Fibonacci) have 

overlapping subproblems

• Dynamic programming suggests solving each y p g g gg g

subproblem only once and storing solution in a 

table for later reference

• Cases:

– Fibonacci

Binomial coefficient

37

– Binomial coefficient

– Warshall’s and Floyd’s algorithms (graphs)

– Optimal BSTs

– Knapsack problem
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Fibonacci
• Recall Fib(x) =

1 if x ≤ 1

Fib(x – 1) + Fib(x – 2) otherwiseFib(x – 1) + Fib(x – 2) otherwise

• Running time is Θ(2x)

• Dynamic-programming algorithm is Θ(x):

DP-Fib(x)
F [0] ← 1 F [1] ← 1

38

F [0] ← 1, F [1] ← 1
For i ← 2 to x do

F [ i ] ← F [ i – 1] + F [ i – 2]

Return F [ x ]
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Longest common subsequence

• Given sequences x1, x2, what is the 

longest subsequence y s.t. y is a 

subsequence of both x1 and x2?

• Elements of subsequences are not 

necessarily contiguous, e.g., “dab” is a 

subsequence of “database”

39

• Dynamic programming solution: see 

Goodrich-Tamassia, pp. 568-572
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Binomial coefficient

• C (n, k) is the number of combinations 

(subsets) of k elements chosen from a 

set of n elements

• C (n, k) =

1 if k = 0 or k = n

C (n − 1, k − 1) + 

40

( )

C (n − 1, k ) otherwise 
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Binomial (n, k)
for i ← 0 to n do

for j ← 0 to min{i, k} do
if j = 0 or j = kif j  0 or j  k

C [ i, j ] ← 1
else

C [ i, j ] ← C [ i − 1, j − 1] +C [ i − 1, j ] 
Return C [ n, k ]

41

Time complexity:  _______

Space complexity:  _______
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Warshall’s algorithm
• Computes transitive closure (reachability 

matrix) of a digraph from its adjacency matrix

• Faster alternative to DFS or BFS for each pair

l f i h bl f d k i• Principle: If vertex j is reachable from i, and k is 

reachable from j, then k is reachable from i

Warshall (M [n, n])
for i ← 1 to n do

for j ← 1 to n do
f k 1 t d

Source vertex

Intermediate vertex

Destination vertex

42

for k ← 1 to n do
if M [i, j ] ∧ M [ j, k ]

M [i, k ] ← true;
Return M

Running 

time: Θ(___)
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Floyd’s algorithm
• Finds shortest paths between any pair of 

vertices in a weighted graph

• Computes a distance, cost, or weight matrix

i i l d i d if h• Principle: reduce cost estimate dik if shorter 

path found (greedy)

Floyd (G [n, n])
D ← G.W // weights matrix
for i ← 1 to n do

f j 1 t d

43

for j ← 1 to n do
for k ← 1 to n do

D [i, k] ← min {D [ i, k ], D [ i, j ] + D [ j, k ] }
Return D
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Optimal BSTs

• Problem: Given probabilities that certain 
values will be search keys, find BST with 
minimum average search timeminimum average search time

• Solution: Construct optimal subtree as one 
node with optimal left and right subtrees

• Dynamic-programming approach uses a 
table of average number of comparisons for 
a range of nodes

44

a range of nodes

• Space complexity: Θ(n2)

• Time complexity: Θ(n3)
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Knapsack with table
• Problem: Given a set of n items with weights w1

.. wn and values v1 .. vn , find greatest-valued set 

of items that fit in knapsack of capacity Wp p y

• Solution: Let Vij be the optimal value of the first i

items in a knapsack of capacity j

• V [i, j] =

max { V [i – 1, j], 

v + V [i 1 j w ] } if j > w

45

vi + V [i – 1, j – wi] } if j > wi

V [i – 1, j] otherwise

• Time and space complexity: Θ(nW)
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• A bioinformatics problem, in which 

phylogenetic (family) relationships 

Sequence matching

p y g ( y) p

among protein sequences in DNA are 

found by comparing

• It is a more sophisticated type of string 

comparison

46

p
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DNA and computation

• Atoms and molecules have discrete forms

• Example: DNA strands are built from only four 

different molecules; alphabet is {C, A, G, P}

• In replicating, dividing, and recombining, DNA 

can be said to compute on discrete symbolic 

values as a digital computer computes, or as a 

mind manipulates symbols logically

47

mind manipulates symbols logically
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Phylogenetic trees
• Definition: “typically a graphical representation 

of the evolutionary relationship among three or 

more genes or organisms” (p. 80)g g (p )

• Terminal nodes are from empirical data, internal 

nodes are inferred common ancestors

• Newick format: ((a, b), (c, (d, e))) =

c

48

• May reflect substitutions in sequences: 

ABCD (ZBCD (ABYD, ZBCQ), ABXD)

a b
c

d e
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Alignment between 2 sequences
• Definition: “a pairwise match between the 

characters of each sequence” 

(Krane and Raymer, p. 35)(Krane and Raymer, p. 35)

• Significance: An alignment corresponds to a 

hypothesis about the evolutionary history 

connecting the sequences

• Objective: To find the best alignments between 

two sequences

49

two sequences

• Techniques for alignment comparison of 

sequences are “a cornerstone of bioinformatics”
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Alignment techniques
• Want to align a given two elements of language: 

Σ* where Σ = {C, G, A, P}

• Objective: To insert gaps in either of two DNA• Objective: To insert gaps in either of two DNA 

sequences to maximize pairwise matches

• Example: align AATCTATA

with AAGATA

• Possible solution: AATCTATA

AA--GATA

50

AA--GATA

• A scoring method accounts for matches, 

mismatches, and gaps
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Needleman-Wunsch algorithm
• Overview: Break down alignment problem into 

smaller problems by finding best alignment of 

subsequences; storing them in a table rather than 

i dlcomputing repeatedly

• Example: Align CACGA, CGA (p. 42)

• There are 3 ways to start, beginning at the left:

(1) C (…A…C…G…A)

C (…G…A)
(2) ( C A C G A)

51

(2) - (…C…A…C…G…A)

C (…G…A)

(2) C (…A…C…G…A)
- (…C…G…A)
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Needleman-Wunsch

• Global sequence alignment algorithm

• Assume match score is 1, mismatch is 0, 
gap is (-1)gap is ( 1)

• To evaluate alignments above, 

score(1) is +1 (C matches C) plus alignment 

score of ACGA and CGA

score(2) = –1 + score(CACGA, CGA)

52

score(3) = –1 + score(ACGA, CCGA)

• Fill out table: […]
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Match bonus: 1 Gap penalty: -1

Needleman-Wunsch table

g t c a t a g a c g

0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10

t -1 0 0 -1 -2 -3 -4 -5 -6 -7 -8

c -2 -1 0 1 0 -1 -2 -3 -4 -5 -6

a -3 -2 -1 0 2 1 0 -1 -2 -3 -4

53

t -4 -3 -1 -1 1 3 2 1 0 -1 -2

a -5 -4 -2 -1 0 2 4 3 2 1 0
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5. Transform and conquer

Transformations:

• Instance simplification

• Representation change

• Problem reduction

Principle: Performance advantages can be 

gained by changing the form of the input

P bl Uniq eness mode matri in erses

54

Problems: Uniqueness, mode, matrix inverses, 

determinants, BST balancing, polynomial 

evaluation, least common multiple
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Reductions of problems

• Transform-and-conquer approach uses 
reducibility of some problems to others

• Example: Least common multiple problem• Example: Least common multiple problem 
is reducible to greatest-common-divisor: 

lcm(m, n) = mn / gcd(m, n)

• Finding extrema of some functions is 
reducible to finding derivative

P bl lik lf bb (L i i

55

• Problems like wolf-goat-cabbage (Levitin, 
p. 17, Problem 1) are reducible to state-
space (graph) problems
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Algorithms using presorted arrays

• Uniqueness verification is linear-time after 
array is transformed by presorting

• Compare brute-force O(n2) algorithm with C p O( ) g
algorithm using sorted array:

Uniqueness ( A [0 .. n – 1] )

Sort (A)

For i ← 0 to n – 2 do

56

if A[ i ] = A[ i + 1 ] 

return false

Return true
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Finding mode
• Mode: most common element in array

• Worst-case: no duplications –

brute force makes Θ(n2) comparisons to 

compile list of frequencies of elements 

[explain]

• Better algorithm using sorted array: Find 

longest run of equal values Θ(n)

57

longest run of equal values – Θ(n) 

• Complexity: Θ(n lg n) including sort
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Mode ( A [0 .. n – 1] )
Sort (A)
i ← 0, mode_frequency ← 0
while i ≤ n – 1 do

run length ← 1run_length ← 1
run_value ← A[ i ] 
while i + run_length ≤ n – 1 and 

A[run] = run_value do
run_length ← run_length + 1
if run_length > mode_frequency

d f l th

58

mode_frequency ← run_length 
mode_value ← run_value

i ← i + run_length
Return mode_value
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Gaussian elimination
• Can find inverses and determinants of 

matrices by GE

• Assume linear equations

a11x + a12y = b1

a21x + a22y = b2

• Can solve by transforming equations into a 

system with an upper-triangular matrix with

59

system with an upper triangular matrix with 

zeroes below the diagonal, solvable by 

backward substitution

David Keil               Analysis of Algorithms             5. Greedy algorithms      1/12

BST balancing

• A case of instance simplification

• Note: Transformation from a set to a BST 

is itself a case of representation change

• Problem: preserve O(lg n) properties of a 

balanced BST as it is built and updated

• AVL tree: BST with left, 

60

right subtrees differing 

in height by not 

more than 1
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AVL trees
• Unbalanced BST subtree is transformed by 

rotation around root

• 4 kinds of rotation:• 4 kinds of rotation:

Single

Left Right

[Mirror 

images

61

Double

images 

of Left]
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Horner’s Rule
• Algorithm to evaluate a polynomial:

Horner (P [0.. n], x )x
> P[0..n] are coefficients of degree-n polynomialg y
p ← P [n]
for i ← n – 1 downto 0 do

p ← xp + P [ i ]
return p

• Complexity: Θ(n)

C l i f b f i Θ( 2)

62

• Complexity of brute-force version: Θ(n2)

• H’s Rule can be used to do binary 

exponentiation in Θ(lg n) time
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Concepts (greedy)

acyclic graph

Dijkstra’s algorithm

global optimum

minimal spanning tree

optimization problem

optimal-substructure property

greedy algorithm

Huffman coding

Kruskal’s algorithm

local optima

prefix-free encoding

Prim’s algorithm

single-source shortest path

state-space search
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Concepts (dynamic, transform)
adjacency matrix

AVL tree

binomial coefficient

Boyer-Moore algorithm

Heapify

Heap-Sort 

Horner’s Rule

least common multiple 

BST balancing

B-trees

Build-Heap

dynamic programming

dynamic-programming Knapsack algorithm

Extract-min

Fibonacci

linear probe

load factor

minimum heap

mode

open addressing

optimal BST

reachability matrix
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Floyd’s algorithm

Gaussian elimination

hash function

hashing

sequence matching

time/space tradeoff

transform and conquer

uniqueness verification 

Warshall’s algorithm
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