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Call it the department chair’s dilemma: How do you get a swarm of independently minded minions moving in concert toward some useful

goal? The problem may be inherently insoluble in a professorial setting, in part because the notion of academic motion is purely metaphoric.

But encouraging signs of progress have emerged for a more literal analog. Researchers in control theory are perfecting a repertoire of micro-

managerial algorithms necessary—or at least sufficient—for the task of steering groups of otherwise autonomous vehicles in the service of a

common goal.

In an invited presentation at the Sixth SIAM Conference on Control and its Applications, held in New Orleans in July, Naomi Ehrich Leonard

of Princeton University described progress she and colleagues have made in the theory of collective motion. Leonard is an expert on geometric

mechanics and control, with a particular interest in cooperative control and collective motion of natural and engineered systems, from birds and

fish to autonomous underwater vehicles. She was one of the key participants in the Autonomous Ocean Sampling Network II project, which

field-tested a fleet of underwater gliders in Monterey Bay, California, in 2003, and she is the principal investigator for the Adaptive Sampling

and Prediction (ASAP) project, which will conduct further tests in Monterey Bay next summer.

A central goal of these projects is to develop an autonomous system for observing and predicting ocean dynamics. The fundamental idea is

for autonomous vehicles to act as mobile sensor platforms, coordinating their motion to collect as efficiently as possible the most useful data

for assimilation into ocean-forecasting models. The oceanographic goal of the 2003 experiment was to study upwelling events. Control theoret-

ically, the objective was to test algorithms that coordinate the movement of independent vehicles.

The researchers found that they could keep three gliders at the vertices of a linearly translating equilateral triangle over a run of approximate-

ly 16 hours (see Figure 1). In one experiment the gliders stayed roughly

three kilometers apart during the entire run. With an additional control

term in the second half of the run, one edge of the triangle was kept per-

pendicular to the direction of the group’s motion—an impressive accom-

plishment, given that the gliders could communicate only when they sur-

faced, every couple of hours.

In a second experiment, the researchers successfully reduced the dis-

tance between gliders, moving in a triangular formation, from six to three

kilometers, despite currents that rivaled the effective speed of the gliders.

The results have helped shape plans for the month-long ASAP trials in

2006.

Meanwhile, the control theorists are developing an increasingly

sophisticated theory of multi-agent control. In her talk, Leonard high-

lighted recent work with Rodolphe Sepulchre of l’Université de Liège in

Belgium and her student Derek Paley in the department of mechanical

and aerospace engineering at Princeton. The trio have studied an ideal-

ized problem concerning the stabilization of collective motion in the

plane. Their approach provides a set of basic procedures, such as switch-

ing from linear to circular trajectories, that can be used in the design of

more complicated maneuvers.

The idealized problem is closely related to the theory of coupled phase oscillators. It posits point particles in the complex plane, moving with

constant, unit speed. The use of complex variables is a notational convenience, allowing the velocity vector to be written in the form eiθk, where

θk is the orientation of particle k. The control is a steering rate, dθk/dt = uk, which depends only on the relative positions and orientations of the

particles, rjk = rj – rk and θjk = θj – θk. (Getting the group to move in a particular direction requires the inclusion of a reference heading; the sim-

plest way to do so is to couple the reference heading to ust one particle—in effect, to pick a leader and give it a compass.)

The key to the stability analysis begins with some simple algebra. The group’s center of mass is the average of the individual position vec-

tors r = 1/NΣrk. Its linear momentum (giving each particle unit mass) is p = 1/N Σ eiθk; p can also be interpreted as the centroid of the phasors

(headings) of the particles. The magnitude of p lies between 0 and 1: It’s at a maximum when the particles are traveling in synch, e.g., along

parallel lines, and 0 when the particles are conspiring to be “anti-synchronized,” e.g., equispaced and moving in a circle.

This suggests that the control be based on the gradient of the “phase potential,” K |p|2, where K is a parameter that can be positive or nega-

tive. Doing so leads to the phase control uk = ω0 – K/N Σ sin θjk, where ω0 is a constant angular rate. If ω0 = 0, the control produces a steady

state consisting of straight-line trajectories—all in the same direction if K < 0, and scattered but in a balanced distribution (so that the center of
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Figure 1. Paths of three underwater gliders and their center of mass
over a 16-hour sea trial in Monterey Bay, August 6, 2003.  From E.
Fiorelli et al., “Multi-AUV Control and Adaptive Sampling in Monterey
Bay,” 2004.



mass stays fixed) if K > 0. If ω0 ≠ 0, the steady

state has the particles moving in circles—all in

phase if K < 0 and out of phase if K > 0 (see

Figure 2).

To get all the particles going around the

same circle requires a “spacing” control; this

drives the center of each particle’s circle

(defined as if it were controlled with uk = ω0) to

a common point. Even then, the particles may

be scattered around the circle more or less ran-

domly (as long as their center of mass is the

center of the circle). Getting them evenly

spaced is done by some additional massaging

of the phase control.

Leonard and colleagues, in fact, have

devised a systematic way to get any kind of

symmetric spacing. With 12 particles, for

example, they can achieve a “splay” state with

all 12 particles evenly spaced, or states with six

evenly spaced groups of 2, four groups of 3,

three groups of 4, two groups of 6, or even one

group of 12, i.e., the synchonized state (see

Figure 3). (They have done a similar analysis

for the synchronized state with particles travel-

ing in straight lines.)

The formulas and analysis are simplest when

it is assumed that the particles all “talk” to each

other (i.e., particle k knows rjk and θjk for all j). Leonard and colleagues, however, have also worked out the general case in which communica-

tions are more limited; the formulas involve pseudometrics defined with an inner product based on the Laplacian matrix of the communication

graph.

The payoff of all this analysis is that it’s possi-

ble to systematically stabilize steady patterns cho-

sen from a parametrized family using simple con-

trols. Thus, for example, a group of particles can

circle in one location for a while, then zip off to

another spot, circle there, expanding or contract-

ing the circle as desired, or they can follow a

zigzag course, much as a school of fish might do

(see Figure 4). Put into practice with real vehicles,

this should give researchers tremendous flexibility

when it comes to adaptive sampling. Tourists in

Monterey Bay next summer may catch an occa-

sional glimpse of control theory at work: a dozen

or more gliders in a data-gathering cavort.

Figure 2. Steady-state trajectories are straight lines (top) or circles (bottom), depending on
whether ω 0 is zero or nonzero, and synchronized (left) or anti-synchronized (right), which
depends in turn on whether K is negative or positive. From N. Leonard et al., “Collective
Motion, Sensor Networks and Ocean Sampling,” 2005.

Figure 3. Six simulations of 12 particles, each corresponding to a different symmetric pattern
for the particles moving around a circle. Figure courtesy of Naomi Ehrich Leonard.
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Figure 4. Twelve point particles starting in random positions
near (0,0) first congregate in a circle, then head off in an
east–northeast direction (A), shift to the southeast (B), pause
in a circular formation before repeating the zigzag (C and D),
and end by enlarging the circle (E). From Rodolphe
Sepulchre, Derek Paley, and Naomi Ehrich Leonard,
“Stabilization of Planar Collective Motion, Part I:  All-to-All
Communication,” 2005.


