Atomic Structure

Notice the in the 2p orbitals:	Ť
Three rules for determining the	electron configuration:
1.	
2.	
3.	
Give the ground state electron configurations o	f:
Н	
С	
Br	
Three different models are used to explain v	vhy atoms form bonds.
Bonding Model Number 1:	

The octet rule:

Three examples:

H₂

NaCl

 CH_4

Important Learning Objective: Be able to draw the complete Lewis Structure of any compound.

Shortcut: It is easy to predict the number of bonds that an atom of a particular element can form:

Examples: Draw the Lewis Structure (also called "Kekulé Structure" or "Line-Bond Structure") of these compounds:

compound	Lewis Structure	Condensed Structural Formula
C ₂ H ₆		
CH₅N		
CH₄O		
C_2H_4		
C ₂ H ₂		
CH ₂ O		
C_2H_6O		

Bonding Model Number 2:

Terms associated with VBT:

The main idea behind ______:

Examples: $H + H \rightarrow H-H$

 $H + F \rightarrow H-F$

sigma bond (σ bond)

pi bond (π bond)

1 single bond =

1 double bond =

1 triple bond =

- Whenever simple atomic orbital overlap is inadequate to explain certain bond properties (such as equivalency of bonds, bond angles, etc.) the concept of ______ is invoked.
- The process of ______ corresponds to a mixing of orbitals (an imaginary process accomplished mathematically) resulting in new orbitals called ______.

Thought experiment: Give electron configuration of a ground state C atom.

sp³ hybridization:

sp² hybridization:

sp hybridization:

Why isn't a triple bond three times as strong as a single bond?

Compare the C–H bond lengths and bond strengths in these molecules:

Example: In the molecule below, determine:

- a) the hybridization of each C atom
- b) the relative strength and bond length of each C–C bond
- c) the relative strength and length of each C-H bond

Bonding Model Number 3:

- 1. Summary of Molecular Orbital (MO) Theory:
 - Quantum Mechanics says :

Electrons in ______ exist in allowed energy states called ______

Electrons in ______ exist in allowed energy states called ______

- Two important types of MOs:
- Determining MO electron configuration is analogous to determining AO electron configuration:

- 2. Atomic Orbitals (AOs) and Molecular Orbitals (MOs):
 - Two equivalent AOs will interact to form 2 MOs:

Example: H + H \rightarrow H-H

Н

Е

- The Bonding MO is ______ in energy than the AOs.
- The antibonding MO is ______ in energy than the AOs, and it has a ______ between the two atoms.
- One way to understand this: AOs and MOs are wave functions (QM says e have wave characteristics).

--Two AOs can overlap constructively (wave reinforcement) to form a _____ MO.

--Or they can overlap destructively (wave cancellation) to form an _____ MO.

- 3. Bonding MOs are designated _____ and ____ MOs.
 - Antibonding MOs are designated _____ and _____ MOs

H-H

(pronounced "sigma star" and "pi star" molecular orbitals).

Н

Е

4. When two equivalent s orbitals combine, they result in a _____ bonding MO and a _____ antibonding MO

4. When two parallel p orbitals combine, they result in a _____ bonding MO and a _____ antibonding MO.

Drawing Chemical Structures

Be able to draw the condensed structure and skeletal structure of any organic compound.

Skeletal structures: 1) _____ and _____ atoms are usually not shown.

2) You should mentally supply sufficient hydrogen atoms by knowing that:

Examples:

propane

pentane

2,3-dimethylpentane

cyclohexane

Draw the condensed structure and the skeletal structure of isoprene, given the following Lewis structure:

Show the reaction of 1-butene with bromine, using condensed structures and skeletal structures:

Two common mistakes to avoid:

- 1. Don't give carbon _____
- 2. Don't imagine carbons _____

Draw the condensed structures and the skeletal structures of:

1-butanol

1-bromopropane

3-chloropropene