1. Which intermolecular attraction should be the most important in a solution containing benzene, $\mathrm{C}_{6} \mathrm{H}_{6}$, dissolved in toluene, $\mathrm{C}_{7} \mathrm{H}_{8}$?
a) ion-dipole
b) dipole-dipole
c) ion-ion
d) hydrogen bonding
e) London dispersion forces
2. Calculate the molality of an aqueous solution of sucrose, $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$ (molar mass $=507.2 \mathrm{~g} / \mathrm{mol}$), if the mole fraction of sucrose is 0.0677 .
a) 4.03 m
b) 1.68 m
c) 1.31 m
d) 0.776 m
e) 0.252 m
3. The vapor pressure of pure methanol, $\mathrm{CH}_{3} \mathrm{OH}$, is 94.0 mm Hg at $20^{\circ} \mathrm{C}$; the vapor pressure of pure ethanol, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$, is 44.0 mm Hg at the same temperature. What is the vapor pressure of a solution consisting of 1.50 mol methanol and 3.25 mol ethanol at $20^{\circ} \mathrm{C}$?
a) 59.8 mm Hg
b) 73.5 mm Hg
c) 78.2 mm Hg
d) 69.0 mm Hg
e) 28.4 mm Hg
4. What is the boiling point of a solution containing 30.0 g of $\mathrm{K}_{2} \mathrm{SO}_{4}($ molar mass $=174.3 \mathrm{~g} / \mathrm{mol})$ dissolved in 100.0 g of water? (K_{b} for $\mathrm{H}_{2} \mathrm{O}$ is $0.51^{\circ} \mathrm{C} \mathrm{kg} / \mathrm{mol}$.) (Assume complete dissociation.)
a) $101.8^{\circ} \mathrm{C}$
b) $102.6^{\circ} \mathrm{C}$
c) $106.1^{\circ} \mathrm{C}$
d) $103.5^{\circ} \mathrm{C}$
e) $100.8^{\circ} \mathrm{C}$
5. $\quad 100.0 \mathrm{~mL}$ of an aqueous solution containing 0.120 g of an unknown molecular compound generates an osmotic pressure of 18.0 mm Hg at $20.0^{\circ} \mathrm{C}$. What is the molar mass of the unknown compound?
6. Arrange the following solutions in decreasing order of their freezing points:
I. $\quad 0.10 \mathrm{~m} \mathrm{Na}_{3} \mathrm{PO}_{4}$
II. $0.25 \mathrm{~m} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ (ethanol, a nonelectrolyte)
III. 0.15 m NaCl
IV. $0.20 \mathrm{~m} \mathrm{CaCl}_{2}$
a) II $>$ III $>$ I $>$ IV
b) I $>$ III $>$ IV $>$ II
c) II $>$ IV $>$ III $>$ I
d) IV $>$ I $>$ III $>$ II
e) I $>$ II $>$ III $>$ IV
7. For which case would $\Delta \mathrm{H}_{\text {soln }}$ be expected to be negative?
a) If solute-solute interactions are much greater than solvent-solvent and solute-solvent interactions.
b) If solvent-solvent interactions are much greater than solute-solvent and solute-solute interactions.
c) If solute-solvent interactions are much greater than solvent-solvent and solute-solute interactions.
d) If solute-solvent interactions are much less than solvent-solvent and solute-solute interactions.
e) choices (a) and (b) are both correct.
8. The decomposition of hydrogen iodide, $2 \mathrm{HI}(\mathrm{g}) \rightarrow$ $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})$, has rate constants of $9.51 \times 10^{-9} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ at 500 K and $1.10 \times 10^{-5} \mathrm{M}^{-1} \mathrm{~s}^{-1}$ at 600 K . What is the activation energy for this reaction?
a) $27.2 \mathrm{~kJ} / \mathrm{mol}$
b) $176 \mathrm{~kJ} / \mathrm{mol}$
c) $14.9 \mathrm{~kJ} / \mathrm{mol}$
d) $45.3 \mathrm{~kJ} / \mathrm{mol}$
e) $112 \mathrm{~kJ} / \mathrm{mol}$
9. Consider the hypothetical reaction below:

$$
\mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}+\mathrm{D}
$$

It is found that doubling the initial concentration of A causes the initial reaction rate to be four times as great but that doubling the initial concentration of B has no effect on the initial reaction rate. What is the rate law for this reaction?
a) rate $=\mathrm{k}[\mathrm{A}][\mathrm{B}]$
b) rate $=\mathrm{k}[\mathrm{A}]^{2}[\mathrm{~B}]$
c) rate $=\mathrm{k}[\mathrm{A}]^{2}$
d) rate $=k[\mathrm{~A}]^{4}[\mathrm{~B}]$
e) rate $=\mathrm{k}[\mathrm{A}]^{4}$
a) $86 \mathrm{~g} / \mathrm{mol}$
b) $122 \mathrm{~g} / \mathrm{mol}$
c) $164 \mathrm{~g} / \mathrm{mol}$
d) $860 \mathrm{~g} / \mathrm{mol}$
e) $1220 \mathrm{~g} / \mathrm{mol}$
10. The reaction between nitric oxide and ozone is represented by this equation:
$\mathrm{NO}(\mathrm{g})+\mathrm{O}_{3}(\mathrm{~g}) \rightarrow \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
If the reaction is first order with respect to NO and first order with respect to O_{3}, what are the units of the rate constant?
a) $\mathrm{M}^{2} \mathrm{~s}^{-1}$
b) $\mathrm{M}^{-2} \mathrm{~s}^{-1}$
c) $\mathrm{M} \mathrm{s}^{-1}$
d) $\mathrm{M}^{-1} \mathrm{~s}^{-1}$
e) s^{-1}
11. Cyclopropane decomposes to propane at $450^{\circ} \mathrm{C}$. The decomposition is a first-order reaction with a rate constant at 450° of $0.0560 \mathrm{~min}^{-1}$. What is the half-life of cyclopropane at $450^{\circ} \mathrm{C}$?
a) 1.22 min
b) 2.33 min
c) 4.66 min
d) 8.26 min
e) 12.4 min
12. The thermal decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ proceeds as follows:

$$
2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

This is a first-order reaction with a rate constant of 5.10 $\times 10^{-4} \mathrm{~s}^{-1}$ at 318 K . How long would it take 20.0% of $\mathrm{N}_{2} \mathrm{O}_{5}$ to decompose at 318 K ?
a) 5.97 s
b) 7.36 s
c) 438 s
d) 3160 s
e) 1360 s
13. Consider the reaction

$$
\mathrm{A} \rightarrow \text { products }
$$

If a plot of $1 /[\mathrm{A}]$ versus time is a straight line, what can be said about this reaction?
a) The reaction is zero-order.
b) The reaction is first-order.
c) The reaction is second-order.
d) The reaction order is -1 .
e) None of these statements is true.
14. Consider the reaction energy profile for a certain reaction shown on the right. How would this profile change if the temperature of the reaction system was increased by 50° ?
a) $\Delta \mathrm{E}$ would increase.
b) $\Delta \mathrm{E}$ would decrease.
c) E_{a} would increase.
d) E_{a} would decrease.
e) The profile would not change.
15. Increasing the temperature of a reaction causes the rate of the reaction to increase because:
a) The activation energy, E_{a}, is increased.
b) The activation energy, E_{a}, is decreased.
c) The frequency factor, also called the pre-exponential term, A, is increased.
d) The fraction of collisions with sufficient energy to react is increased.
e) The pressure exerted by the gas molecules increases.
16. The reaction below occurs in one elementary bimolecular step. What is the rate law for this reaction?

$$
2 \mathrm{NO}_{2}(\mathrm{~g}) \rightarrow \mathrm{O}_{2}(\mathrm{~g})+\mathrm{N}_{2} \mathrm{O}_{2}(\mathrm{~g})
$$

a) rate $=\mathrm{k}\left[\mathrm{NO}_{2}\right]$
b) rate $=\mathrm{k}\left[\mathrm{NO}_{2}\right]^{2}$
c) rate $=\mathrm{k} \frac{\left[\mathrm{NO}_{2}\right]^{2}}{\left[\mathrm{O}_{2}\right]\left[\mathrm{N}_{2} \mathrm{O}_{2}\right]}$
d) rate $=\mathrm{k} \frac{\left[\mathrm{O}_{2}\right]\left[\mathrm{N}_{2} \mathrm{O}_{2}\right]}{\left[\mathrm{NO}_{2}\right]^{2}}$
e) rate $=\mathrm{k}\left[\mathrm{NO}_{2}\right]^{-2}$
17. Consider the reaction below:

$$
\mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{ICl}(\mathrm{~g}) \rightarrow 2 \mathrm{HCl}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})
$$

The experimentally-determined rate law for this reaction is: rate $=\mathrm{k}\left[\mathrm{H}_{2}\right][\mathrm{ICl}]$. Which of the following mechanisms is consistent with the observed rate law?

a)	$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{ICl}(\mathrm{g}) \rightarrow \mathrm{HI}(\mathrm{g})+\mathrm{HCl}(\mathrm{g})$	(slow)
	$\mathrm{HI}(\mathrm{g})+\mathrm{ICl}(\mathrm{g}) \rightarrow \mathrm{HCl}(\mathrm{g})+\mathrm{I}_{2}(\mathrm{~g})$	(fast)
b)	$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{ICl}(\mathrm{g}) \rightarrow \mathrm{HI}(\mathrm{g})+\mathrm{HCl}(\mathrm{g})$	(fast)
	$\mathrm{HI}(\mathrm{g})+\mathrm{ICl}(\mathrm{g}) \rightarrow \mathrm{HCl}(\mathrm{g})+\mathrm{I}_{2}(\mathrm{~g})$	(slow)
c)	$\mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{ICl}(\mathrm{g}) \rightarrow 2 \mathrm{HCl}(\mathrm{g})+\mathrm{I}_{2}(\mathrm{~g})$	
d)	$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{ICl}(\mathrm{g}) \rightarrow \mathrm{HCl}(\mathrm{g})+\mathrm{I}(\mathrm{g})$	(slow)
	$\mathrm{I}(\mathrm{g})+\mathrm{ICl}(\mathrm{g}) \rightarrow \mathrm{I}_{2}(\mathrm{~g})+\mathrm{Cl}(\mathrm{g})$	(fast)
e)	$\mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{ICl}(\mathrm{g}) \rightarrow 2 \mathrm{HCl}(\mathrm{g})+2 \mathrm{I}(\mathrm{g})$	(slow)
	$2 \mathrm{I}(\mathrm{g}) \rightarrow \mathrm{I}_{2}(\mathrm{~g})$	(fast)

18. Sulfuric acid is a very strong inorganic used in commercial and non-commercial laboratories. What is the molarity of a $70.00 \mathrm{wt} \%$ solution of sulfuric acid in water? The density of the solution is $1.6503 \mathrm{~g} / \mathrm{mL}$.
a) 0.7137 M
b) $\quad 7.141 \mathrm{M}$
c) 11.78 M
d) 4.328 M
e) $\quad 0.01178 \mathrm{M}$
19. The solubility of CO_{2} gas in water is $3.45 \times 10^{-2} \mathrm{~mol} / \mathrm{L}$ at $25^{\circ} \mathrm{C}$ and 1.00 atm pressure. What is the solubility ($\mathrm{mol} / \mathrm{L}$) of the dissolved CO_{2} in a carbonated soft drink pressurized with 2.0 atm of CO_{2} gas at $25^{\circ} \mathrm{C}$?
a. 0.069
b. 2.0
c. 0.017
d. 0.138
e. 8.6×10^{-3}
20. What is the vapor pressure of a solution formed by dissolving 25.0 g of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right.$, molar mass $=$ $180.2 \mathrm{~g} / \mathrm{mol}$) in 75.0 g of water at $50.0^{\circ} \mathrm{C}$? (The vapor pressure of pure water at $50.0^{\circ} \mathrm{C}$ is 92.5 torr.)
a) 2.98 torr
b) 23.1 torr
c) 69.4 torr
d) 79.7 torr
e) 89.5 torr
21. When a nonvolatile solute is dissolved to make a solution, how will the solution compare to the pure solvent in each of the following colligative properties?

	vapor pressure		
	$\underline{\text { boiling point }}$		freezing point
a.	same	higher	
b. lower	lower	higher	
c.	higher	higher	lower
d.	lower	higher	same
e.	lower	higher	lower

22. In an experiment, pure water was separated from an aqueous sugar solution by a semipermeable membrane which allows water to pass freely but not sugar. After some time has passed, the concentration of the sugar solution...
a) will have increased.
b) will have decreased.
c) will not have changed.
d) might have increased or decreased depending on other factors.
e) will be the same on both sides of the membrane.

23 Consider the following reaction:
$\mathrm{N}_{2}\left(\mathrm{~g}+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})\right.$
If H_{2} is being consumed at a rate of $1.50 \mathrm{M} / \mathrm{s}$, how fast is NH_{3} being formed?
a) $0.750 \mathrm{M} / \mathrm{s}$
b) $2.25 \mathrm{M} / \mathrm{s}$
c) $4.50 \mathrm{M} / \mathrm{s}$
d) $1.00 \mathrm{M} / \mathrm{s}$
e) $0.500 \mathrm{M} / \mathrm{s}$
24. Given the initial rate data for the reaction $\mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}$, determine the rate equation for the reaction.

$[\mathrm{A}](\mathrm{mol} / \mathrm{L})$ $[\mathrm{B}](\mathrm{mol} / \mathrm{L})$	rate		
0.033		0.015	
0.033	0.030		0.010
0.099	0.015		0.090

a. \quad rate $=\mathrm{k}[\mathrm{A}]^{2}[\mathrm{~B}]$
b. \quad rate $=k[A][B]$
c. \quad rate $=k[A]^{3}[B]^{2}$
d. \quad rate $=\mathrm{k}[\mathrm{A}]^{2}[\mathrm{~B}]^{2}$
e. \quad rate $=k[A]^{3}[B]$

