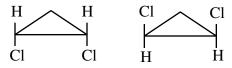

1. Which of the following compounds is a primary alcohol?

A. CH2OH

- B. HO CH
- C. OF
- D. O
- 2. What is the name of the compound shown?

- A. *trans*-4-chlorocyclohexanol
- B. *cis*-4-chlorocyclohexanol
- C. *trans*-1-chloro-4-cyclohexanol
- D. cis-1-chloro-4-cyclohexanol
- 3. Which of the following statements about ethanol, CH₃CH₂OH, is true?
 - A. It contains one π bond.
 - B. It contains six σ bonds.
 - C. The C-O-H bond angle is approximately 120°.
 - D. The H-C-H bond angles are approximately 109.5°.
- 4. Which of the alkenes shown has the greatest heat of combustion?
 - A. CH₂=CHCH₂CH₂CH₃
- B. $(CH_3)_2C=CHCH_3$


- 5. Which of the compounds shown is isobutyl chloride?
 - A. (CH₃)₃CCl
 - B. CH₃CHClCH₂CH₃
 - C. (CH₃)₂CHCH₂Cl
 - D. CH₃CH₂CH₂CH₂Cl
- 6. What is the name of the compound shown?

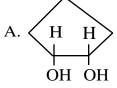
- A. Bicyclo[4.1.0]heptane
- B. Bicyclo[3.1.1]heptane
- C. Bicyclo[3.2.0]heptane
- D. Bicyclo[5.4.0]heptane
- 7. Which of the following designations describes the compound at right?

- A. E B. Z
- C. cis
- D. trans
- C=C / \ H CH₃
- 8. What is the most important reason for the fact that cyclohexane is the most stable of the cycloalkanes of twelve carbons or less?
 - A. There is eclipsing along two of the carbon-carbon bonds in the boat conformation.
 - B. There is eclipsing along four of the carbon-carbon bonds in the chair conformation.
 - C. Both torsional and bond angle strain are minimized in the chair conformation.
 - D. Both torsional and bond angle strain are minimized in the boat conformation.
- 9. What is the relationship between the compounds shown?

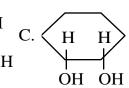
- A. Same compound B. Enantiomers C. Diastereomers D. Structural isomers
- 10. Which of the following nucleophiles is the most reactive?
 - A. CH₃COOH B. CH₃COO- C. CH₃OH D. CH₃O-

- 11. Which of these is the best method for preparing 1-bromopropane, CH₃CH₂CH₂Br?
 - A. $CH_3CH_2CH_3 + Br_2 \xrightarrow{CCl_4}$
 - $B. \ CH_3CH_2CH_3 \ + \ Br_2 \ \xrightarrow{light}$
 - C. CH₃CH=CH₂ + HBr ----->
 - D. CH₃CH=CH₂ + HBr ----->
- 12. What is the relationship between the compounds shown?

- A. Same compound B. Enantiomers
- C. Diastereomers D. Structural isomers
- 13. What is the name of the compound shown?

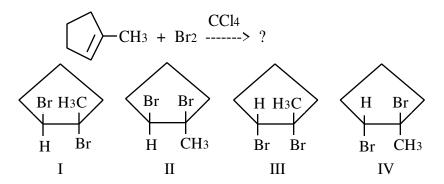

- A. 4-heptanol
- B. 2-methyl-3-hexanol
- C. 1-isopropyl-1-butanol
- D. 1-isopropyl-2-ethylethanol
- 14. Two structures are both superimposable on each other and the mirror images of one another. What is the relationship between them?
 - A. Same compound
 - B. Enantiomers
 - C. Diastereomers
 - D. Structural isomers

- 15. Which of the following reactions yields (CH₃)₃CCl?
 - A. (CH₃)₃COH + HCl --->
 - B. $(CH_3)_2C=CH_2 + Cl_2 \xrightarrow{CCl_4}$
 - C. (CH₃)₂CHCH₂OH + SOCl₂ --->
 - D. $(CH_3)_3CH + Cl_2 ----->$
- 16. Which of the following acid-base reactions occurs as shown?
 - A. CH₃COONa + HC≡CH ---> CH₃COOH + HC≡CNa
 - B. CH₃ONa + HC≡CH ---> CH₃OH + HC≡CNa
 - C. NaOH + HC≡CH ---> H₂O + HC≡CNa
 - D. CH₃NHNa + HC≡CH ---> CH₃NH₂ + HC≡CNa
- 17. What are the hybridizations of the carbon atoms numbered 1 and 2 in the structure shown?



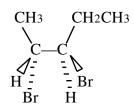
- A. sp^2 , sp^3
- B. sp^2 , sp^2 C. sp, sp^3 D. sp, sp^2

- Which of the following is NOT a meso compound? 18.



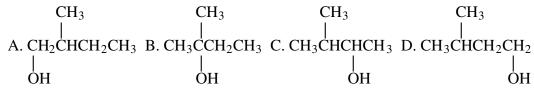
HO

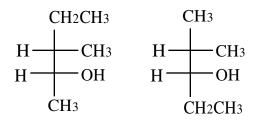
OH HO


19. What are the major products of the reaction shown?

- A. I and III B. I and IV C. II and III D. II and IV
- What is/are the major organic product(s) of the reaction shown? 20.

$$\bigcirc - O^{\bigcirc} Na^{\bigcirc} + CH_3CH_2CH_2Br ---> ?$$


21. What is the configuration of the molecule shown?


- A. 2S, 3S
- B. 2S, 3R
- C. 2R, 3S
- D. 2R, 3R

22. What is the major organic product of the reaction shown?

$$(CH_3)_2C=CHCH_3$$
 $\xrightarrow{BH_3\circ}THF$ H_2O_2 , OH^- ?

23. What is the relationship between the compounds shown?

- A. Same compound B. Enantiomers C. Diastereomers D. Structural isomers
- 24. Which of the following solutions can be used in a test to distinguish between the compounds CH₂=CHCH₂CH₃ and CH₂=CHCH₂CH₂Br?

A. conc. H₂SO₄ B. Br₂/CCl₄ C. AgNO₃/ethanol D. KMnO₄/H₂O

- 25. What is the best explanation for the relative stabilities of the gauche and anti forms of butane? The _____ form has more _____ strain.
 - A. gauche . . . torsional
 - B. gauche . . . steric
 - C. anti . . . torsional
 - D. anti... steric
- 26. What are the predicted shape and bond angle of formaldehyde, H₂C=O?
 - A. Trigonal pyramid, 109.5°
 - B. Trigonal planar, 109.5°
 - C. Trigonal pyramid, 120°
 - D. Trigonal planar, 120°

27. Which of the following sequences can be used to make

28. An unknown alkene was subjected to ozonolysis, and the product of the reaction was the compound shown. What is the structure of the unknown?

$$\begin{array}{c|cccc} O & CH_3 & O \\ & || & | & || \\ CH_3CCH_2CHCH_2CCH_3 \end{array}$$

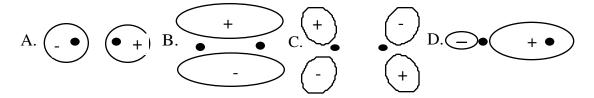
29. Which of the arrows gives the direction of the dipole moment of the molecule shown?

- 30. Which of the following sequences gives cyclohexane from cyclohexanol?
 - A. KOH, alcohol, heat; then Zn, HCl
 - B. Zn, HCl; then H₂, Pd
 - C. H₂, Ni; then H₂SO₄, heat
 - D. H₂SO₄, heat; then H₂, Pt
- 31. Which of the following compounds is the least soluble in water?

A.
$$\bigcirc$$
 OH B. \bigcirc OH C. \bigcirc Cl D. \langle

32. What are the bases in the reaction shown?

- B. I and IV C. II and III D. II and IV A. I and III
- What is the value of ΔH in kJ mol⁻¹ for the reaction below? Bond energies in kJ mol⁻¹ are: 33. CH₃CH₂-OH, 383; CH₃CH₂O-H, 431; HO-H, 498; CH₃CH₂-OCH₂CH₃, 335.


- A. +29 B. -19 C. -67 D. -96
- Which of the S_N 2 reactions below is the FASTEST? 34.
 - A. $CH_3Br + HC \equiv C^- \longrightarrow CH_3C \equiv CH + Br^-$
 - B. CH₃Br + HC≡CH ---> CH₃C≡CH + HBr
 - C. $CH_3CH_2Br + HC \equiv C^- \longrightarrow CH_3CH_2C \equiv CH + Br^-$
 - D. $CH_3CH_2Br + HC \equiv CH \longrightarrow CH_3CH_2C \equiv CH + HBr$
- 35. One of the two carbon-carbon bonding orbitals in ethylene, H₂C=CH₂, is formed from the overlap of _____ orbitals on the carbons, and the other is formed from the overlap of _____ orbitals.
 - A. sp, p B. sp^2, p C. sp^2, sp D. p, p

36. Rate data for the reaction shown Run Rel. is given in the table at right. $[CH_3CH_2I]$ $[CH_3O-]$ Rate no. What is the mechanism of this reaction? 1 0.01 0.01 1 2 0.01 2 0.02 3 2 0.01 0.02

$$CH_3CH_2I + CH_3O - ---> CH_3CH_2OCH_3 + I -$$

A. S_N1 B. S_N2 C. E1 D. E2

- 37. Which of the carbocations shown do NOT rearrange?
 - I. CH₃CH₂CH₂CH₂ II. CH₃CHCH₂CH₃ III. (CH₃)₂CHCH₂ IV. (CH₃)₃C
 - A. I and III B. I and IV C. II and III D. II and IV
- 38. Which of the following compounds has the highest boiling point?
 - A. CH₃CH₂ONa B. CH₃CH₂OCH₃ C. CH₃CH₂CH₂CH₃ D. CH₃CH₂CH₂OH
- 39. Which of the following is the best synthesis of cyclohexene from cyclohexane?
 - A. KOH, alcohol
 - B. H₂SO₄, heat
 - C. Br₂, light; then KOH, alcohol
 - D. Br₂, CCl₄; then H₂SO₄, heat
- 40. Which of the following is a sigma (σ) bonding orbital? Nuclei are indicated by solid dots, and the signs of the wave functions are shown.

