Bemidji State University 8710.4750 TEACHERS OF SCIENCE – Chemistry 9-12

FORM I-C MATRIX

Professional Education Program Evaluation Report (PEPER II)		MATRIX Form I-C											
8710.4750 Teachers of Science- Chemistry 9-12	Identify of Insert CO	sert COURSE NUMBER & ID below											
Subp. 4. Subject matter standards for teachers of chemistry. A candidate for licensure as a teacher of chemistry in grades 9 through 12 must complete a preparation program under subpart 2, item C, that must include the candidate's demonstration of the knowledge and skills in items A to C.	CHEM 1211	CHEM 1212	CHEM 2311	CHEM 2312	CHEM 2371	CHEM 2372	CHEM 2510	CHEM 2570	CHEM 3110	CHEM 3411	CHEM 3811	CHEM 3930 (Re- search)	
A. A teacher of chemistry must demonstrate a conceptual understanding of chemistry. The teacher must:													
(1) use sources of information to solve unfamiliar quantitative problems and communicate the solution in a logical and organized manner as evidenced by the ability to:													
(a) describe, in terms of the known and unknown quantities, a given problem in appropriate pictorial, graphical, or written forms;	KA	K					К	К		K	К		
(b) describe, in terms of the relevant numerical and algebraic quantities and equations, a given problem mathematically;	KA	K					K	K		K	K		
(c) plan, using words, diagrams, and mathematical relationships, a solution for a given problem in terms of steps necessary to solve the problem and to verify the solution; and	KA	К					К	К		К	К		
(d) evaluate, in terms of unit consistency, reasonableness, and completeness of solution, the solution of a given problem;	KA	K					K			K			
(2) use computers to display and analyze experimental and theoretical data as evidenced by the ability to:													

(a) describe data graphically using a	KA	К					К	К		К		
computer; and	1111	м					K	IX.		м		
	CHEM 1211	CHEM 1212	CHEM 2311	CHEM 2312	CHEM 2371	CHEM 2372	CHEM 2510	CHEM 2570	CHEM 3110	CHEM 3411	CHEM 3811	
(b) design a mathematical model to provide a reasonable fit to a given set of data; and	KA	К					К	К		K		
(3) develop a plan to ensure a safe environment and practices in chemistry learning activities.									А			
B. A teacher of chemistry must demonstrate a knowledge of chemistry concepts. The teacher must:												
(1) understand the properties and structure of matter as evidenced by the ability to:												
(a) explain and predict, using the principles for filling the electron orbitals of atoms and the Periodic Table, the periodic trends in electrical conductivity, atomic radii, ionization energy, electronegativity, electron affinity, and metallic character of a given set of elements;	KA		К								K	
(b) predict, using the Periodic Table and the arrangement and energies of the element's outermost electrons, whether the bonding in a given substance is primarily covalent, metallic, or ionic;	К										KA	
(c) explain and predict, using the periodic trends in the physical and chemical characteristics of the elements and the type of bonds, or intermolecular forces, or both, the relative magnitudes of a given property for a set of elements or compounds;	K									K	KA	
(d) predict, using existing models including the Valence Shell electron Pair Repulsion theory, the shape of a given molecule; and	K		K	K							KA	
(e) describe, with words and diagrams using neutron to proton ratios and binding energies, the changes in matter and energy that occur in the nuclear processes of radioactive decay, fission, fusion, and other common nuclear transformations;		KA									K	

(2) understand chemical reactions as												
evidenced by the ability to:												
(a) perform measurements and calculations	KA	K									K	
to determine the chemical formulas of the												
products of a given chemical reaction;												
	CHEM											
	1211	1212	2311	2312	2371	2372	2510	2570	3110	3411	3811	
(b) complete and any dist constitution la and												
(b) explain and predict qualitatively and	KA	K	K				K	K			K	
quantitatively, using the Periodic Table and the concern of chemical steichiometry, the												
mess relationshing between reactants and												
mass relationships between reactants and												
(a) predict questitatively, using the principle												
(c) predict quantitativery, using the principle	KA		K	K								
best of a given reaction from known values												
of maler basis of formation or maler basis												
of a series of related reactions; and												
(d) explain and predict qualitatively and												
(u) explain and predict qualitatively and quantitatively using solubility rules, the	K		K	K			K				KA	
common ovidation states of elements, the												
activity series of metals and nonmetals												
stability of radicals, and the properties of												
acids and bases, the most likely type of												
reaction for a given set of given reactants:												
(3) understand thermodynamics as												
evidenced by the ability to:												
(a) perform measurements and calculations												
to determine the molar heat energy absorbed	KA										K	
or released in a given phase change or												
chemical reaction:												
(b) predict qualitatively and quantitatively,	TZ A						17					
using the Ideal Gas Law, changes in the	KA						K					
pressure, volume, temperature, or quantity												
of gas in a given thermally isolated ideal gas												
system when the gas is heated or cooled, is												
compressed or expanded adiabatically, or												
enters or leaves the system;												
(c) describe, using words, diagrams, energy	V A	V	V							V	V	
graphs, and mathematical relationships, the	NА	К	К							К	К	
changes in the enthalpy, entropy, and Gibb's												
free energy during a given chemical												
reaction;												

(d) explain and predict qualitatively and		KA	К	К						К	К	
quantitatively, using the First and Second												
Laws of Thermodynamics and the												
relationship between Gibb's free energy and												
the equilibrium constant, changes in the												
equilibrium and												
Gibb's free energy for a given change in the												
reaction conditions;												
	CHEM	CHEM	CHEM	CHEM	CHEM	CHEM	CHEM	CHEM	CHEM	CHEM	CHEM	
	1211	1212	2311	2312	2371	2372	2510	2570	3110	3411	3811	
(e) design, using Gibb's free energy, a		KΔ	K							ĸ	к	
method for changing the direction of		K A	K							К	ĸ	
spontaneity of a given reaction; and												
(f) explain qualitatively and quantitatively,		KΛ					K			ĸ	ĸ	
using Gibb's free energy, how the		КА					К			К	К	
electrochemical potential of a given cell												
depends on given changes in the												
temperature or the concentration of ions in												
solution, or both;												
(4) understand chemical kinetics and												
equilibrium as evidenced by the ability to:												
(a) perform measurements and calculations		KΛ								ĸ	ĸ	
to determine the rate of a chemical reaction,		КЛ								К	K	
the rate expression, half-life of given												
reaction, the activation energy of a given												
reaction, and the equilibrium constant of a												
given reaction;												
(b) describe, using words, energy diagrams,		KΔ	K	K						ĸ	к	
graphs, and mathematical relationships, the		КЛ	К	К						К	K	
activation energy, enthalpy changes, and												
reaction rate of a given reaction;												
(c) explain and predict qualitatively and		KΔ	к							к	к	
quantitatively, using the rate equation for		11/1	IX.							n	IX.	
the reaction, changes in the reaction rate for												
a given change in the												
concentration of a reactant or product;												
(d) predict, using the rate equation and the		KA	К							К	К	
presence or absence of intermediates, a		11/1									11	
possible mechanism for a given reaction;												
(e) describe, using words, diagrams,		KΔ								к		
chemical equations, concentration and rate		17/1								17		
graphs, and mathematical relationships, the												
equilibrium of a given reaction;												

(f) explain, in terms of changes in the number of effective collisions of the molecules in the forward and reverse reaction, why the chemical equilibrium of a		KA								K		
given reaction is a dynamic process;												
(g) explain and predict quantitatively, using the equilibrium constant, the concentration of a reactant or product in a given gas phase or solution chemical reaction;		KA					K					
	CHEM 1211	CHEM 1212	CHEM 2311	CHEM 2312	CHEM 2371	CHEM 2372	CHEM 2510	CHEM 2570	CHEM 3110	CHEM 3411	CHEM 3811	
(h) design, using LeChatelier's principle, a method for achieving a specified change in the equilibrium constant or the position of equilibrium of a given chemical reaction; and		KA	K	K			K			K	K	
(i) design, using the rate laws and requirements for effective collisions, a method for achieving a specified change in the rate of a given chemical reaction; and		KA	К	К						K	K	
(5) understand organic and biochemical reactions as evidenced by the ability to:												
(a) perform measurements and calculations to determine the melting point, boiling point, solubility, or other common physical properties of an organic compound;	К	K			KA					K		
(b) describe, using words, structural and chemical formulas, and physical and computer models, the functional groups and polarity of the molecule of a given organic compound;	К		KA							К	К	
(c) describe, using words, structural and chemical formulas, and physical or computer models, a given hydrocarbon compound as aromatic or aliphatic; saturated or unsaturated; alkanes, alkenes, or alkynes; and branched or straight chains;			KA	K						K		
(d) explain and predict, using a molecular orbital model of the pi-bond, the outcomes of reactions of given aromatic, allylic and conjugated alkenes, and other delocalized electron systems;				KA							K	

(e) explain and predict, using functional	Κ		Κ	Κ		KA				Κ		
groups, structure, and polarity, the												
heiling point of on organic compound.												
bolling point of an organic compound;												
(f) predict, using infrared, nuclear magnetic			KA	K	K	K					K	
resonance, and mass spectra, the structure of												
an organic molecule;												
(g) design and carry out a single step			К	к	к	KA						
synthesis of an organic compound, purify			IX.	11		1111						
the compound, and characterize the product;												
(h) describe, using words, diagrams,			K٨	V						V	K	
structural and chemical formulas, and			KA	K						К	К	
physical and computer models, the origin of												
optical activity of a given chiral organic												
compound:												
	CHEM	CHEM										
	1211	1212	2311	2312	2371	2372	2510	2570	3110	3411	3811	
(i) explain why the reactivity of a chiral	1211	1212	2311	2312	2371		2010	2010	0110	0.111		
compound depends on its stereo chemistry			KA	K						K		
when acted upon by a living system and												
when acted upon by a fiving system, and												
predict whether a particular substrate												
enantiomer would or would not react with												
its enzyme;												
(J) describe, using words, structural and		KA		K						K		
chemical formulas, and physical and												
computer models, a given set of												
biomolecules as a carbohydrate, lipid,												
protein, or nucleic acid, and explain how												
biomolecules are made from typical												
chemical components by chemical												
reactions;												
(k) perform tests and measurements to		K۸								V		
determine if a given biological substance is		КА								К		
a carbohydrate, lipid, protein, or nucleic												
acid;												
(1) explain, using the concepts of										TZ A		
electrostatic attraction, repulsion, and										KA		
stereochemistry in the catalytic process.												
how enzymes facilitate a given biochemical												
reaction: and												
(m) design a method to use organic												
compounds to demonstrate a given general			K		KA					K		
chemical principle												
enemiear principie.	1	1			1	1	1	1	1	1	1	1

,							
C. A teacher of chemistry must							
demonstrate an advanced conceptual							
understanding of chemistry and the ability							
to apply its fundamental principles, laws,							
and concepts by completing a full research							
experience. The teacher must:							
(1) identify various options for a research						Δ	Δ
experience including independent study						2 X	1
projects, participation in research with an							
academic or industry scientist, directed							
study, internship, or field study;							
(2) select an option and complete a research			Δ	Δ			Δ
experience that includes conducting a			11	1 x			11
literature search on a problem;							
(3) design and carry out an investigation;			Δ	Δ			٨
			Λ	Π			A
(4) project; and identify modes for			А	А			Δ
presenting the research							
(5) present the research project in the			А	А			А
selected mode.							

Standards that integrate knowledge of science with knowledge of pedagogy, students, learning environments, and professional development were articulated in subpart 3 E of rule 8710.4750. These pedagogy standards need to be evidenced in addition to the specific content science standards.

	ED 3140	ED 3203	ED 3350	SCI 3450	
E. A teacher of science must have a broad-based knowledge of teaching science that					
integrates knowledge of science with knowledge of pedagogy, students, learning					
environments, and professional development. A teacher of science must understand:					
(1) curriculum and instruction in science as evidence by the ability to:					
(a) select, using local, state, and national science standards, appropriate science				А	
learning goals and content;					
(b) plan a coordinated sequence of lessons and instructional strategies that support the				А	
development of students' understanding and nurture a community of science learners					
including appropriate inquiry into authentic questions generated from students'					
experiences; strategies for eliciting students' alternative ideas; strategies to help					
students' understanding of scientific concepts and theories; and strategies to help					
students use their scientific knowledge to describe real-world objects, systems, or					
events;					
(c) plan assessments to monitor and evaluate learning of science concepts and				А	
methods of scientific inquiry; and					
(d) justify and defend, using knowledge of student learning, research in science				А	
education, and national science education standards, a given instructional model or					
curriculum;					
(2) safe environments for learning science as evidenced by the ability to:					

(a) use required safety equipment correctly in classroom, field, and laboratory settings;				А	
(b) describe, using knowledge of ethics and state and national safety guidelines and				А	
restrictions, how to make and maintain a given collection of scientific specimens and					
data;					
(c) describe, using knowledge of ethics and state and national safety guidelines and				А	
restrictions, how to acquire, care for, handle, and dispose of live organisms;					
(d) describe, using state and national guidelines, how to acquire, care for, store, use,				А	
and dispose of given chemicals and equipment used to teach science;					
(e) implement safe procedures during supervised science learning experiences in the				А	
public schools; and					
(f) develop a list of materials needed in an elementary science safety kit;				А	
(3) how to apply educational principles relevant to the physical, social, emotional,			А		
moral, and cognitive development of preadolescents and adolescents;					
(4) how to apply the research base for and the best practices of middle level and high			А		
school education;					
(5) how to develop curriculum goals and purposes based on the central concepts of				А	
science and how to apply instructional strategies and materials for achieving student					
understanding of the discipline;					
(6) the role and alignment of district, school, and department mission and goals in			А		
program planning;					
(7) the need for and how to connect students' schooling experiences with everyday	А				
life, the workplace, and further educational opportunities;					
	ED 3140	ED 3203	ED 3350	SCI 3450	
(8) how to involve representatives of business, industry, and community	А				
organizations as active partners in creating educational opportunities;					
(9) the role and purpose of cocurricular and extracurricular activities in the teaching	А				
and learning process;					
(10) the impact of reading ability on student achievement in science, recognize the		А			
varying reading comprehension and fluency levels represented by students, and					
possess the strategies to assist students to read science content more effectively; and					
(11) how to apply the standards of effective practice in teaching through a variety of				Α	
early and ongoing clinical experiences with middle level and high school students					
within a range of educational programming models.					