## Complex: Numbers and Basic Arithmetic, Algebra

NAME:

1. Draw the complex plane C and label the real axis and the imaginary axis on your graph paper.
2. Plot the complex number $\mathrm{z}=3+2 \mathrm{i}$ in the complex plane $C$. The real part of z is denoted by $\operatorname{Re}(z)$ and the imaginary part of z is denoted by $\operatorname{Im}(z)$. What does $\operatorname{Re}(z)=$ ? What does $\operatorname{Im}(z)=$ ? Notice the similarity with plotting an ordered pair $(3,2)$ in the xy plane.
3. Plot $\mathrm{w}=4-3 \mathrm{i}$.
4. Calculate the sum $\mathrm{z}+\mathrm{w}=$

Calculate the difference $\mathrm{z}-\mathrm{w}=$

Plot these vectors.
5. Plot the complex numbers $z=2$ and $z=3 i$.
6. Complex multiplication behaves like regular multiplication of factors, but using the special relation which defines $i$ :

$$
i=\sqrt{-1} \quad \text { so } \quad i^{2}=-1
$$

Multiply: $\mathrm{z} \mathrm{w}=(3+2 \mathrm{i})(4-3 \mathrm{i})=$

Is there some geometric interpretation of complex multiplication?
7. Division is done by making use of the complex conjugate. If $w=4-3 i$ then the complex conjugate of w , denoted by $\bar{w}$ is $\bar{w}=4+3 i$ (one changes the sign on the imaginary part of w.). To solve $z / w$ we multiply by the complex conjugate:

$$
\frac{z}{w}=\frac{z}{w} \frac{\bar{w}}{\bar{w}}
$$

For z and w given above, determine

$$
\frac{z}{w}=
$$

Polar Coordinates: A complex number z can be given by polar coordinates $(r, \theta)$ so that $z=r \cos \theta+i r \sin \theta$.

Euler's Formula makes use of polar coordinates:

$$
e^{i \theta}=\cos \theta+i \sin \theta
$$

so that we can write a complex number using the complex exponential function:

$$
z=r(\cos \theta+i \sin \theta)=r \cos \theta+i r \sin \theta=r e^{i \theta}
$$

8. For $z=e^{i(\pi / 4)}$, rewrite z in the form $z=u+i v$. Simplify your answer using your trig values.
$z=$
For this z value, give the polar coordinates, $r=$ and $\theta=$. Plot this complex number.
9. Write $z=e^{i \pi}$ in the form $z=u+i v$ and then plot it: $z=$
10. Use the normal rules of exponents rewrite $z=e^{3+i(\pi / 4)}$ in the form $z=r e^{1 \theta}$ and then plot z on the complex plane. What is the value of $r$ and of $\theta$ ?

Also rewrite $z=e^{3+i(\pi / 4)}$ in the form $z=u+v$. What do u and v equal?
11. Rewrite the point $z=\frac{3}{2}+i \frac{3 \sqrt{3}}{2}$ in the form $z=r e^{i \theta}$. You will first need to determine r and $\theta$. Note that if $z=u+1 v$ then $r=\sqrt{u^{2}+v^{2}}=(z \bar{z})^{1 / 2}$. Also $\theta=\arctan (y / x)$.
12. Write $\mathrm{z}=3+2 \mathrm{i}$ and $\mathrm{w}=4-3 \mathrm{i}$ each in the form $r e^{i \theta}$. Using these exponential formulas, calculate ( z w ) in exponential form. Just use the regular rules of exponents. Give $r(z w)$ and $\theta(z w)$.

