Number Theory

Math 341, Spring 2010

Professor Ben Richert

Take home Final

Due: Monday, June 7, by 4 pm
in Dr. Richert's office, bld. 25, room 325
or (if the baby interferes), in the department office, bld. 25, room 208

This exam is to be completed on your own. The only resources you may use are your textbook, class notes, your returned homework, and a calculator; on problem number 3 you may use a computer algebra system such as Mathematica (but it is not required or necessary that you do so). You may not use the internet, or consult each other.

Problem 1 (10pts) Compute the last digit of 3^{213}.
Problem 2 (10pts) Evaluate the Legendre symbol (3658/12703).
Problem 3 (10pts) Give all solutions (modulo 1216) to the system:

$$
\begin{aligned}
11 x+16 y & \equiv 103(\bmod 1216) \\
3 x+19 y & \equiv 205(\bmod 1216)
\end{aligned}
$$

Problem 4 (10pts) If $a \mid b c$, prove that $a \mid(a, b)(a, c)$.
Problem 5 (15pts) Let n be an integer, and consider the 10 consecutive numbers $\{n, n+1, n+2, \ldots, n+9\}$. Suppose that none of these is divisible by 11 .
(a-5pts) Prove that these 10 numbers are incongruent modulo 11.
(b-5pts) Prove that $\{n, n+1, n+2, \ldots, n+9\} \equiv\{1, \ldots, 10\}(\bmod 11)$.
(c-5pts) Prove that $n(n+1) \cdots(n+9) \equiv-1(\bmod 11)$.
Problem 6 (10pts) Suppose that p is an odd prime such that $p \equiv 1(\bmod 4)$ and r is a primitive root of p. Prove that $-r$ is also primitive.
Problem 7 (10pts) Let p be an odd prime and $a \in \mathbb{N}$ be such that $(a, p)=1$. Define the size of a modulo p to be the minimum natural number t (nonzero) such that for some $i \in \mathbb{N} \cup\{0\}$ we have $a^{i+t}=a^{i}$. Prove that the size of a modulo p is equal to the order of a modulo p.
Problem 8 (10pts) Prove the following theorem: Let p and q be distinct odd primes and $N=p q$. Then N has no primitive roots. (Hint: for r relatively prime to N, consider r^{d} modulo N for $\left.d=\frac{(p-1)(q-1)}{2}\right)$.
Problem 9 (10pts) Consider an odd prime $p \neq 5$ and note that

$$
(5 / p)= \begin{cases}1 & \text { if } p \equiv \pm 1(\bmod 5) \\ -1 & \text { if } p \equiv \pm 2(\bmod 5)\end{cases}
$$

This is not difficult to demonstrate - you may assume it for this problem. Prove that there are infinitely many primes of the form $5 k \pm 1$. (Hint: if not, consider $N=\left(2 p_{1} \cdots p_{r} \cdot q_{1} \cdots q_{s}\right)^{2}-5$ where p_{1}, \ldots, p_{r} are the the finitely many primes of the form $5 k+1$, and q_{1}, \ldots, q_{s} are the finitely many primes of the form $5 k-1$).

Problem 10 (20pts) Let $a, b \in \mathbb{N}_{>1}$ be relatively prime and let $\left\{a_{i}\right\}_{i \in \mathbb{N}}$ be the sequence defined recursively as

$$
\begin{aligned}
a_{1} & =a \\
a_{2} & =a_{1}+b \\
a_{3} & =a_{1} a_{2}+b \\
& \vdots \\
a_{i} & =a_{1} \cdots a_{i-1}+b \\
& \vdots
\end{aligned}
$$

(a-10pts) Show that the elements of the sequence $\left\{a_{i}\right\}$ are pairwise relatively prime (meaning, $\left(a_{i}, a_{j}\right)=1$ for all $i \neq j$). Hint: suppose not, let i be the smallest index such that there is $j>i$ with $\left(a_{i}, a_{j}\right) \neq 1$, choose a prime p dividing a_{i} and a_{j}, and use the definition of a_{j} to argue that $p \mid b$. What does this imply if $i=1$? If $i>1$, what does the equation for a_{i} tell you (remember, a_{i} is supposed to be minimal)?
(b-10pts) Use part (a) to conclude that there are infinitely many primes (thus giving an alternative to Euclid's proof).
Problem 11 (10pts) Let $n=2 m$ where m is an odd natural number. Prove that $\sum_{d \mid n}(-1)^{n / d} \phi(d)=0$. (Hint: recall that for an odd natural $t, \phi(2 t)=\phi(2) \phi(t)=\phi(t))$.

