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ABSTRACT

To design a stochastic simulation experiment, it is

helpful to have an estimate of the simulation run lengths

required to achieve desired statistical precision. Preliminary

estimates of required run lengths can be obtained by

approximating the stochastic model of interest by a more

elementary Markov model that can be analyzed analytically.

When steady-state quantities are to be estimated by sample

means, we often can estimate required run lengths by

calculating the asymptotic variance and the asymptotic bias

of the sample mean in the Markov model.

1. INTRODUCTION

Simulation experiments are like exploring trips. We

usually have initial goals, but the interesting discoveries

often come from the unexpected. We typically do not know

in advance precisely how we will proceed and we cannot

predict all the benefits. In reality, most simulation

experiments are sequences of experiments, with new goals

being based on successive discoveries; see Albin (1984).

Thus, there obviously is a limit to what can be planned;

nevertheless simulation planning is our concern. One reason

is that we have to expect something before we can recognize

the unexpected.

The purpose of this paper is not so much to suggest that

we look before we leap, but to suggest a few things that we

might look at. The context is a simulation of a stochastic

model to estimate steady-state quantities of interest. Our

idea is to develop some expectations and design the initial

experiment by doing some preliminary mathematical

analysis. We focus on simulation run lengths.

Of course, since we are going to simulate, the stochastic

model of interest presumably is relatively complicated, so

that it is not easy to calculate the quantities of interest

analytically. Thus, we suggest approximating the stochastic

model of interest by a more elementary stochastic model that

can be analyzed analytically. For the approximating model,

in addition to the steady-state quantity of interest, we

calculate the asymptotic variance and the asymptotic bias of

the sample mean used to estimate the steady-state quantity

of interest (assuming that a sample mean will be used).

Then we apply these quantities to estimate the simulation

run lengths required in the original model to obtain desired

statistical precision. The estimated simulation run lengths

can then be used, before any data have been collected, to

design the experiment, i.e., to determine what cases to

consider, what statistical precision to aim for, what

experimental budget is appropriate, or even whether to

conduct the experiment at all.

There are two steps: First, we must find a suitable

approximation for the given stochastic model and, second,

we must calculate the asymptotic quantities of interest for

the approximating model. Of course, we do not want the

preliminary analysis to be harder than doing the experiment

itself. The preliminary analysis better be easy or we

wouldn’t bother with it. Fortunately, there is substantial

literature supporting these two steps.

In Whitt (1989a) we show how this program can be

carried out for a large class of stochastic models. The

models considered are those for which the stochastic process

of interest can be approximated by reflecting Brownian

motion (RBM). Through much previous work on heavy-

traffic limit theorems and diffusion approximations, it is

known that many queueing processes can be approximated

by RBM, at least roughly, so that the class of models

covered is relatively large. The class includes the standard

GI/G/1 queue, as was shown previously in related work by

Blomqvist (1969), Moeller and Kobayashi (1974) and

Woodside, Pagurek and Newell (1980), but also applies to

many other models. Similar ideas are expressed in

Chapter 5 of Newell (1982); e.g., p. 151. In Whitt (1989a)

we also show how to calculate the asymptotic quantities of

interest for RBM to obtain very simple approximate

formulas. Moreover, we show that the scaling of time in the

heavy-traffic limit theorem plays an essential role in

determining the form of the final formulas.



Of course, RBM is by no means the only stochastic

process that can be used as an approximation. For example,

the Ornstein-Uhlenbeck diffusion process is a natural

candidate for infinite-server queues, which also yields very

simple formulas. In Whitt (1989b) we apply recurrent

potential theory for Markov processes to obtain asymptotic

formulas for a large class of Markov processes, including

general birth and death processes and diffusion processes.

In Heidelberger and Whitt (1989) we compare the

asymptotic formulas, and thus the simulation efficiency, for

several different queueing models. There we show that it

usually is easier to obtain reliable estimates for an infinite-

server queue than for a single-server queue. It usually is

even easier for small closed queueing networks. Roughly

speaking, simulation efficiency increases (estimation

becomes easier) as the relaxation time (the time required to

reach steady state; see Keilson (1979)) decreases.

Our purpose here is to provide a brief overview. In

Section 2 we review the standard statistical theory leading

up to the large-sample formula for the required simulation

run length with the relative width criterion; i.e., the run

length such that the width of the confidence interval divided

by the quantity being estimated (which is presumed to be

positive) takes some prescribed value. In Section 3 we

review some of the RBM-type examples from Whitt

(1989a), including the M/M/1 queue, RBM, the GI/G/m

queue and a packet queue model from Fendick, Saksena and

Whitt (1989). The packet queue model is relatively

complicated, so that an exact analysis is evidently not

possible with current methodology. However, simple

formulas to determine appropriate simulation run lengths

can be obtained from an RBM approximation. These

examples show that it can be very misleading to do an

exploratory simulation with one set of parameter values to

determine appropriate simulation run lengths, because the

appropriate run lengths are very different for different traffic

intensities. Finally, in Section 4 we review the asymptotic

formulas for Markov processes, including the explicit

formulas for birth and death processes and diffusion

processes in Whitt (1989b).

2. STATISTICAL BACKGROUND

Let X(t) be the stochastic process of interest, which we

assume converges in distribution to a proper limit X(∞) as

t → ∞. To represent various steady-state quantities of

interest, consider Y(t) = f (X(t) ) where f is a real-valued

function on the state space of X(t). For example, if f is the

indicator function of the interval ( − ∞ , x], then

Y(t) = P(X(t) ≤ x); if f (x) = x 2 , then Y(t) = X(t)2 .

Suppose that the steady-state mean

f
_

≡ E Y(∞) ≡ Ef (X(∞) ) is to be estimated by the sample

mean Y
_

(t) = t − 1

0
∫
t

Y(s) ds. The standard statistical

analysis is based on the central limit assumption for Y
_

(t) as

t → ∞; i.e., the assumption that t 1/2 (Y
_

(t) − f
_

) converges

in distribution to a normal distribution with mean 0 and

variance σ
_ 2 as t → ∞. (Necessarily Y

_
(t) converges in

probability to f
_

as well.) Typically (under extra uniform

integrability), t Var (Y
_

(t) ) converges to σ
_ 2 as t → ∞ too;

hence we call σ
_ 2 the asymptotic variance of the sample

mean. Throughout this paper we assume that these limits

are well defined. (For some relevant existence theory, see

Glynn (1989).)

Hence, for sufficiently large t (which depends on the

model and the function f ), it is almost always appropriate to

regard Y
_

(t) as being approximately normally distributed

with mean f
_

and variance σ
_ 2 / t. However, we typically

cannot directly calculate f
_

and σ
_ 2 . Moreover, there is the

question of how large t needs to be before the normal

approximation is justified, which we will not discuss here;

see Asmussen (1989, 1980). We presume that the value of t

required to obtain desired statistical precision under the

normal approximation is large enough. We do assume that t

will indeed be relatively large, so that the large sample

theory applies.

Based on the normal approximation for Y
_

(t), a

( 1 − β) ( 100 ) % confidence interval for f
_

is

[Y
_

(t) − z β /2 (σ
_ 2 / t)1/2 , Y

_
(t) + z β /2 (σ

_ 2 / t)1/2 ] (1)

where Φ(z β /2 ) − Φ( − z β /2 ) = 1 − β with Φ being the

standard (mean 0, variance 1) normal cumulative

distribution function. The relative width of the confidence

interval (1) is then

w r (β) =
t 1/2 f

_
2 σ

_
z β /2_ _______ . (2)

For (2) to be meaningful, we assume that f
_

> 0. From (2)

we see that the required simulation run length for specified

relative width ε and level of precision β is

t r (ε , β) =
ε2 f

_2

4 σ
_ 2 zβ /2

2
_ ________ . (3)

Hence, with the relative width criterion, the required run

length is proportional to σ
_ 2 / f

_2
, which we call the (relative

width) run-length ratio.



To properly interpret the run-length ratio σ
_ 2 / f

_2
, recall

that σ
_ 2 is typically much greater than the steady-state

variance σ∞
2 = Var (Y(∞) ) due to positive correlations in

the stochastic process Y(t). Indeed, we often find it helpful

to represent the run-length ratio as the product of two

factors, by setting

f
_2
σ
_ 2
_ __ =



 σ∞

2

σ
_ 2
_ ___







 f

_2

σ∞
2

_ ___




. (4)

We call the first factor (σ
_ 2 /σ∞

2 ) the correlation factor,

because it describes the effect of the correlations over time;

we call the second factor σ∞
2 / f

_2
(which is the squared

coefficient of variation of Y(∞)) the steady-state variability

factor because it describes the effect of the variability of the

steady-state distribution.

So far we have not mentioned bias, but since we

presumably cannot start simulating in steady-state,

E Y
_

(t) ≠ f
_
. However, typically t(E Y

_
(t) − f

_
) converges

as t → ∞ to a finite limit β
_

, which we call the asymptotic

bias of the sample mean. Thus, for sufficiently large t, the

bias (E Y
_

(t) − f
_

) is approximately β
_

/ t and the relative

bias (E Y
_

(t)/ f
_

) − 1 is approximately β
_

/ f
_

t. Since the

relative bias is of order t − 1 , the relative bias is

asymptotically negligible compared to the relative width of

the confidence interval in (2) as t → ∞. However, to

determine whether the bias can reasonably be ignored, it is

helpful to approximate β
_

as well as f
_

and σ
_ 2 .

3. EXAMPLES

In this section we present some examples, drawing on

Whitt (1989a) and references cited there.

3.1 The M/M/1 queue

For the queue length process (including the customer in

service) in the M/M/1 queue with service rate 1 and arrival

rate (and traffic intensity) ρ, if we consider f (k) = k, then

f
_

=
1 − ρ

ρ_ _____ , σ∞
2 =

( 1 − ρ)2

ρ_ ________ , σ
_2

=
( 1 − ρ)4

2ρ( 1 + ρ)_ _________ , (5)

see Section 3.2 of Whitt (1989a), so that the run-length ratio

is

f
_2
σ
_ 2
_ __ =

ρ( 1 − ρ)2

2 ( 1 + ρ)_ _________ , (6)

which approaches + ∞ as ρ → 0 and as ρ → 1. Note that

the steady-state variability factor σ∞
2 / f

_2
= 1/ρ produces all

of the light-traffic explosion but none of the heavy-traffic

explosion, whereas the correlation factor

σ
_ 2 /σ∞

2 = 2 ( 1 + ρ)/( 1 − ρ)2 produces all of the heavy-

traffic explosion but none of the light-traffic explosion.

Abate and Whitt (1987) developed approximations for

the bias of the sample mean starting at zero for any t and

determined the asymptotic bias exactly, which is

β
_

= ρ/( 1 − ρ)3 . (Note that the asymptotic bias is just the

mean ρ /( 1 − ρ) times the mean of the first-moment cdf; see

Section 3 of Abate and Whitt.) Hence, for large t, the

relative bias β
_

/ f
_
t is approximately 1/( 1 − ρ)2 t, which is

asymptotically negligible compared to 1/√t and the relative

width of a confidence interval.

3.2 Time Scaling

Suppose that the process of interest X(t) is equal to

yZ(zt) for positive constants y , z and some other process

Z(t) with asymptotic parameters f
_

Z , σ∞ Z
2 and σ

_
Z
2
. It is easy

to see that the corresponding asymptotic parameters for X(t)

are f
_

= yf
_

Z , σ∞
2 = y 2 σ∞ Z

2 and σ
_2

= y 2 σ
_

Z
2

/ z, see

Section 4.2 of Whitt (1989a), so that

σ
_2

/ f
_2

= (σ
_

Z
2

/ f
_

Z )/ z , (7)

which shows the fundamental role played by the time

scaling z.

3.3 RBM Approximations

Let R(t) be RBM with drift coefficient − 1 and diffusion

coefficient 1, which has an exponential stationary

distribution with mean 1/2. Then f
_

= 1/2, σ∞
2 = 1/4,

σ∞
2 / f

_2
= 1, σ

_2
= 1/2 and σ

_2
/ f
_2

= σ
_2

/σ∞
2 = 2; see

Section 4.1 of Whitt (1989a). Here we see that the

correlation factor and the steady-state variability factor are

of approximately the same order. The interesting

phenomena occur in the scaling associated with an

approximation. The standard heavy-traffic approximation

for a queueing process X(t) associated with an m-server

queue with arrival rate and traffic intensity ρ is

( ( 1 − ρ)/ a) X(at /( 1 − ρ)2 ) ∼∼ R(t)

or, equivalently,

X(t) ∼∼ aR( ( 1 − ρ)2 t / a)/( 1 − ρ) , (8)

where a is a constant depending on the variability of the

arrival and service processes. Hence, f
_

∼∼ a /2 ( 1 − ρ),

σ∞
2 ∼∼ f

_2
, σ

_2 ∼∼ a 3 /2 ( 1 − ρ)4 and the run-length ratio is

(σ
_2

/ f
_2

) ∼∼ 2a /( 1 − ρ)2 . We see that the run-length ratio is

directly proportional to a and inversely proportional to

( 1 − ρ)2 . If X(t) is the queue length process in the standard

GI/G/m model with m servers, then a = cA
2 + cS

2 where cA
2



and cS
2 are the squared coefficients of variation (variance

divided by the square of the mean) of an interarrival times

and a service time, respectively; see Section 5.1 of Whitt

(1989a).

3.4 A Packet Queue Model

To illustrate the intended applications, we now present

an example from Fendick, Saksena and Whitt (1989) and

Sections 5.3 and 6.2 of Whitt (1989a). The model is for a

packet switch with k classes of traffic and variable packet

lengths. We assume that the switch acts as a first-come

first-served single-server queue with unlimited waiting

space. The service times are proportional to packet length.

For class i, the service times are assumed to be i.i.d. with a

general distribution having mean τ i and squared coefficient

of variation csi
2 . For each class, traffic consists of messages

divided into packets. For the class i packet stream, we

assume that packets arrive in batches (the messages), with

successive batch sizes being i.i.d. with a general distribution

having mean m i and squared coefficient of variation cbi
2 . For

each class there are spaces between the arrival epochs of

packets within the same batch. For class i, the spaces are

i.i.d. with a general distribution having mean ξ i and squared

coefficient of variation cxi
2 . Following the arrival of all

packets in a batch there is an idle period before the arrival of

the first packet of the next batch, with a general distribution

having mean ω i and squared coefficient of variation cIi
2 . We

assume that all the service times, batch sizes, spacings and

idle periods are mutually independent.

Let λp i be the arrival rate of messages for class i, where

p 1 + ... + p k = 1. From above λp i = 1/(m i ξ i + ω i ).

The associated packet arrival rate for class i is

λ
_

q i = λp i m i = m i /(m i ξ i + ω i ), where

q i = p i m i /
j = 1
Σ
k

p j m j is the proportion of all arrivals that are

of class i and λ
_

is the total packet arrival rate. Let r i = τ i /τ
where τ is the average service time for all classes, i.e.,

τ =
i = 1
Σ
k

q i τ i /
i = 1
Σ
k

q i . Let β i be the proportion of busy time

in each busy cycle for class i, defined by

β i = m i ξ i /(m i ξ i + ω i ). For convenience, choose

measuring units so that τ = 1 and the traffic intensity is

ρ = λ
_

.

It should be apparent that this model is difficult to

analyze exactly, but we have proved a heavy-traffic limit

theorem establishing a diffusion approximation for the

workload or virtual waiting time process, so that (8) is valid

with a = cA
2 + cS

2 − 2cAS
2 , where

cA
2 =

i = 1
Σ
k

q i cAi
2 ,

cS
2 =

i = 1
Σ
k

q i [ri
2 csi

2 + (r i − 1 )2 cAi
2 ] ,

cAS
2 =

i = 1
Σ
k

q i ( 1 − r i ) cAi
2

cAi
2 = m i ( 1 − β i )

2 (cbi
2 + cIi

2 ) + βi
2 cxi

2 . (9)

As indicated in Fendick et al., quite large values of the

parameters cA
2 , cS

2 and cAS
2 can occur; typical values are

cA
2 = 20, cS

2 = 35 and cAS
2 = − 7 yielding b = 60.

Simulation experience indicates that the RBM

approximation is effective for simulation run length

planning, even though the approximation errors in light

traffic from (8) and (9) are enormous; see Table 4 of Whitt

(1989a).

4. THE ASYMPTOTIC VARIANCE OF THE

SAMPLE MEAN

From Section 2 it is clear that simulation run length

planning can easily be performed if we can approximately

determine the asymptotic variance and the asymptotic bias

of the sample mean (σ
_ 2 and β

_
) as well as the steady-state

mean ( f
_

) itself. In this section we present formulas for

these quantities for diffusion processes and other basic

Markov processes, drawing on Whitt (1989b). Of course,

there is a large body of related work; e.g., see Hordijk,

Iglehart and Schassberger (1976), Hazen and Pritsker

(1980), Glynn (1984, 1989), Grassman (1987) and

references cited there.

4.1 Stationary Processes and the Spectral Density

A starting point for calculating σ
_ 2 is the formula

σ
_ 2 =

t → ∞
lim

− t
∫
t 



1 −

t
s_ __





R(s) ds = 2
0
∫
∞

R(t) dt , (10)

where R(t) = E Y ∗ ( 0 ) Y ∗ (t) − (E Y ∗ ( 0 ) )2 is the (auto)

covariance function of the stationary version Y ∗ (t) of the

stochastic process Y(t), which we assume is well defined;

i.e., we assume that E[Y ∗ (t)2 ] < ∞ so that R(t) is finite for

each t and we assume that ∫
0

∞
R(t)dt < ∞; see Chapter 5

of Fishman (1978). However, (10) is not too useful by itself

because typically it is relatively difficult to calculate R(t),

except for certain special cases, e.g., for reversible Markov

chains R(t) can be calculated relatively easily via the

spectral representation because the eigenvalues are all real;

see Chapter 7 of Keilson (1979). However, we have in mind



much easier calculations, as in Section 3.

One way to actually calculate σ
_ 2 starting from (5) is to

calculate the spectral density (the Fourier transform of R(t))

at 0, paralleling the estimation procedure in Heidelberger

and Welch (1981) and references cited there, because

σ
_ 2 = 2π s( 0 ), where s(ω) is the spectral density, defined

by

s(ω) =
2π
1_ __

− ∞
∫
∞

e iωt R(t) dt . (11)

4.2 Regenerative Processes

Another starting point for calculating σ
_ 2 is the

regenerative process formula

σ
_ 2 =

E (T 1 − T 0 )

Var



T 0

∫
T 1

(Y(t) − f
_

) dt




_ ____________________ , (12)

assuming that { T n : n ≥ 0} is a sequence of regeneration

times for X(t) with E(T 1 − T 0 )2 < ∞ and





E

T 0

∫
T 1

Y(t) dt






2

< ∞; e.g., see Glynn and Whitt (1987).

(The argument is essentially the same as in I.14-16 of Chung

(1967).) Then we can also calculate f
_

by

f
_

=
E (T 1 − T 0 )

E
T 0

∫
T 1

Y(t) dt

_ ___________ . (13)

Obviously, neither (12) nor (13) is a very tractable

expression by itself, but in Markov chains (12) and (13) can

be the basis for calculation, as shown by Hordijk, Iglehart

and Schassberger (1976). Then we can calculate both f
_

and

σ
_

by performing successive approximations of the form

x k + 1 = x 0 + Px k, where P is the transition matrix of a

transient Markov chain. Ways to improve and bound the

rate of convergence of such successive approximations are

described by van der Wal and Schweitzer (1987).

4.3 Continuous-Time Markov Chains

We obtain more tractable expressions when we impose

more structure. Now suppose that X(t) is an irreducible

continuous-time Markov chain (CTMC) with state space

{0 , 1 , ... , n } and generator matrix Q. (Similar results hold

for infinite state spaces under regularity conditions, e.g.,

assuming (12) and (13) are valid. Similar results also hold

for discrete-time Markov chains.) Let Π be the matrix with

all rows equal to the stationary probability vector π. It is

well known that π is the unique solution to xQ = θ where

θ = ( 0 , ... , 0 ) and
i = 0
Σ
n

x i = 1. From Hazen and Pritsker

(1980), Glynn (1984), Grassman (1987), Whitt (1989b) and

others (the basic theory was established much earlier),

σ
_ 2 = 2

i = 0
Σ
n

j = 0
Σ
n

f i π i Z i j f j (14)

where f i = f (i) and Z is the fundamental matrix, which

can be defined by

Z = (Π − Q) − 1 − Π . (15)

Alternatively, σ
_ 2 = 2

j = 0
Σ
n

x j f j where x is the unique

solution to xQ = − y with y i = ( f i − f
_

) π i and

i = 0
Σ
n

x i = 0. Hence, if the CTMC is a birth and death

process or, more generally, is skip free (Q i j = 0 for all

j ≥ i + 2 or for all j ≤ i − 2), then we can calculate x and

thus σ
_ 2 recursively instead of inverting the matrix (Π − Q)

in (15). (We initially let x 0 = 1 and normalize afterwards

so that Σx i = 1.) For birth and death processes, this

observation was made by Grassman (1987). If the CTMC is

not skip free, then we can calculate iteratively; see Section 5

of Whitt (1989b).

Paralleling (14), the asymptotic bias starting with initial

probability vector α, say β
_

α , is

β
_

α =
i = 0
Σ
n

j = 0
Σ
n

α i Z i j f j (16)

for Z in (15). We can also calculate β
_

α by β
_

α =
j = 0
Σ
n

x j f j

where x is the unique solution to xQ = − α + π with

i = 0
Σ
n

x i = 0.

4.4 Birth and Death Processes

We now continue towards more concrete formulas by

imposing even more structure. Let X(t) be a positive

recurrent birth and death process on the set {0 , 1 , ... , n }

with birth rates λ i , death rates µ i and stationary probabilities

π i = π 0 (λ 0 λ 1 ... λ i − 1 )/(µ 1 ... µ i ). (The process is

reflecting at 0 and n; i.e., λ n = µ 0 = 0.) Then



σ
_ 2 = 2

j = 0
Σ

n − 1

λ j π j

1_____


 i = 0
Σ

j

( f i − f
_

) π i





2

(17)

and

β
_

α =
j = 0
Σ

n − 1

λ j π j

1_____
i = 0
Σ

j

( f i − f
_

) π i
i = 0
Σ

j

(α i − π i ) .(18)

((17) was communicated by Burman (1980).) For the

M/M/1 queue in Section 3 we easily obtain (6) from (17).

For computation in the general case, it is often convenient to

move π j in (17) and (18) into the inner sum; see (17) of

Whitt (1989b).

4.5 Diffusion Processes

Finally, let X(t) be a positive recurrent diffusion process

on the interval [a , b] with drift coefficient µ(x), diffusion

coefficient σ2 (x) and reflecting boundaries at a and b. Since

a diffusion process is the continuous-state analog of a birth

and death process, we obtain continuous-state analogs of

(17) and (18). First, the stationary density is

π(y) = m(y)/ M(b) where m(y) = 2/σ2 (y) s(y) is the

speed density, M(y) =
a
∫
y

m(x) dx and

s(y) = exp




−

a
∫
y

[ 2µ(x)/σ2 (x) ] dx






is the scale density,

assuming all integrals are finite. Then

σ
_ 2 = 2

a
∫
b

σ2 (y) π(y)

2_ __________



 a
∫
y

( f (x) − f
_

) π(x) dx






2

dy(19)

and

β
_

α = a
a
∫
b

σ2 (y) π(y)

2_ __________ ×




 a
∫
y

( f (x) − f
_

) π(x) dx
a
∫
y

(α(x) − π(x) ) dx






dy . (20)

(Formula (19) appears on p. 94 of Mandl (1968).) For

RBM in Section 3 we easily obtain σ
_ 2 = 1/2 from (19).
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