

Enhancing WebGen5 with

Access Control,

AJAX Support, and

Editable-and-Insertable Select Form.

by

Mariko Imaeda

Submitted to

Oregon State University

In partial fulfillment of

the requirements for the

degree of

Master of Science

Presented December 4, 2007

Commencement June 2008

Abstract

WebGen is a software tool for generating Web scripts automatically for a Web-based

database application. In this project, access control, AJAX support, and editable-and-

insertable table mechanisms were added to WebGen. With our access control mechanism,

an access-control level can be specified for each table. In access control level 1, for

example, a user can read any records, and a logged-in user can insert records and update

and delete the records inserted by her. There are five access control levels. WebGen

now can generate an AJAX server-side PHP script that retrieves, based on a given value,

one or multiple records from the database. The given value may be selected from a

dropdown list in a form, and the retrieved value or values can be set in an input

element or in a select element as options, respectively. With an editable-and-

insertable select form, a user can now read, insert, update, and delete multiple records in

a table at one time.

Table of Contents:

1. INTRODUCTION .. 1

2. ACCESS CONTROL MECHANISM.. 4

2.1 USER INFORMATION.. 5

2.2 REGISTRATION AND LOG-IN... 8

2.3 ACCESS CONTROL LEVELS ... 11

2.4 COLUMNS READABLE ONLY BY AN ADMIN USER... 16

3. AJAX SUPPORT... 18

3.1 AJAX CLIENT JAVASCRIPT ... 23

3.2 AJAX SERVER-SIDE PHP SCRIPTS AND THE TEMPLATE FOR THEM.. 27

4. EDITABLE AND INSERTABLE SELECT FORM .. 32

5. CONCLUSIONS AND FUTURE WORK... 35

6. REFERENCE .. 36

1

1. Introduction

 WebGen 5 is a software tool generating scripts for Web forms that are used for

managing records stored in a database. Five Web scripts namely, search, select, edit, info,

and action scripts, can be generated for each table. A user can provide search parameters

with the search form, and the retrieved records are displayed in the select form. She can

view the detailed information relate to one record with the edit or info form. The edit

form allows her also to insert, update, or delete a record. The action script is activated

for inserting, updating, and deleting records in the database. These web scripts can be

generated from a configuration file that specifies how the fields in the forms should be

generated. The configuration file is produced from the metadata of the database.

 Four Web script generators precede WebGen 5. WebSiteGen 1 was the first

attempt. It generated Web scripts from an ER diagram. However, this approach was not

effective, because an ER diagram may not accurately reflect the real structure of a

database. Starting with WebSiteGen 2, relational database schemas were used to

generate Web scripts. WebSiteGen 2 was a Windows application written in Java that

generated ASP Web scripts. About one year later, WebSiteGen 3, which generated more

complex ASP.NET Web scripts supporting one-to-many and many-to-one relationships

between tables, was developed. WebSiteGen 3 was written in C#, and it was actually

used to generate Web scripts for real projects.

 When WebSiteGen 3 was partially completed, PHP Web scripts had to be

generated, and the work on WebSiteGen 4 was started. However, WebSiteGen 4 was not

very successful. The code became long and hard to understand. A change in one part

often caused ripple effects throughout the entire Web script generator, and hence the

generator was difficult to maintain.

 While trying to overcome the problems in WebSiteGen 4, we came across a new

idea of using templates for generating Web scripts. Because a template resembles the

generated Web scripts, creating a set of templates is easier than writing a generator in a

 2

conventional programming language. Moreover, as one template only generates one type

of web scripts, changes in one template do not affect other templates, unless the changes

are related to parameters passed between scripts.

In this project, we added mechanisms for access control, AJAX support, and

editable-and-insertable table to WebGen 5.

In order to restrict access to records stored in the database by a user, we

implemented access control mechanism. We provide five access control levels 0 – 4, one

of which can be specified in the configuration file for a table. We also categorize each

user in one of the public, owner, or admin group. If the access control level for the

table is 0, no access restrictions are applied, and a user can read, insert, update, and delete

any records. When the access control level for the table is one of the levels 1 – 4,

accessing a record in the table by a user in the public or owner group is restricted. At

any access control level, an admin user can read, insert, update, and delete any records.

When form scripts for a table are generated by webgen, one or more AJAX

server-side PHP scripts can be generated. Each AJAX server-side script retrieves one or

multiple records based on a given value and returns the values computed from them. In

the search or edit form, one dropdown list and another select or input element are

associated with the server-side script as a source field and as a target field, respectively.

When the value of the source field is modified, the script is activated and returns the

result to the Web form. The returned values are handled by a common AJAX client-side

JavaScript code and set in the target element.

Previously, a select form displayed multiple records, each as a row in a table, and

a user could only view and delete those records. In order to allow a user to insert and

update records in addition to viewing and deleting them, we can now generate an

editable-and-insertable select form. An editable-and-insertable table is called a data-grid.

 3

Each table cell is converted to an input or select element so that a user can modify

its value. Furthermore, a new row can be added at the end of the table.

In Section 2, we explain the details of our access control mechanism. Section 3

describes the details of the AJAX support mechanism. An editable-and-insertable select

form is discussed in Section 4. In Section 5, conclusions are provided, and possible

future work is discussed.

 4

2. Access Control Mechanism

It is often required to allow a user to access only certain rows in tables. Our

security mechanism is organized as follows.

1. Users are categorized into three groups, public, admin, and owner. Each

user in the admin group and the owner group need to have an account and log-

in. No access restriction is applied to the admin users at any level. The users in

public group are the users who have not logged-in.

2. One of the five access control levels 0 – 4 can be applied to the forms of each

table. The access control level can be defined in the configuration file for the

table. The access control levels are applicable to the users in the owner and

public groups.

3. The ID of a user is stored in every record owned by that user.

Information on the users is maintained in table login_user. The details about

this table are discussed in Section 2.1.

Access to a table by users in the owner and public groups is restricted by the

access control level defined for the table.

Level 0. No access restriction is applied. Every user can insert/read/update/delete

any record in the table.

Level 1. An owner user can read any record and insert a new record, but she can

update and delete only the records owned by her. A public user can read any

record.

Level 2. An owner user can insert a record, and she can read/delete/update only

the records owned by her. No permission is given to a public user.

Level 3. A public user and an owner user can read any record. However, they

cannot insert, update, or delete a record. All the records of this access control

level need be owned by admin users.

Level 4. No permission is given to a public user or an owner user.

We explain about these access control levels more in Section 2.3.

 5

2.1 User Information

In our security control mechanism, table login_user maintains information on

all the admin and owner users. If any table has access control level other than level 0,

a user registration table and table d_login_user_role need be created. Figure 2.1

gives the CREATE statement for a sample user registration table. Any table can be used

as the user registration table as long as it contains columns login_name, password,

and d_login_user_role_id.

CREATE TABLE login_user{
login_user_id integer,
login_name varchar,
password varchar,
name varchar,
address varchar,
city varchar,
state varchar,
zip_code varchar,
phone varchar,
fax varchar,
email varchar,
row_owner_id integer,
d_login_user_role_id integer,

};

Figure 2.1: CREATE statement for table login_user

CREATE TABLE d_login_user_role {
d_login_user_role_id integer,
user_role_name varchar,

};

 d_login_user_role_id user_role_name

 1 admin

 2 owner

Figure 2.2: Table d_login_user_role and the two records.

 6

Table d_login_user_role stores the possible user roles, in our case, admin

and owner as shown in Figure 2.2. The IDs of the records can be stored in column

d_login_user_role_id of table login_user.

Each user in the admin or owner group must have a record in table

login_user. Important columns in table login_user are the followings:

login_user_id

The primary key column.

login_name

The value is used as the login name for log-in.

password

The value is used as the password for log-in.

d_login_user_role_id

The foreign-key column linked to column d_login_user_role_id in table

d_login_user_role. The value is 1 for an admin user or 2 for an owner

user.

row_owner_id

The same value in column login_user_id.

 7

Figure 2.3: ER schema diagram for table login_user.

In order to implement access control, the owner is defined for each record. For

this purpose, column row_owner_id is added to each table that requires access

restriction, as shown in Figure 2.3. When a new record is inserted in the table, the ID of

the user, which is the login_user_id of that user, is set as the value of

row_owner_id.

 8

2.2 Registration and Log-In

If a user wants to access tables protected with one of access control levels 1 – 4,

she must create an account from a registration page as shown in Figure 2.4. With this

registration page, d_login_user_role_id for the user is automatically set to 2,

which indicates owner. The value entered for login name is checked if it is unique.

After creating an account, she can log-in from the login page shown in Figure 2.5.

Figure2.4: The registration page.

 9

Figure2.5: The login page.

At the login page, a user enters her login name and password, and a session data is

initialized. With the login name and the password, the record of the user is searched from

table login_user. If the user is authorized, then the ID and the role of the user are

stored in the session as shown in the code of Figure 2.6.

$_SESSION['UID'] – the ID of the user.

$_SESSION['UROLE'] – the role of the user, owner or admin.

$_SESSION['UNAME'] – the login name of the user.

 10

session_start();
...
if (($role = get_role($form['login_name'], $form['password'])) != '') {
 $_SESSION['UID'] = get_user_id($form['login_name'], $form['password']);
 $_SESSION['UNAME'] = $form['login_name'];

 switch($role) {
 case "1":
 $_SESSION['UROLE'] = "admin";
 break;
 case "2":
 $_SESSION['UROLE'] = "owner";
 break;
 }
 ...
}

function get_role($login_name, $password) {
$sql_select = "SELECT role FROM login_user
 WHERE login_name = '$login_name'
 AND password = '$password';";

 $db->query($sql_select);
 if ($db->num_rows() == 1) {
 $db->next_record();
 return $db->f('role');
} else
 return null;
}

function get_user_id($login_name, $password) {
$sql_select = "SELECT login_user_id FROM login_user
 WHERE login_name = '$login_name'
 AND password = '$password';";

 $db->query($sql_select);
 if ($db->num_rows() == 1) {
 $db->next_record();
 return $db->f('login_user_id');
} else
 return null;
}

Figure 2.6: login.phtml

 11

2.3 Access Control Levels

In order to implement access control, one of the five access control levels 0 – 4

need be specified with variable $access_control_level in the configuration file

for a table. Also, each user need be classified as admin, owner, or public. Figure

2.7 shows the access control applied under this condition.

User Group
Level

admin owner public

Any actions Any actions Any actions 0

 Read any records Read any records

Any actions Insert new records No Insert actions 1
 Update/Delete owned records No Update/Delete actions

 Read owned record

Any actions Insert new records No actions 2
 Update/Delete owned records

 Read any records Read any records

Any actions No Insert action No Insert actions 3
 No Update/Delete actions No Update/Delete actions

Any actions No actions No actions 4

Figure 2.7: Possible user actions at each level.

According to the access control level defined in the configuration file, access

restrictions are enforced by the web scripts generated by webgen. In the following, we

describe how the search, select, edit, info, and action scripts for each table implement

access control. Since any action is allowed for an admin user, possible actions for an

admin user are not described.

 12

Access control level 0 (Default)

No restriction is applied. Anyone can insert/read/update/delete records in the table.

This is the default access control level.

Access control level 1

At this level, a user in any group can read any records in the table. However, only a

logged-in user can insert records, and the records inserted are owned by that user. An

owner user can update and delete only records owned by her.

Search script

The search form can be used by all users.

Select script

1. Records selected can be listed for any user.

2. For an owner user and an admin user, the Insert New button is shown.

3. For an admin user, the Delete button is shown.

Edit script

1. For a public user, the edit form is not accessible. When a primary key

value for a record is passed to the edit script, the info form is loaded.

2. When the script is activated for updating an existing record by an owner user,

the info form is loaded if the ID of the owner user does not match the value

of row_owner_id of the record.

3. For a record to be inserted or updated by an owner user, the ID of the user is

stored as the value of row_owner_id and modified_by of the record,

and the current date is stored as the value of modified_date.

4. For a record to be inserted or updated by an admin user, the values of form

parameters row_owner_id, modified_by, and modified_date are

used as the values of the record.

5. Deletion of a record by an owner user can be performed only when the value

of row_owner_id of the record matches the ID of the owner user.

 13

Info script

No access control is required for any user.

Action script

1. For a public user, the action form is not accessible.

2. When the Delete button in the select form is clicked by an admin user, each

of the selected records is deleted by this action script.

Access control level 2

At this level, a public user cannot take any action. The login-in page is loaded

when a public user tries to access a form. An owner user can insert records and

access only those records that are owned by her. An owner user cannot read records

owned by others.

Search script

For a public user, the search form is not accessible. When a public user

accesses it, the login-in page is loaded.

Select script

1. For a public user, the select form is not accessible.

2. For an owner user, in addition to the parameters passed from the search form,

the ID of the user is set as the search parameter value of row_owner_id,

and hence only the records owned by that user are retrieved.

3. With the Delete button, an admin user can delete any selected records, and

an owner user can delete selected records owned by her.

4. If the select form is editable, a user can update and delete multiple records

from the form. Furthermore, if it is editable and insertable, a new record can

be inserted with the select form. These actions are performed when the Apply

button is clicked. The Apply button is shown for an editable select form. The

details of an editable and insertable select form are discussed in Section 4.

 14

Edit script

The edit script works like the one whose access control level is 1, except for the

following differences.

1. For a public user, the edit form is not accessible.

2. When the script is activated for updating an existing record by an owner user,

the error message is given if the ID of the owner user does not match the

value of row_owner_id of the record.

Info script

1. For a public user, the info form is not accessible.

2. For an owner user, the error message is given if the ID of the owner user

does not match the value of row_owner_id of the record.

Action script

1. For a public user, the action form is not accessible, so the error message is

given.

2. When deletion of records is requested from the select form, each of the

selected records is deleted in this action script.

3. When the Apply button in the select form is clicked, the applicable action for

each record is executed in this action script. The details are described in

Section 4.

Access control level 3

At this level, a user can read any records. Only an admin user can insert a new

record or update and delete existing records.

Search script

The search form can be used by any user.

Select script

1. Records selected can be listed for any user.

2. For an admin user, the Insert New button and the Delete button are shown.

 15

Edit script

For a user in the public or owner group, the edit form is not accessible. When

the script is activated for updating by a user in the public or owner group, the

info form is loaded for display only. When the script is activated for inserting a

record, an error message is given.

Info script

No access control is required for any user.

Action script

For a user in the owner or public group, the action script is not accessible.

When a user in the public or owner group accesses it, the error message is

given.

Access control level 4

At this level, only admin users can access records. A user in the public or owner

group cannot even read records.

All the search, select, edit, info, and action forms are accessible for only admin

users. When the script is activated by a user in the public or owner group, the

error message is given, or the login-in page is loaded.

 16

2.4 Columns Readable only by an Admin User

Fields for some columns can be hidden from a user in the public or owner

group, while those fields are displayed for an admin user. For example, the field for

column row_owner_id need not be shown for an owner user or should not be edited

by her. However, the value of row_owner_id should be readable and editable by an

admin user, since she might need to know who owns the record and change the owner.

Sample forms accessible by an owner user and an admin user are shown in Figure 2.8.a

and 2.8.b, respectively.

Figure 2.8.a: The edit form for an owner user.

 17

Figure 2.8.b: The edit form for an admin user.

In order to hide fields from public and owner users, attribute admin_only

need be set for each of those columns. When a user in the public or owner user

activates a search, select, edit, or info script, the fields for the columns whose

admin_only attributes are set to true are not generated by the script. Also, when an

SQL query for inserting and updating a record is formulated, those columns are not

included in it.

Furthermore, the values of columns row_owner_id, modified_by, and

modified_date need be automatically set when an owner user insert or update a

record.

When an owner user updates a record with an edit form, she might try to update

a record owned by another user by providing the primary key value in the URL. In order

to prevent such an action, the value of row_owner_id of the record to be updated is

retrieved from the database and checked before the SQL query is executed. Although

this check does not prevent the user from updating another record owned by her, a record

owned by another user cannot be updated.

 18

3. AJAX Support

We often have to provide a set of possible options for a dropdown list in a form

according to the selected value in another dropdown list. For example, after a state is

selected with the form shown in Figure 3.1, we have to provide for selection only the

counties in that state.

Figure 3.1: List of the counties in the state selected.

We implemented this mechanism by using AJAX as shown in Figure 3.2. When

the user selects a state from a dropdown list in the form, the ID of the state is sent as an

AJAX request to PHP script clu_parcel_ajax_d_county.php. The form script

contains JavaScript ajax_client.js to issue the AJAX request. The PHP script then

 19

retrieves the list of the counties in the state from the database and returns it to the form.

Then, the counties returned are set in the county dropdown list.

Set of counties

State ID

clu_parcel_ajax_d_county.php

SQL query

clu_parcel_search.phtml

List of counties

ajax client.js

PHP server-side script

Database

handleResponse()

sendRequest()

Figure 3.2: AJAX request processing.

 20

AJAX client-side JavaScript file ajax_client.js

A Web page can include this JavaScript file to issue an AJAX request. The AJAX

request is sent with function sendRequest(), and its response is received with

function handleResponse().

AJAX server-side PHP file xxx_ajax_yyy.php

This PHP script is activated by an AJAX request. SQL queries are formed with the

parameters passed in the request, and those queries are executed to retrieve records

from the database. The response formulated from the retrieved records is sent back

to handleResponse().

WebGen is a software tool for automatically generating Web scripts that display

Web forms and operate on data stored in the database. The previous version of WebGen

can generate five types of Web scripts: search, select, edit, information, and action

scripts shown in Figure 3.3 for each table from a configuration file. A template written in

PHP is provided for each type of Web scripts. The generated scripts are executed on the

Web server by a PHP interpreter. Each script, except for an action script, generates a

Web form that is displayed on a client computer by a Web browser.

 21

webgen

Search

Template

AJAX

Server

Action

Template

Info

Template

Edit

Template
Select

Template

Search

Script

Select

Script

Edit

Script

Info

Script

Action

Script AJAX

Server

Script

AJAX

Server

Script

AJAX

Server-side

PHP

Script

xxx.config

Figure 3.3: Generating Web-scripts by WebGen templates.

In addition to the scripts previously generated, WebGen can now support AJAX

requests by parameterizing url, target_element, and response_type in

ajax_client.js.

1. Parameter url indicates the URL consisting of the server-side PHP script

and the HTML parameters.

2. Parameter target_element indicates the ID of the element where the

response is stored.

3. Parameter response_type can be value or options, where value

indicates a scalar value, and options indicates the options for an HTML

select element.

Also, server-side script xxx_ajax_yyy.php is automatically generated, and for this

purpose, $ajax_fields is added to configuration file xxx.config.

 22

For each type of AJAX requests, one server-side AJAX script in PHP is needed.

When UNIX command webgen is issued with table name xxx, AJAX server-side scripts

in PHP as well as five form scripts are generated as shown in Figure 3.3.

 23

3.1 AJAX Client JavaScript

In order to support an AJAX request, JavaScript file ajax_client.js need be

included in a form script. Two functions sendRequest(), which is invoked when a

value is selected from a dropdown list in a form, and handleResponse(), which is a

callback function for a response produced by an AJAX request, are implemented in this

file.

function sendRequest(url, target_element, response_type) {

 var http_request = false;
 if (window.XMLHttpRequest) { // Mozilla, Safari,...
 http_request = new XMLHttpRequest();
 if (http_request.overrideMimeType) {
 http_request.overrideMimeType('text/xml');
 }
 http_request.target_element = target_element;
 http_request.response_type = response_type;
 } else if (window.ActiveXObject) { // IE
 try {
 http_request = new ActiveXObject("Msxml2.XMLHTTP");
 } catch (e) {
 try {
 http_request = new ActiveXObject("Microsoft.XMLHTTP");
 } catch (e) {}
 }

 global_target_element = target_element;
 global_response_type = response_type;
 }

 if (!http_request) {
 alert('Giving up :(Cannot create an XMLHTTP instance');
 return false;
 }

 http_request.onreadystatechange =
 function() { handleResponse(http_request); };
 http_request.open('GET', url, true);
 http_request.send(null);

}

Figure 3.4: AJAX JavaScript function sendRequest().

 24

sendRequest(url, target_element, response_type)

Arguments

url

URL of the server-side PHP script.

target_element

The ID of the HTML element where the response data is set.

response_type

Type of the HTML element for the response, value which indicates a scalar

value or options which indicates a set of options for an HTML select

element.

Returns

false if an instance of XMLHttpRequest or ActiveXObject is not created. This

method returns nothing if it is created successfully.

Description

First, object http_request that handles AJAX requests and responses on the client-

side is created. For IE5 and IE6, http_request is an instance of ActiveXObject,

and for Mozilla, Firefox, Safari, and IE7, it is an instance of XMLHttpRequest.

Custom properties target_element and response_type are added to this

instance. Function handleResponse() is set in the property

onreadystatechange as the callback function for a response. By open() function,

url and the HTTP method, which is GET, are set. Finally, http_request is sent by

send().

 25

function handleResponse(http_request) {
 if (http_request.readyState == 4) {
 if (http_request.status == 200) {
 if (http_request.response_type) {
 response_type = http_request.response_type;
 target_element = http_request.target_element;
 } else {
 response_type = global_response_type;
 target_element = global_target_element;
 }

 switch (response_type) {
 case "options":
 responses = http_request.responseText.split('|');
 select = document.getElementById(target_element);

 select.options.length = 0;
 select.options[0] = new Option("", "", false, false);
 for (var i = 0; i < responses.length; i += 2){
 select.options[1 + i/2] =
 new Option(responses[i+1], responses[i],
 false, false);
 }
 break;
 case "value":
 response = http_request.responseText;
 document.getElementById(target_element).value = response;
 break;
 default:
 break;
 }
 } else {
 alert('Response error code: ' + http_request.status);
 }
 }
}

Figure 3.5: AJAX JavaScript function handleResponse().

 26

handleResponse(http_request)

Arguments

http_request

An instance of XMLHttpRequest

Returns

Nothing.

Description

When the client-side script receives a response, this function is activated.

1. If http_request.response_type is value, then the returned value is set

in the text box of the input element specified by

http_request.target_element.

2. If http_request.response_type is options, then the response data is

set in the dropdown list of the select element specified by

http_request.target_element. The response data is a sequence of

values separated by a character |. For example, the options of a dropdown list for

a list of Oregon counties are encoded as,

001|Baker|003|Benton|005|Clackamas|007|Clatsop.

Each pair of values is set as one option of the select element.

 27

3.2 AJAX Server-Side PHP Scripts and the Template for them

The server-side PHP script for each type of AJAX requests can be generated

automatically by webgen from template script ajax_server.tmpl. If variable

$ajax_fields is defined in xxx.config file, for each element in

$ajax_fields[], the template activated from webgen generates PHP script

xxx_ajax_yyy.php, where yyy is the name of the table whose records are retrieved by

an AJAX request. The following properties are defined for each element of

$ajax_fields[]:

source_column (Required)

The foreign-key column in table xxx.

sqlFrom (Required)

The name of the table whose records are retrieved by an AJAX request. This

name is also used as yyy in xxx_ajax_yyy.php.

linked_column (Optional)

The foreign-key column in the table whose records are retrieved. If this value is

same as the value of source_column, this need not to be defined.

sqlSelect (Required)

Two columns in the table specified by sqlFrom. The values in these columns

are used for the options of the select element.

response_type (Required)

The type of the target element, options or value. Type options indicates

that an AJAX request returns a list of values to a dropdown list, and type value

indicates that an AJAX request returns one value.

whereAdd (Optional)

An additional condition for the where clause of the SQL statement.

orderBy (Optional)

The column for sorting the retrieved records. This property is applied to the

order by clause of the SQL statement.

 28

Consider a form where a state and a county need be selected. With this form, when a

state is selected, the list of the counties in the state is returned and displayed in a

dropdown list. The relationship among the form and table d_state is shown in Figure

3.6. Table d_state contains information on the states, and table d_county

information on the counties.

1

*

Form for the anchor table

countycd

Table d_state

sqlFrom: Table d_county

 countycd statecd county_name

Figure 3.6: Relationship among the form and table d_state and table d_county.

source_column: statecd

 statecd state_name

linked_column:

For this purpose, $ajax_fields need to be defined in the configuration file as

shown in Figure 3.7.

 29

$ajax_fields = array(
 array(
 "source_column" => "statecd",
 "sqlFrom" => "d_county",
 "linked_column" => "statecd",
 "sqlSelect" => array("countycd", "county_name"),
 "response_type" => "options",
 "orderBy" => "county_name",
),
);

Figure 3.7: $ajax_fields in xxx.config.

1. source_column, which is the foreign-key column in the anchor table for the

form, is set to statecd. statecd is an alternate key in table d_state.

2. sqlFrom is table d_county, from which county records are retrieved.

3. linked_column, which is the foreign-key column in table d_county, is set

to statecd. This column is linked to column statecd in table d_state and

to column statecd in the anchor table.

4. sqlSelect is a pair of columns countycd and county_name in table

d_county. The values of these columns are retrieved for the dropdown list of

the counties in the state selected. The values in columns countycd and

county_name are used by the options of the select element.

5. response_type is options, since multiple records are retrieved from table

d_county.

6. orderBy is county_name so that the counties names retrieved are sorted

according to their names.

When webgen is activated for table xxx, xxx_ajax_d_county.php shown in

Figure 3.8 is generated from $ajax_fields defined in xxx.config. This script

is used as the server-side PHP script for the search and edit forms for table xxx.

 30

<?
 include("../datasource.php");
 include("../../../framework_v3/common.phtml");

 $statecd = get_param('statecd');

 $sql =
 "select countycd, county_name
 from d_county ";

 if (!empty($statecd)) {
 $sql .= " where statecd = '$statecd'";
 }

 $sql .= " order by county_name";

 $db->query($sql);

 $select_options = array();
 $nrows = $db->num_rows();
 for ($i = 0; $i < $nrows; $i++) {
 $db->next_record();
 $select_options[] = $db->f('countycd');
 $select_options[] = $db->f('county_name');
 }
 $select_options_string = implode('|', $select_options);
 return $select_options_string;
?>

Figure 3.8: xxx_ajax_d_county.php.

Based on the definition of $ajax_fields, the following SQL statement is

constructed:

SELECT countycd, county_name
FROM d_county

WHERE statecd = '$statecd'
ORDER BY county_name

After the county records for the selected state are retrieved from table d_county, the

values of countycd and county_name in each record are first stored in array

$select_options[]. Then all the elements in $select_options[] are joined

into $select_options_string where adjacent values are separated by character |.

Finally, $select_options_string is returned.

 31

When a value is selected from the dropdown list of the states, sendRequest() need be

called by the onChange event. For this purpose, the add_attribute option need be

defined in $edit_fields and $search_fields for the statecd field as

'add_attribute' => 'onChange =

"sendRequest(\'./xxx_ajax_d_county.php?statecd=\'+this.value,
\'countycd\',
\'options\');

return false;"'

As we discussed in Section 3.2, sendRequest() requires three parameters: url,

target_element, and response_type.

1. url designates the server-side AJAX script generated by

ajax_server.tmpl and the HTML parameter for the statecd field.

2. target_element indicates the name of the select element in which the list

of the counties selected for the state specified are displayed.

3. respose_type is options since a list of counties for the options of the

select element is returned from the sever-side PHP script.

With the add_attribute option defined in $edit_fields, in the edit script, the

onChange attribute is added to the select element for the statecd field as shown

in Figure 3.9.

<select name=statecd ID=statecd onChange="sendRequest(
'./clu_parcel_ajax_d_county.php?statecd=' + this.value,
'countycd',
'options');

 return false;">
 <option value="" selected> Any</option>
 <option value=00> Aguascalientes </option>
 <option value=01> Alabama </option>
 <option value=02> Alaska </option>
 <option value=03> Alberta </option>
 <option value=04> Arizona </option>
</select>

Figure 3.9: Code of the select element of a state

 32

4. Editable and Insertable Select Form

Using an edit form generated by webgen, a user can perform an insert, delete,

and update action for a single record, but she cannot manipulate multiple records at a

time. With an ordinary select form, a user can view a list of records and delete records

selected from that list. For inserting a new record or updating an existing record, an edit

form need be open from the select form as shown in Figure 4.1.

Figure 4.1: Updating and inserting a record from an ordinary select form.

However, with an editable and insertable select form, a user can insert new

records and update and delete existing records. If the select form is editable, each form

 33

cell becomes an input or select element as shown in Figure 4.2 so that a user can

modify the value of the element. Furthermore, if the select form is insertable in addition

to being editable, new rows can be added to the select form in order to insert new records.

Figure 4.2: An editable and insertable select form.

If a user wants to update an existing record, she can modify the values in the

input and select elements. If she wants to insert a new record, then she can click the

Insert New button and provide new values in the input and select elements. In order

to delete existing records, she can select those records and click the Delete button. Delete

requests can be cancelled with the Undelete button. The actual operations on the records

in the database are performed when the Apply button is clicked.

Two form elements are provided for each field of a record in the select form. One

is a hidden input element that keeps the value retrieved from the database when the

select form is loaded. The other is an input or select element maintaining the value

that can be updated. The values in these two elements are initially identical. When a

 34

new row is added for inserting a new record, only the form elements for the new values

are provided for the row.

In addition to these form elements, form element subcmd, which specifies the

type of the action applied to each record, is provided:

'I' for a record to be inserted,

'D' for a record to be deleted, and

'N' for the remaining records.

When the Apply button is clicked, the form parameters are submitted to the script.

Then, an SQL query is constructed based on the value of form parameter subcmd

provided for each row. If it is 'I' or 'D', an insert or delete SQL query is formulated

and executed, respectively. If it is 'N', the old and new values of each field of the

record are compared. If the old and new values of any field are different, an SQL query

for updating the record is constructed and executed.

If variable $select_editable is set to true in the configuration file of a

table, the select form of the table can become editable and insertable. The select form

becomes editable if form parameter editable=1 is passed to the select script and, it

becomes insertable if form parameters editable=1 and insertable=1 are passed

to it.

 35

5. Conclusions and Future Work

 We added mechanisms for access control, AJAX support, and editable-and-

insertable table to WebGen. Five access control levels were implemented, and one of

them can be specified for each table. With this access control mechanism, we can protect

records owned by a user from other non-admin users. We provided an AJAX support

for the value of an input element or the list of the options of a select element which

is dependent on the value of another element. The AJAX server-side scripts for this

purpose can be generated automatically. We extended the template for select scripts to

support editable-and-insertable select forms. An editable-and-insertable form allows a

user to insert and update multiple records as well as to view and delete them without

opening an edit form for each record.

The following features can be added to improve WebGen further.

1. The access control mechanism can be improved if groups of users are introduced.

2. As discussed in Section 2.4, with an edit form, an owner user can modify

another record owned by her by providing the primary key value of the record in

the URL. We should prevent her from updating a record in this way.

3. With our AJAX support mechanism, we can use only a single input or select

element as the target element. Sometimes we need to allow multiple target

elements.

 36

6. Reference

[ALBA-05] Albader, B. A Configuration File Generator for Web Forms, M.S. project

report, School of EECS, Oregon State Univ., 2005.

[CHAL-08] Chalainanont, N., Sano, J. and Minoura, T. Automatic Generation of Web-

Based GIS/Database Applications. Open Source Geospatial (OSGeo) Journal, To appear,

2008.

[EUM-03] Eum, D. and Minoura, T. Web-Based Database Application Generator. IEICE

Transactions on Information and Systems, Vol. E86-D, No. 6. June 2003.

[NAIK-02] Naik, P. WebSiteGen3: A Tool for Generating ASP.NET Forms, M.S. project

report, School of EECS, Oregon State Univ., 2002.

[TASH-06] Tashiro, H. WebGen 5 Version 2: Automatic Web-Script Generator for Web-

Based GIS/Database Applications, M.S. project report, School of EECS, Oregon State

Univ., Sept. 2006.

[WANG-03] Wangmutitakul, P., Li, L., and Minoura, T. User Participatory Web-Based

GIS/Database Application. In. Proc. of Geotec Event Conference, March 2003.

[WANG-04] Wangmutitakul, Paphun, et al. WebGD: Framework for Web-based

GIS/database Applications, Journal of Object Technology 3, 4, 209-225, 2004.

[YANG-04] Yang, S. WebGen 5: A PHP Script Generator with Templates, M.S. project

report, School of EECS, Oregon State Univ., Sept. 2004.

