Enhancing WebGenS with
Access Control,
AJAX Support, and
Editable-and-Insertable Select Form.

by
Mariko Imaeda

Submitted to
Oregon State University
In partial fulfillment of
the requirements for the

degree of

Master of Science

Presented December 4, 2007
Commencement June 2008

Abstract

WebGen is a software tool for generating Web scripts automatically for a Web-based
database application. In this project, access control, AJAX support, and editable-and-
insertable table mechanisms were added to WebGen. With our access control mechanism,
an access-control level can be specified for each table. In access control level 1, for
example, a user can read any records, and a logged-in user can insert records and update
and delete the records inserted by her. There are five access control levels. WebGen
now can generate an AJAX server-side PHP script that retrieves, based on a given value,
one or multiple records from the database. The given value may be selected from a
dropdown list in a form, and the retrieved value or values can be set in an input
element or in a select element as options, respectively. With an editable-and-
insertable select form, a user can now read, insert, update, and delete multiple records in

a table at one time.

Table of Contents:

1. INTRODUCTION 1
2. ACCESS CONTROL MECHANISM 4
2.1 USER INFORMATION.uuvtiiiiieieiiiitteeeeeeeeeiiitreeeeeeeeeeeitaaeeeeeeeeeesasseseseeeaseasseseeeseeeetssseeeeeeeesitrrseseseeanns 5
2.2 REGISTRATION AND LOG-IN ..., 8
2.3 ACCESS CONTROL LEVELSoiititiiiiiiieeieieeee ettt e e ettt e e e e e eeataae e e e e eeenaaaaaeeeeeeeesnsraareeeeeeans 11
2.4 COLUMNS READABLE ONLY BY AN ADMIN USER..........cccooiiiiiiiiiiiiiiiiiiiieeieeeeeeeiireeeeeeeeeesvrereeeeeeens 16
3. AJAX SUPPORT 18
ST AJAX CLIENT JAVASCRIPTooovtiiiiiiiieeiiiiieeee e e eeeeiteeeeeeeeeeeaaeeeeeeeeesisseeeeeeeeeeiataseeseeeeeeeraereeeeeeaans 23
3.2 AJAX SERVER-SIDE PHP SCRIPTS AND THE TEMPLATE FOR THEM............ccoovviuuiiiieeieeiinieeeeeeeennns 27
4. EDITABLE AND INSERTABLE SELECT FORM 32
5. CONCLUSIONS AND FUTURE WORK 35

6. REFERENCE 36

1. Introduction

WebGen 5 is a software tool generating scripts for Web forms that are used for
managing records stored in a database. Five Web scripts namely, search, select, edit, info,
and action scripts, can be generated for each table. A user can provide search parameters
with the search form, and the retrieved records are displayed in the select form. She can
view the detailed information relate to one record with the edit or info form. The edit
form allows her also to insert, update, or delete a record. The action script is activated
for inserting, updating, and deleting records in the database. These web scripts can be
generated from a configuration file that specifies how the fields in the forms should be

generated. The configuration file is produced from the metadata of the database.

Four Web script generators precede WebGen 5. WebSiteGen 1 was the first
attempt. It generated Web scripts from an ER diagram. However, this approach was not
effective, because an ER diagram may not accurately reflect the real structure of a
database. Starting with WebSiteGen 2, relational database schemas were used to
generate Web scripts. WebSiteGen 2 was a Windows application written in Java that
generated ASP Web scripts. About one year later, WebSiteGen 3, which generated more
complex ASP.NET Web scripts supporting one-to-many and many-to-one relationships
between tables, was developed. WebSiteGen 3 was written in C#, and it was actually

used to generate Web scripts for real projects.

When WebSiteGen 3 was partially completed, PHP Web scripts had to be
generated, and the work on WebSiteGen 4 was started. However, WebSiteGen 4 was not
very successful. The code became long and hard to understand. A change in one part
often caused ripple effects throughout the entire Web script generator, and hence the

generator was difficult to maintain.

While trying to overcome the problems in WebSiteGen 4, we came across a new
idea of using templates for generating Web scripts. Because a template resembles the

generated Web scripts, creating a set of templates is easier than writing a generator in a

2

conventional programming language. Moreover, as one template only generates one type
of web scripts, changes in one template do not affect other templates, unless the changes

are related to parameters passed between scripts.

In this project, we added mechanisms for access control, AJAX support, and

editable-and-insertable table to WebGen 5.

In order to restrict access to records stored in the database by a user, we
implemented access control mechanism. We provide five access control levels 0 — 4, one
of which can be specified in the configuration file for a table. We also categorize each
user in one of the public, owner, or admin group. If the access control level for the
table is 0, no access restrictions are applied, and a user can read, insert, update, and delete
any records. When the access control level for the table is one of the levels 1 — 4,
accessing a record in the table by a user in the public or owner group is restricted. At

any access control level, an admin user can read, insert, update, and delete any records.

When form scripts for a table are generated by webgen, one or more AJAX
server-side PHP scripts can be generated. Each AJAX server-side script retrieves one or
multiple records based on a given value and returns the values computed from them. In
the search or edit form, one dropdown list and another select or input element are
associated with the server-side script as a source field and as a target field, respectively.
When the value of the source field is modified, the script is activated and returns the
result to the Web form. The returned values are handled by a common AJAX client-side

JavaScript code and set in the target element.

Previously, a select form displayed multiple records, each as a row in a table, and
a user could only view and delete those records. In order to allow a user to insert and
update records in addition to viewing and deleting them, we can now generate an

editable-and-insertable select form. An editable-and-insertable table is called a data-grid.

Each table cell is converted to an input or select element so that a user can modify

its value. Furthermore, a new row can be added at the end of the table.

In Section 2, we explain the details of our access control mechanism. Section 3
describes the details of the AJAX support mechanism. An editable-and-insertable select
form is discussed in Section 4. In Section 5, conclusions are provided, and possible

future work is discussed.

2. Access Control Mechanism
It is often required to allow a user to access only certain rows in tables. Our
security mechanism is organized as follows.

1. Users are categorized into three groups, public, admin, and owner. Each
user in the admin group and the owner group need to have an account and log-
in. No access restriction is applied to the admin users at any level. The users in
public group are the users who have not logged-in.

2. One of the five access control levels 0 — 4 can be applied to the forms of each
table. The access control level can be defined in the configuration file for the
table. The access control levels are applicable to the users in the owner and
public groups.

3. The ID of a user is stored in every record owned by that user.

Information on the users is maintained in table 1ogin user. The details about

this table are discussed in Section 2.1.

Access to a table by users in the owner and public groups is restricted by the
access control level defined for the table.

Level 0. No access restriction is applied. Every user can insert/read/update/delete
any record in the table.

Level . An owner user can read any record and insert a new record, but she can
update and delete only the records owned by her. A public user can read any
record.

Level 2. An owner user can insert a record, and she can read/delete/update only
the records owned by her. No permission is given to a pub1ic user.

Level 3. A public user and an owner user can read any record. However, they
cannot insert, update, or delete a record. All the records of this access control
level need be owned by admin users.

Level 4. No permission is given to a public user or an owner user.

We explain about these access control levels more in Section 2.3.

2.1 User Information

In our security control mechanism, table 1ogin user maintains information on
all the admin and owner users. If any table has access control level other than level 0,
a user registration table and table d_login user role need be created. Figure 2.1
gives the CREATE statement for a sample user registration table. Any table can be used
as the user registration table as long as it contains columns 1ogin name, password,

andd login user role id.

CREATE TABLE login user({
login user id integer,
login name varchar,
password varchar,
name varchar,
address varchar,
city wvarchar,
state wvarchar,
zip code varchar,
phone varchar,
fax wvarchar,
email varchar,
row owner id integer,
d login user role id integer,

}i

Figure 2.1: CREATE statement for table 1ogin user

CREATE TABLE d login user role ({
d login user role id integer,
user role name varchar,

}s

d login user role id user role name
1 admin
2 owner

Figure 2.2: Table d login user role and the two records.

6

Table d login user role stores the possible user roles, in our case, admin

and owner as shown in Figure 2.2. The IDs of the records can be stored in column

d login user role idoftable login user.

Each user in the admin or owner group must have a record in table

login user. Important columns in table login user are the followings:

login user id
The primary key column.

login name
The value is used as the login name for log-in.

password
The value is used as the password for log-in.

d login user role id
The foreign-key column linked to column d_login user role idintable
d login user role. The valueis 1 for an admin user or 2 for an owner
user.

row owner id

The same value in column login user id.

object 1
- PK | object 1 id
d_login_user_role login_user
PK | d_login_user_role_id € |PK |login_user_id {? row_owner_id
user_role_name login_name
password
name -
address object_2
city PK | object_2_id
state
Zip_code row_owner_id
phone
fax
email
— d_login_user_role_id
object_3
PK | object 3_id
row_owner_id

Figure 2.3: ER schema diagram for table 1ogin user.

In order to implement access control, the owner is defined for each record. For
this purpose, column row owner id isadded to each table that requires access
restriction, as shown in Figure 2.3. When a new record is inserted in the table, the ID of
the user, which is the login user id ofthat user, is set as the value of

row_owner id.

2.2 Registration and Log-In

If a user wants to access tables protected with one of access control levels 1 — 4,
she must create an account from a registration page as shown in Figure 2.4. With this
registration page, d login user role id for the user is automatically set to 2,
which indicates owner. The value entered for login name is checked if it is unique.

After creating an account, she can log-in from the login page shown in Figure 2.5.

& http://yachats.een.orst.edu - Registration - Mozilla Firefox - II:I Iil

NRCS Registration

*Login Name

*Password *Password Confirm I

*Name

Address

City County j

Phone Home Phone Business

|
|
|
|
|
State | | zip code
|
|
|
|
|

Phone Cell Fax
*Email
*Security Question
*Security Answer
Submit Cancel |
Daone 4

Figure2.4: The registration page.

5 http:/ /yachats.een.orst.edu - Login - Mozilla Firefox - |EI |£|

(fyou do not have an account with us, you can register here.)

Lugthamel

Password I

Login |

Guick Dverview

The purpose of this system is to allow users 1o easily search,
in=sert and modify information within the NRCS database. For
more information please visit the Dwerview page.

Daone

Figure2.5: The login page.

At the login page, a user enters her login name and password, and a session data is
initialized. With the login name and the password, the record of the user is searched from
table login user. If the user is authorized, then the ID and the role of the user are
stored in the session as shown in the code of Figure 2.6.

$ SESSION['UID'] —the ID of the user.

$ SESSION['UROLE'] —the role of the user, owner or admin.

$ SESSION['UNAME'] —the login name of the user.

10

session_start();

if ((Srole

= get role(Sform['login name'], S$form['password'])) != '") |
$_SESSION['UID'] = get_user_id($fonﬂ’login_name'L $form['password']) ;
$ SESSION['UNAME'] = S$form['login name'];

switch (Srole) {

case "1":
$_SESSION['UROLE']
break;

case "2":
$ SESSION['UROLE'] = "owner";
break;

"admin";

}

function get role($login name, S$password) {

$sgl select = "SELECT role FROM login user
WHERE login name = 'S$login name'
AND password = 'Spassword';";

$db->query ($sqgl select);
if ($db->num rows() == 1) {
Sdb->next record()
return $db->f ('role'
} else
return null;

}

)7

function get user id(Slogin name, S$password) {

$sgl select = "SELECT login user id FROM login user
WHERE login name = '$login name'
AND password = 'Spassword';";

Sdb->query ($sql select);
if ($db->num rows() == 1) {
$db->next record();
return $db->f('login user id');
} else
return null;

Figure 2.6: 1login.phtml

11

2.3 Access Control Levels

In order to implement access control, one of the five access control levels 0 — 4
need be specified with variable Saccess control level in the configuration file
for a table. Also, each user need be classified as admin, owner, or public. Figure

2.7 shows the access control applied under this condition.

User Group
Level . -
admin owner public
0 Any actions Any actions Any actions
Read any records Read any records
1 Any actions Insert new records No Insert actions
Update/Delete owned records No Update/Delete actions
Read owned record
2 Any actions Insert new records No actions
Update/Delete owned records
Read any records Read any records
3 Any actions No Insert action No Insert actions
No Update/Delete actions No Update/Delete actions
4 Any actions No actions No actions

Figure 2.7: Possible user actions at each level.

According to the access control level defined in the configuration file, access
restrictions are enforced by the web scripts generated by webgen. In the following, we
describe how the search, select, edit, info, and action scripts for each table implement
access control. Since any action is allowed for an admin user, possible actions for an

admin user are not described.

12

Access control level 0 (Default)

No restriction is applied. Anyone can insert/read/update/delete records in the table.

This is the default access control level.

Access control level 1

At this level, a user in any group can read any records in the table. However, only a
logged-in user can insert records, and the records inserted are owned by that user. An

owner user can update and delete only records owned by her.

Search script
The search form can be used by all users.
Select script

1. Records selected can be listed for any user.

2. For an owner user and an admin user, the /nsert New button is shown.

3. For an admin user, the Delete button is shown.

Edit script

1. For apublic user, the edif form is not accessible. When a primary key
value for a record is passed to the edit script, the info form is loaded.

2. When the script is activated for updating an existing record by an owner user,
the info form is loaded if the ID of the owner user does not match the value
of row owner id of the record.

3. For arecord to be inserted or updated by an owner user, the ID of the user is
stored as the value of row owner idandmodified by of the record,
and the current date is stored as the value of modified date.

4. For arecord to be inserted or updated by an admin user, the values of form
parameters row owner id,modified by,andmodified date are
used as the values of the record.

5. Deletion of a record by an owner user can be performed only when the value

of row owner id of the record matches the ID of the owner user.

13
Info script
No access control is required for any user.
Action script
1. Forapublic user, the action form is not accessible.
2. When the Delete button in the select form is clicked by an admin user, each

of the selected records is deleted by this action script.

Access control level 2

At this level, a publ1ic user cannot take any action. The login-in page is loaded
when a public user tries to access a form. An owner user can insert records and
access only those records that are owned by her. An owner user cannot read records

owned by others.

Search script
For a public user, the search form is not accessible. When a public user
accesses it, the login-in page is loaded.

Select script

1. For a public user, the select form is not accessible.

2. For an owner user, in addition to the parameters passed from the search form,
the ID of the user is set as the search parameter value of row owner id,
and hence only the records owned by that user are retrieved.

3. With the Delete button, an admin user can delete any selected records, and
an owner user can delete selected records owned by her.

4. If the select form is editable, a user can update and delete multiple records
from the form. Furthermore, if it is editable and insertable, a new record can
be inserted with the select form. These actions are performed when the Apply
button is clicked. The Apply button is shown for an editable select form. The

details of an editable and insertable select form are discussed in Section 4.

14

Edit script
The edit script works like the one whose access control level is 1, except for the
following differences.

1. For a public user, the edit form is not accessible.

2. When the script is activated for updating an existing record by an owner user,
the error message is given if the ID of the owner user does not match the
value of row owner id of the record.

Info script

1. For a public user, the info form is not accessible.

2. For an owner user, the error message is given if the ID of the owner user
does not match the value of row owner id of the record.

Action script

1. Forapublic user, the action form is not accessible, so the error message is
given.

2. When deletion of records is requested from the select form, each of the
selected records is deleted in this action script.

3. When the Apply button in the select form is clicked, the applicable action for
each record is executed in this action script. The details are described in

Section 4.

Access control level 3

At this level, a user can read any records. Only an admin user can insert a new

record or update and delete existing records.

Search script

The search form can be used by any user.
Select script

1. Records selected can be listed for any user.

2. For an admin user, the Insert New button and the Delete button are shown.

15

Edit script
For a user in the public or owner group, the edit form is not accessible. When
the script is activated for updating by a user in the public or owner group, the
info form is loaded for display only. When the script is activated for inserting a
record, an error message is given.

Info script
No access control is required for any user.

Action script
For a user in the owner or public group, the action script is not accessible.
When a user in the public or owner group accesses it, the error message is

given.

Access control level 4

At this level, only admin users can access records. A user in the public or owner

group cannot even read records.

All the search, select, edit, info, and action forms are accessible for only admin
users. When the script is activated by a user in the public or owner group, the

error message is given, or the login-in page is loaded.

16

2.4 Columns Readable only by an Admin User

Fields for some columns can be hidden from a user in the public or owner
group, while those fields are displayed for an admin user. For example, the field for
column row owner id need not be shown for an owner user or should not be edited
by her. However, the value of row owner id should be readable and editable by an
admin user, since she might need to know who owns the record and change the owner.
Sample forms accessible by an owner user and an admin user are shown in Figure 2.8.a

and 2.8.b, respectively.

Update Crop Help

Property ID I 3 j

f;op RN | Berries, Grapes, and Cane Fruits - %OD UERE | Blackheries =l

Plant Date

(Leave lw—
Period I Blank if /15/2007

Perennial {mm/dd/yyyy)

Crop)

Average

Harvest Date 1041542007 {mm/fddfyyyy) Yield Per I

Acre
Unit Of Yield ID I vl

Is Residue
Remowved C ves & o
Is this a

permanent

crop?

(e.qg., orchard, & ez & pgo
christmas tree,

cane berry,

etc.)
Pest Modified |1DI,’15|,F2|]D?
o Show
e | PELE (mm/dd/yyyy)
Update Delete I Cancel | Irfo |

Figure 2.8.a: The edit form for an owner user.

17

Update Crop Help
Crop ID 229
Property ID I 3 j
%DP L LR | Beries, Grapes. and Cane Fruits j %DP Type | Blackberries j
Plant Date
Period I Slankst [10/15/2007
Perennial {mm/dd/yyyy)
Crop)
Average
Harvest Date 10/15/2007 (mmfddfyyyy) Yield Per I

Acre

Unit Of Yield ID I vl

Is Residue
Removed

Is this a

permanent

crop?

{e.qg., orchard, ves g
christmas tree,

cane berry,

o Yes ® Mo

etc.)
Pest Modified |1D 15/2007
Management Shaw Date IIII d

¥y)

Row Owner
1D

ast Modified cahdl

By irmaedarm -

ancel | Info I

Figure 2.8.b: The edit form for an admin user.

In order to hide fields from public and owner users, attribute admin only
need be set for each of those columns. When a user in the public or owner user
activates a search, select, edit, or info script, the fields for the columns whose
admin only attributes are set to true are not generated by the script. Also, when an
SQL query for inserting and updating a record is formulated, those columns are not
included in it.

Furthermore, the values of columns row owner id,modified by, and
modified date need be automatically set when an owner user insert or update a
record.

When an owner user updates a record with an edit form, she might try to update
a record owned by another user by providing the primary key value in the URL. In order
to prevent such an action, the value of row owner id of the record to be updated is
retrieved from the database and checked before the SQL query is executed. Although
this check does not prevent the user from updating another record owned by her, a record

owned by another user cannot be updated.

18

3. AJAX Support

We often have to provide a set of possible options for a dropdown list in a form
according to the selected value in another dropdown list. For example, after a state is
selected with the form shown in Figure 3.1, we have to provide for selection only the

counties in that state.

Search CLU Parcel Help
Gid I
State I Qregaon j
County E j
Area {acres) Baker =
Comments Clackamas
Modified Date -13ts0p To: |
Columbia
Last Modified by | Coos "I
Crook
Producer ID Curny
Search | Deschutes
Douglas -
Gilliarm
Grant
Harney
Hood River
Jackson
Jefferson
Josephine
Klarmath
Lake -

Figure 3.1: List of the counties in the state selected.

We implemented this mechanism by using AJAX as shown in Figure 3.2. When
the user selects a state from a dropdown list in the form, the ID of the state is sent as an
AJAX request to PHP script clu parcel ajax d county.php. The form script

contains JavaScript ajax client. js to issue the AJAX request. The PHP script then

retrieves the list of the counties in the state from the database and returns it to the form.

Then, the counties returned are set in the county dropdown list.

clu parcel search.phtml

ajax client.]s

//{: sendRequest ()

)
(ﬁhandleResponse():><~

List of counties
State ID

clu parcel ajax d county.php

PHP server-side script

SQL query Set of counties

Database

Figure 3.2: AJAX request processing.

19

20

AJAX client-side JavaScript file ajax client.js
A Web page can include this JavaScript file to issue an AJAX request. The AJAX
request is sent with function sendRequest (), and its response is received with

function handleResponse ().

AJAX server-side PHP file xxx ajax yyy.php
This PHP script is activated by an AJAX request. SQL queries are formed with the
parameters passed in the request, and those queries are executed to retrieve records
from the database. The response formulated from the retrieved records is sent back

to handleResponse ().

WebGen is a software tool for automatically generating Web scripts that display
Web forms and operate on data stored in the database. The previous version of WebGen
can generate five types of Web scripts: search, select, edit, information, and action
scripts shown in Figure 3.3 for each table from a configuration file. A template written in
PHP is provided for each type of Web scripts. The generated scripts are executed on the
Web server by a PHP interpreter. Each script, except for an action script, generates a

Web form that is displayed on a client computer by a Web browser.

webgen

xxx.config

21

Search Select Edit Info Action AJAX
Template Template Template Template Template Server

/R I

Search
Script

Select
Script

Edit
Script

Info
Script

Action
Script

AJAX
Server-side
PHP
Script

Figure 3.3: Generating Web-scripts by WebGen templates.

LI:

In addition to the scripts previously generated, WebGen can now support AJAX

requests by parameterizing url, target element, and response type in

ajax client.js.

1. Parameter url indicates the URL consisting of the server-side PHP script

and the HTML parameters.

2. Parameter target element indicates the ID of the element where the

response is stored.

3. Parameter response type canbe value or options, where value

indicates a scalar value, and options indicates the options for an HTML

select element.

Also, server-side script xxx_ajax_yyy.php is automatically generated, and for this

purpose, Sajax fields is added to configuration file xxx.config.

22

For each type of AJAX requests, one server-side AJAX script in PHP is needed.
When UNIX command webgen is issued with table name xxx, AJAX server-side scripts

in PHP as well as five form scripts are generated as shown in Figure 3.3.

23

3.1 AJAX Client JavaScript

In order to support an AJAX request, JavaScript file ajax client.js need be
included in a form script. Two functions sendRequest (), which is invoked when a
value is selected from a dropdown list in a form, and handleResponse (), which is a

callback function for a response produced by an AJAX request, are implemented in this

file.

function sendRequest (url, target element, response type) {

var http request = false;
if (window.XMLHttpRequest) { // Mozilla, Safari,...
http request = new XMLHttpRequest () ;
if (http request.overrideMimeType) {
http request.overrideMimeType ('text/xml');
1

http request.target element = target element;

http request.response type = response type;
} else if (window.ActiveXObject) { // IE
try {

http request = new ActiveXObject ("Msxml2.XMLHTTP");
} catch (e) {

try {
http request = new ActiveXObject ("Microsoft.XMLHTTP");
} catch (e) {}

}

global target element = target element;
global response type = response type;

}

if (!http request) {
alert ('Giving up :(Cannot create an XMLHTTP instance');
return false;

}

http request.onreadystatechange =

function() { handleResponse (http request); };
http request.open('GET', url, true);
http request.send(null);

Figure 3.4: AJAX JavaScript function sendRequest ().

24

sendRequest (url, target element, response type)
Arguments
url
URL of the server-side PHP script.
target element
The ID of the HTML element where the response data is set.
response type
Type of the HTML element for the response, value which indicates a scalar
value or options which indicates a set of options for an HTML select

element.

Returns
false if an instance of XMLHttpRequest or ActiveXObject is not created. This

method returns nothing if it is created successfully.

Description

First, object http request that handles AJAX requests and responses on the client-
side is created. For IES and IE6, http request is an instance of ActiveXObject,
and for Mozilla, Firefox, Safari, and IE7, it is an instance of XMLHt tpRequest.
Custom properties target element and response type are added to this
instance. Function handleResponse () is set in the property
onreadystatechange as the callback function for a response. By open () function,
url and the HTTP method, which is GET, are set. Finally, http request is sent by

send ().

25

{

function handleResponse (http request)
if (http request.readyState == 4) ({
{

if (http request.status == 200)
if (http_ request.response type) {
response_type = http request.response type;
target element = http request.target element;
} else {
response type = global response type;

target element

}

global target element;

switch (response type) {
case "options":
responses = http request.responseText.split('|");
select = document.getElementById(target element);

select.options.length = 0;

select.options[0] = new Option("", "", false, false);
for (var 1 = 0; 1 < responses.length; 1 += 2){
select.options[1l + i/2] =
new Option (responses[i+l], responses[i],

false, false);
}
break;
case "value":
response = http request.responseText;

document.getElementById(target element) .value = response;
break;
default:
break;
}
} else {
alert ('Response error code: ' + http request.status);

}

Figure 3.5: AJAX JavaScript function handleResponse ().

26

handleResponse (http request)
Arguments
http request

An instance of XMLHt tpRequest

Returns

Nothing.

Description
When the client-side script receives a response, this function is activated.
l. Ifhttp request.response type is value, then the returned value is set
in the text box of the input element specified by
http request.target element.
2. If http request.response type is options, then the response data is
set in the dropdown list of the select element specified by
http request.target element. The response data is a sequence of
values separated by a character |. For example, the options of a dropdown list for
a list of Oregon counties are encoded as,
001 |Baker|003|Benton|005|Clackamas|007|Clatsop.

Each pair of values is set as one option of the select element.

3.2 AJAX Server-Side PHP Scripts and the Template for them

The server-side PHP script for each type of AJAX requests can be generated
automatically by webgen from template script ajax server.tmpl. If variable
$ajax fields is defined in xxx.config file, for each element in

$ajax_fields[], the template activated from webgen generates PHP script

27

xxx_ajax_yyy.php, where yyy is the name of the table whose records are retrieved by

an AJAX request. The following properties are defined for each element of

$ajax fields[]:

source column (Required)
The foreign-key column in table xxx.
sqglFrom (Required)
The name of the table whose records are retrieved by an AJAX request. This
name is also used as yyy inxxx_ajax yyy.php.
linked column (Optional)
The foreign-key column in the table whose records are retrieved. If this value is
same as the value of source column, this need not to be defined.
sglSelect (Required)
Two columns in the table specified by sglFrom. The values in these columns
are used for the options of the select element.
response_type (Required)

The type of the target element, options or value. Type options indicates

that an AJAX request returns a list of values to a dropdown list, and type value

indicates that an AJAX request returns one value.
whereAdd (Optional)
An additional condition for the where clause of the SQL statement.
orderBy (Optional)
The column for sorting the retrieved records. This property is applied to the
order by clause of the SQL statement.

28

Consider a form where a state and a county need be selected. With this form, when a
state is selected, the list of the counties in the state is returned and displayed in a
dropdown list. The relationship among the form and table d state is shown in Figure
3.6. Table d state contains information on the states, and table d county

information on the counties.

Form for the anchor table

source_column: statecd Table d_state

EOregDn | -~ statecd | state name
e VTR ;I \ —

Mew ~ark

Ohio

Cklah
ClntZriEmEl >(//'<

Fennsybhsania —
Frince Edward Islan

Fhode Izland -

Lemanl =1 _/

o1
1
1
1
1
1

sqglFrom: Table d county .

countycd _, linked column:

EEientDn j countycd | statecd county name

Ay AR

Clackamas _
Clatsop | |

Baker

Colurmbia

Coos

Crook -

Figure 3.6: Relationship among the form and table d _state and table d county.

For this purpose, Sajax fields need to be defined in the configuration file as

shown in Figure 3.7.

29

$ajax fields = array(
array (
"source column" => "statecd",
"sglFrom" => "d county",
"linked column" => "statecd",
"sglSelect" => array("countycd", "county name"),
"response type" => "options",
"orderBy" => "county name",
)I
)5

Figure 3.7: Sajax fieldsinxxx.config.

1. source column, which is the foreign-key column in the anchor table for the
form, is set to statecd. statecd isan alternate key in table d_state.

2. sqglFromistable d county, from which county records are retrieved.

3. linked column, which is the foreign-key column in table d county, is set
to statecd. This column is linked to column statecd intable d state and
to column statecd in the anchor table.

4. sglSelect is a pair of columns countycd and county name in table
d county. The values of these columns are retrieved for the dropdown list of
the counties in the state selected. The values in columns countycd and
county name are used by the options of the select element.

5. response_ type is options, since multiple records are retrieved from table
d county.

6. orderByis county name so that the counties names retrieved are sorted

according to their names.

When webgen is activated for table xxx, xxx ajax d county.php shown in
Figure 3.8 is generated from $ajax fields defined in xxx.config. This script

is used as the server-side PHP script for the search and edit forms for table xxx.

<?
include ("../datasource.php");
include("../../../framework v3/common.phtml");

Sstatecd = get param('statecd');

Ssqgl =
"select countycd, county name
from d county ";

if (!empty($Sstatecd)) {
$sgl .= " where statecd = 'S$statecd'";
}

$sqgl .= " order by county name";
Sdb->query ($sgl) ;

$select options = array();

$nrows = Sdb->num_ rows () ;

for ($1 = 0; $i < Snrows; S$i++) {
$db->next record() ;
$select options|]
S$select options|]

1

Sselect options string = implode('|', $select options);

return Sselect options string;

>

I~

Sdb->f ('countycd') ;
$db->f ('county name');

Figure 3.8: xxx ajax d county.php.

Based on the definition of Sajax fields, the following SQL statement is
constructed:

SELECT countycd, county name
FROM d_county
WHERE statecd = 'S$statecd’
ORDER BY county name

After the county records for the selected state are retrieved from table d county, the
values of countycd and county name in each record are first stored in array

$select options[]. Then all the elementsin $select options|[] are joined

30

into $select options string where adjacent values are separated by character |.

Finally, $select options string isreturned.

31

When a value is selected from the dropdown list of the states, sendRequest () need be
called by the onChange event. For this purpose, the add_attribute option need be

defined in Sedit fields and $search fields forthe statecd field as

'add _attribute' => 'onChange =

"sendRequest (\'./XXX ajax d county.php?statecd=\'+this.value,
\'countycd\"',
\'options\"');

return false;"'

As we discussed in Section 3.2, sendRequest () requires three parameters: url,
target element, and re sponse_ type.
1. url designates the server-side AJAX script generated by
ajax_server.tmpl and the HTML parameter for the statecd field.
2. target element indicates the name of the select element in which the list
of the counties selected for the state specified are displayed.
3. respose typeisoptions since a list of counties for the options of the

select element is returned from the sever-side PHP script.

With the add_attribute option defined in Sedit fields, in the edif script, the
onChange attribute is added to the select element for the statecd field as shown

in Figure 3.9.

<select name=statecd ID=statecd onChange="sendRequest (
'./clu parcel ajax d county.php?statecd=' + this.value,

'countycd’,
'options');
return false;">
<option value="" selected> Any</option>

<option value=00> Aguascalientes </option>

<option value=01> Alabama </option>

<option value=02> Alaska </option>

<option value=03> Alberta </option>

<option value=04> Arizona </option>
</select>

Figure 3.9: Code of the select element of a state

4. Editable and Insertable Select Form

32

Using an edit form generated by webgen, a user can perform an insert, delete,

and update action for a single record, but she cannot manipulate multiple records at a

time. With an ordinary select form, a user can view a list of records and delete records

selected from that list. For inserting a new record or updating an existing record, an edit

form need be open from the select form as shown in Figure 4.1.

Select State
Found 81 State

State Nation State

Select D D cd

r #F |22s MH E:rwpshire 3
- 38 225 M1 Mew Jersey 34
- 39 225 MM Mew Mexico 35
[l 40 225 MY Nevada 32
[l 41 225 WY Mew rork 36
- 4z 225 OH Ohio 39
r 43 225 oK Oklahoma 40
[l 225 OR. Oregon 41
[225 P& Pennsylvania 42
- 225 Rhode Island 44
I delect an

State Name Statecd

Display
Yalue

Mew
Hampshire

Mew Jersey
Mew Mexico
Mewvada

Mew Tork
Ohio
Cklahoma
Oregon
Pennsylvania

Rhaode Island

Update State

State ID [l
Nation ID 225

State Cd W

State Name IOregDn

statecd [

vae! [oregan

Display l—
Order

State Flag lDr.gif—

Description

Modified

i (mm/dd/yyyy)
Last lﬁ

Modified By

Row Owner h—

1D

Update | Delete | Cancel | Info

Max N
M Rows 10

Modified L35

Displaviistate Modlfled Row Owner ID
Date b

Order Flag

nh.gif

=

nj.gif
nrm. gif
nv .gif
ny.gif
oh.gif
ale.gif
or.gif
pa.gif
ri.gif

R

Insert State Help
State ID |93

Mation ID I

State Cd I

State Name I

Statecd I

Display I

Yalue

Display I—

Order

State Flag I

Description

Modified

Date 10/27/2007 (mm/dd/yyyy)
Last lﬁ

Modified By

Row Owner I—
D
Insert | Cancel |

Figure 4.1: Updating and inserting a record from an ordinary select form.

However, with an editable and insertable select form, a user can insert new

records and update and delete existing records. If the select form is editable, each form

33

cell becomes an input or select element as shown in Figure 4.2 so that a user can

modify the value of the element. Furthermore, if the select form is insertable in addition

to being editable, new rows can be added to the select form in order to insert new records.

Select State
Found &1 State

Select State ID Nation ID

r

i A e e (N R R B A R R

State Cd State Name

E

Statecd Display Yalue Display Order Last Modified by Row Owner ID

a7 |ees [MH |NewHampsh |33 [New Hampsh | | =l
38 s [N [New Jersey |34 [New Jersey | | | =l
39 s [NM o NewMexico |38 [New hexico | | | =l
0 [z W FNevade [z Fevesn | —— = f
ar s [rey [Newvork |36 [Newvark | administratar f
2 [z i e el r— G
4z [z5 [ox " [owshoma fao [omishoma | marke [
a4 |25 [or " [oregan [4 [oregon [e Pamos [
45 228 [Fa " [Pennsylvanis [42 [Pennsylvania | Sally [
a7 [fezs [Fi [Fhodelsland [44 [Rhode Island | Toshum Mingure [
wew | R PNevews [| | | = |
Select All Delete | Undelete | Ingert Mew | Search Again I Apply | Previous [123456] MNexnt

Figure 4.2: An editable and insertable select form.

If a user wants to update an existing record, she can modify the values in the

input and select elements. If she wants to insert a new record, then she can click the

Insert New button and provide new values in the input and select elements. In order

to delete existing records, she can select those records and click the Delete button. Delete

requests can be cancelled with the Undelete button. The actual operations on the records

in the database are performed when the Apply button is clicked.

Two form elements are provided for each field of a record in the select form. One

is a hidden input element that keeps the value retrieved from the database when the

select form is loaded. The other is an input or select element maintaining the value

that can be updated. The values in these two elements are initially identical. When a

34

new row is added for inserting a new record, only the form elements for the new values
are provided for the row.
In addition to these form elements, form element subcmd, which specifies the
type of the action applied to each record, is provided:
"I for arecord to be inserted,
'D" for arecord to be deleted, and

'"N' for the remaining records.

When the Apply button is clicked, the form parameters are submitted to the script.
Then, an SQL query is constructed based on the value of form parameter subcmd
provided for each row. Ifitis 'I' or 'D"', an insert or delete SQL query is formulated
and executed, respectively. Ifitis 'N', the old and new values of each field of the
record are compared. If the old and new values of any field are different, an SQL query
for updating the record is constructed and executed.

If variable $select editable isset to true in the configuration file of a
table, the select form of the table can become editable and insertable. The select form
becomes editable if form parameter editable=1 is passed to the select script and, it
becomes insertable if form parameters editable=1 and insertable=1 are passed

to it.

35

5. Conclusions and Future Work

We added mechanisms for access control, AJAX support, and editable-and-
insertable table to WebGen. Five access control levels were implemented, and one of
them can be specified for each table. With this access control mechanism, we can protect
records owned by a user from other non-admin users. We provided an AJAX support
for the value of an input element or the list of the options of a select element which
is dependent on the value of another element. The AJAX server-side scripts for this
purpose can be generated automatically. We extended the template for select scripts to
support editable-and-insertable select forms. An editable-and-insertable form allows a
user to insert and update multiple records as well as to view and delete them without

opening an edit form for each record.

The following features can be added to improve WebGen further.

1. The access control mechanism can be improved if groups of users are introduced.

2. Asdiscussed in Section 2.4, with an edit form, an owner user can modify
another record owned by her by providing the primary key value of the record in
the URL. We should prevent her from updating a record in this way.

3. With our AJAX support mechanism, we can use only a single input or select
element as the target element. Sometimes we need to allow multiple target

elements.

36

6. Reference

[ALBA-05] Albader, B. A Configuration File Generator for Web Forms, M.S. project
report, School of EECS, Oregon State Univ., 2005.

[CHAL-08] Chalainanont, N., Sano, J. and Minoura, T. Automatic Generation of Web-
Based GIS/Database Applications. Open Source Geospatial (OSGeo) Journal, To appear,
2008.

[EUM-03] Eum, D. and Minoura, T. Web-Based Database Application Generator. /EICE
Transactions on Information and Systems, Vol. E§6-D, No. 6. June 2003.

[NAIK-02] Naik, P. WebSiteGen3: A Tool for Generating ASP.NET Forms, M.S. project
report, School of EECS, Oregon State Univ., 2002.

[TASH-06] Tashiro, H. WebGen 5 Version 2: Automatic Web-Script Generator for Web-
Based GIS/Database Applications, M.S. project report, School of EECS, Oregon State
Univ., Sept. 2006.

[WANG-03] Wangmutitakul, P., Li, L., and Minoura, T. User Participatory Web-Based
GIS/Database Application. In. Proc. of Geotec Event Conference, March 2003.

[WANG-04] Wangmutitakul, Paphun, et al. WebGD: Framework for Web-based
GIS/database Applications, Journal of Object Technology 3, 4, 209-225, 2004.

[YANG-04] Yang, S. WebGen 5: A PHP Script Generator with Templates, M.S. project
report, School of EECS, Oregon State Univ., Sept. 2004.

