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Abstract This article presents an approach for mod-

eling landmarks based on large-scale, heavily contami-

nated image collections gathered from the Internet. Our

system efficiently combines 2D appearance and 3D geo-

metric constraints to extract scene summaries and con-

struct 3D models. In the first stage of processing, im-

ages are clustered based on low-dimensional global ap-

pearance descriptors, and the clusters are refined using

3D geometric constraints. Each valid cluster is repre-

sented by a single iconic view, and the geometric re-

lationships between iconic views are captured by an

iconic scene graph. Using structure from motion tech-

niques, the system then registers the iconic images to

efficiently produce 3D models of the different aspects of

the landmark. To improve coverage of the scene, these

3D models are subsequently extended using additional,

non-iconic views. We also demonstrate the use of iconic

images for recognition and browsing. Our experimental

results demonstrate the ability to process datasets con-

taining up to 46,000 images in less than 20 hours, using

a single commodity PC equipped with a graphics card.

This is a significant advance towards Internet-scale op-

eration.

1 Introduction

Today, more than ever before, it is evident that “to col-

lect photography is to collect the world” [Sontag, 1977].

More and more of the Earth’s cities and sights are pho-

tographed each day from a variety of digital cameras,

viewing positions and angles, weather and illumination

conditions; more and more of these photos get tagged
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by users and uploaded to photo-sharing websites. For

example, on Flickr.com, locations form the single most

popular category of user-supplied tags [Sigurbjörnsson

and van Zwol, 2008]. With the growth of community-

contributed collections of place-specific imagery, there

comes a growing need for algorithms that can distill

their content into representations suitable for summa-

rization, visualization, and browsing.

In this article, we consider collections of Flickr im-

ages associated with a landmark keyword such as “Statue

of Liberty,” with often noisy annotations and metadata.

Our goal is to efficiently identify all photos that actu-

ally represent the landmark of interest, and to organize

these photos to reveal the spatial and semantic struc-

ture of the landmark. Any system that aims to meet

this goal must address several challenges inherent in

the nature of the data:

– Contamination: When dealing with community-

contributed landmark photo collections, it has been

observed that keywords and tags are accurate only

approximately 50% of the time [Kennedy et al., 2006].

Since we obtain our input using keyword searches,

a large fraction of the input images comprises of

“noise,” or images that are unrelated to the concept

of interest.

– Diversity: The issue of contamination aside, even

“valid” depictions of landmarks have a remarkable

degree of diversity. Landmarks may have multiple

aspects (sometimes geographically dispersed), they

may be photographed at different times of day and

in different weather conditions, to say nothing of

non-photorealistic depictions and cultural references

(Figure 1).

– Scale: The typical collection of photos annotated

with a landmark-specific phrase has tens to hun-

dreds of thousands of images. For example, there
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Fig. 1 The diversity of photographs depicting “Statue of Lib-
erty.” There are copies of the statue in New York, Las Vegas,
Tokyo, and Paris. The appearance of the images can vary signif-
icantly based on time of day and weather conditions. Further
complicating the picture are parodies (e.g., people dressed as
the statue) and non-photorealistic representations. The approach
presented in this article relies on rigid 3D constraints, so it is not
applicable to the latter two types of depictions.

are over 140,000 images on Flickr associated with

the keyword “Statue of Liberty.” If we wanted to

process such collections using a traditional structure

from motion (SfM) pipeline, we would have to take

every pair of images and try to establish a two-view

relation between them. The running time of such an

approach would be at least quadratic in the number

of input images. Clearly, such brute-force matching

is not scalable; we need smarter and more efficient

ways of organizing the images.

Fortunately, landmark photo collections also possess

helpful characteristics that can actually make large-

scale modeling easier. The main such characteristic is

redundancy: people tend to take pictures from certain

viewpoints and to frame their compositions in consis-

tent ways, giving rise to many large groups of very

similar-looking photos. Our system is based on the ob-

servation that such groups can be discovered using 2D

appearance-based constraints that are considerably more

efficient than full-blown SfM constraints, and that the

iconic views representing these groups form a complete

and concise summary of the scene, so that most of the

subsequent computation can be restricted to the iconic

views without much loss of content.

Figure 2 gives an overview of our system and Algo-

rithm 1 shows a more detailed summary of the mod-

eling steps. Our system begins by clustering all input

images based on 2D appearance descriptors, and then it

progressively refines these clusters with geometric con-

straints to select iconic images that represent dominant

aspects of the scene. These images and the pairwise

geometric relationships between them define an iconic

scene graph. In the next step, this graph is used for

efficient reconstruction of a 3D skeleton model, which

is subsequently extended using additional relevant im-

ages. Given a new test image, we can register it into

the model in order to answer the question of whether

the landmark is present in the test image. In addition,

as a natural consequence of the structure of our ap-

proach, the image collection can be cleanly organized

into a hierarchy for browsing.

Since our method efficiently filters out unrelated im-

ages using 2D appearance-based constraints, which are

computationally cheap, and applies more computation-

ally demanding geometric constraints to much smaller

subsets of “promising” images, it is scalable to large

photo collections. Unlike approaches based purely on

SfM, e.g., [Agarwal et al., 2009], it does not require

a massively parallel cluster of hundreds of computing

cores and can process datasets consisting of tens of

thousands of images within hours on a single commod-

ity PC.

The rest of this article is organized as follows. Sec-

tion 2 places our research in the context of other related

work on landmark modeling. In Section 3 we introduce

the steps of our implemented system. Section 4 presents

experimental results on three datasets: the Notre Dame

cathedral in Paris, Statue of Liberty, and Piazza San

Marco in Venice. Finally, Section 5 closes the presenta-

tion with a discussion of limitations and directions for

future work.

An earlier version of this work was originally pre-

sented in [Li et al., 2008]. For the present article, the

system has been completely re-implemented to include

much faster GPU-based feature extraction and geomet-

ric verification, an improved image registration algo-

rithm leading to higher precision and recall, and a new

incremental reconstruction strategy delivering larger and

more complete models. Videos of computed 3D models,

along with complete browsing summaries, can be found

on the project website.1

2 Previous Work

Our system offers a comprehensive solution to the prob-

lems of dataset collection, 3D reconstruction, scene sum-

marization, browsing and recognition for landmark im-

ages. In this section, we discuss related recent work in

these areas.

At a high level, one of the goals of our work can

be described as follows: starting with the heavily con-

taminated output of an Internet image search query,

we want to extract a high-precision subset of images

1 http://www.cs.unc.edu/PhotoCollectionReconstruction
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Fig. 2 Overview of our system. The input to the system is a raw, contaminated photo collection, which is reduced to a collection
of representative iconic images by 2D appearance-based clustering followed by geometric verification. The geometric relationships
between iconic views are captured by the iconic scene graph. The structure of the iconic scene graph is used to automatically generate
3D point cloud models, as well as to impose a hierarchical organization on the images for browsing. Videos of the models, along with
a browsing interface, can be found at www.cs.unc.edu/PhotoCollectionReconstruction.

that are actually relevant to the query. Several exist-

ing approaches consider this problem of dataset collec-

tion for generic visual categories not characterized by

rigid 3D structure[Fergus et al., 2004, Berg and Forsyth,

2006, Li et al., 2007, Schroff et al., 2007, Collins et al.,

2008]. These approaches use statistical models to com-

bine different kinds of 2D image features (texture, color,

keypoints), as well as text and tags. However, for our

specific application of landmark modeling, such statis-

tical models do not provide strong enough geometric

constraints. Philbin and Zisserman [2008], Zheng et al.

[2009] have presented dataset collection and object dis-

covery methods specifically adapted to landmarks. These

methods use indexing based on keypoints followed by

loose geometric verification using 2D affine transfor-

mations or spatial coherence filters. Unlike them, our

method includes an initial stage in which images are

clustered using global image features, giving us a bigger

gain in efficiency and an improved ability to group simi-

lar viewpoints. Another difference between our method

and [Philbin and Zisserman, 2008, Zheng et al., 2009]

is that we perform geometric verification by applying

full 3D SfM constraints instead of loose 2D spatial con-

straints.

To discover all the images belonging to the land-

mark, we first try to find a set of iconic views, corre-

sponding to especially popular and salient aspects. Re-

cently, a number of papers have proposed a very gen-

eral notion of canonical or iconic images as good rep-

resentative images for arbitrary visual categories [Berg

and Berg, 2009, Jing and Baluja, 2008, Raguram and

Lazebnik, 2008]. These approaches try to find iconic im-

ages essentially by 2D image clustering, with some pos-

sible help from additional features such as text. Berg

and Forsyth [2007], Kennedy and Naaman [2008] have

used similar 2D cues to select representative views of
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landmarks without taking into account the full 3D con-

straints associated with landmark scenes.

For rigid 3D object instances, canonical view selec-

tion has been studied both in psychology [Palmer et al.,

1981, Blanz et al., 1999] and in computer vision [Den-

ton et al., 2004, Hall and Owen, 2005, Weinshall et al.,

1994]. Palmer et al. [1981] propose several criteria to

determine whether a view is “canonical”, one of which

is particularly interesting for large image collections:

When taking a photo, which view do you choose? As

observed by Simon et al. [2007], community photo col-

lections provide a likelihood distribution over the view-

points from which people prefer to take photographs. In

this context, canonical view selection can be thought

of as identifying prominent clusters or modes of this

distribution. Simon et al. [2007] find these modes by

clustering images based on the output of local feature

matching and epipolar geometry verification between

every pair of images in the dataset – steps that are

necessary for producing a full 3D reconstruction. While

this solution is effective, it is computationally expen-

sive, and it treats scene summarization as a by-product

of 3D reconstruction. By contrast, we regard summa-

rization as an image organization step that precedes

and facilitates 3D reconstruction.

The first approach for organizing unordered image

collections was proposed by Schaffalitzky and Zisser-

man [2002]. Sparse 3D reconstruction of landmarks from

Internet photo collections was first addressed by the

Photo Tourism system [Snavely et al., 2006, 2008b],

which achieves high-quality reconstruction results with

the help of exhaustive pairwise image matching and

global bundle adjustment of the model after insert-

ing each new view. Unfortunately, this process does

not scale to large datasets, and it is particularly in-

efficient for heavily contaminated collections, most of

whose images cannot be registered to each other. The

Photo Tourism framework is more suited to the case

where a user submits a predominantly “clean” set of

photographs for 3D reconstruction and visualization.

This is precisely the mode of input adopted by the Mi-

crosoft Photosynth software,2 which is based on Photo

Tourism.

After the appearance of Photo Tourism, several re-

searchers have developed more efficient SfM methods

that exploit the redundancy in community photo collec-

tions. In particular, many landmark image collections

consist of a small number of “hot spots” from which

photos are often taken. Ni et al. [2007] have proposed

a technique for out-of-core bundle adjustment that lo-

cally optimizes the “hot spots” and then connects the

local solutions into a global one. In this paper, we fol-

2 http://photosynth.net

low a similar strategy of computing separate 3D recon-

structions on connected sub-components of the scene,

thus avoiding the need for frequent large-scale bundle

adjustment. Snavely et al. [2008a] find skeletal sets of

images from the collection whose reconstruction pro-

vides a good approximation to a reconstruction involv-

ing all the images. However, computing the skeletal set

still requires as an initial step the exhaustive verifica-

tion of all two-view relationships in the dataset. Simi-

larly to Snavely et al. [2008a], we find a small subset of

the collection that captures all the important scene as-

pects. But unlike Snavely et al. [2008a], we do not need

to compute all the pairwise image relationships in the

dataset; instead, we rely on 2D appearance similarity

as a rough approximation of the “true” multi-view re-

lationship, and reduce the number of possible pairwise

relationships to consider through an initial clustering

stage. As a result, our technique is capable of handling

datasets that are an order of magnitude larger than

those in [Snavely et al., 2008a], at a fraction of the run-

ning time.

In another related recent work, Agarwal et al. [2009]

present a distributed system for reconstructing very

large-scale image collections. This system uses the core

algorithms from [Snavely et al., 2008b,a], implemented

and optimized to harness the massive parallelism of

multi-core clusters. To speed up the detection of ge-

ometrically related images, Agarwal et al. [2009] use

feature-based indexing in conjunction with approximate

nearest neighbor search [Arya et al., 1998]. They also

use query expansion [Chum et al., 2007] to extend the

initial set of pairwise relationships. Using a compute

cluster with up to 500 cores, the system of Agarwal

et al. [2009] is capable of reconstructing city-scale im-

age collections containing 150,000 images in the span

of a day. These collections are larger than ours, but the

cloud computing solution is expensive: it costs around

$10,000 to rent a cluster of 1000 nodes for a day.3

By contrast, our system runs on a single commodity

PC and uses a combination of efficient algorithms and

low-cost graphics hardware to achieve fast performance.

Specifically, our system currently processes up to 46,000

images in approximately 20 hours using a PC with an

Intel core2 duo processor with 3GHz and 2.5GB RAM

as well as an NVidia GTX 280 graphics card.

Finally, unlike [Agarwal et al., 2009, Ni et al., 2007,

Snavely et al., 2008a,b], our approach is concerned not

only with reconstruction, but also with recognition. We

pose landmark recognition as a binary problem – given

a query image, find out whether it contains an instance

of the landmark of interest – and solve it by attempt-

ing to retrieve iconic images similar to the test query.

3 http://aws.amazon.com/ec2
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Algorithm 1 System Overview
1. Initial clustering (Section 3.1): Run k-means clustering
on global gist descriptors to partition the image collection into
clusters corresponding to approximately similar viewpoints and
scene conditions.
2. Geometric verification and iconic image selection

(Section 3.2): Perform robust pairwise epipolar geometry es-
timation between a few top images in each cluster. Reject all
clusters that do not have enough geometrically consistent im-
ages. For each remaining cluster, select an iconic image as the
image that gathers the most inliers to the other top images,
and discard all cluster images inconsistent with the iconic.
3. Re-clustering and registration (Section 3.3): Perform
clustering and geometric verification on the images discarded
during Step 2. This enables the discovery of smaller iconic clus-
ters. After identifying additional iconic images, make a final
pass over the discarded images and attempt to register them
to any of the iconics.
4. Computing the iconic scene graph (Section 3.4): Regis-
ter each pair of iconic images to each other and create a graph
whose nodes correspond to iconic images, edges correspond
to valid two-view transformations between iconics, and edge
weights are given by the number of feature inliers to the re-
spective transformations. This graph will be used to guide the
subsequent 3D reconstruction process. Use tag information to
reject isolated nodes of the iconic scene graph that are likely
to be semantically unrelated to the landmark.
5. 3D reconstruction (Section 3.5): Efficiently reconstruct
sparse 3D models from the set of images registered to the iconic
representation. The reconstruction proceeds in an incremen-
tal fashion, by first building multiple 3D sub-models from the
iconics, merging them whenever possible, and finally growing
all models by incorporating additional non-iconic images.

To accomplish this task, we use methods common to

other state-of-the-art retrieval techniques, including in-

dexing based on local image features and geometric ver-

ification [Chum et al., 2007, Philbin et al., 2008]. Of

course, alternative formulations of the landmark recog-

nition problem are also possible. For example, Li et al.

[2009] perform multi-class landmark recognition using

a more statistical approach based on a support vector

machine classifier. At present, we have not incorporated

a discriminative statistical model into our recognition

approach. However, we expect that classifiers trained

on automatically extracted sets of iconic images corre-

sponding to many different landmarks would produce

very satisfactory results.

3 The Approach

In this section, we present a description of the compo-

nents of our landmark modeling system. Algorithm 1

gives a high-level summary of these components, and

Figure 2 illustrates the operation of the system.

3.1 Initial Clustering

The first step of our system is to identify a small set

of iconic views to summarize the scene content. Simi-

larly to Simon et al. [2007], we define iconic views as

representatives of dense clusters of similar viewpoints.

However, while Simon et al. [2007] define similarity of

any two views in terms of the number of 3D features

they have in common, we adopt a more perceptual cri-

terion. Namely, if there are many images in the dataset

that share a very similar viewpoint in 3D, then a num-

ber of them will have a very similar image appearance

in 2D, and they can be grouped efficiently using a low-

dimensional global description of their pixel patterns.

The global descriptor we use is gist [Oliva and Tor-

ralba, 2001], which was found to be effective for group-

ing images by perceptual similarity and retrieving struc-

turally similar scenes [Hays and Efros, 2007, Douze

et al., 2009]. We generate a gist descriptor for each

image in the dataset by computing oriented edge re-

sponses at three scales (with 8, 8 and 4 orientations,

respectively), aggregated to a 4 × 4 spatial resolution.

In addition, we augment this gist descriptor with color

information, consisting of a subsampled image, at 4×4

spatial resolution. We thus obtain a 368-dimensional

vector as a representation of each image in the dataset.

We implemented gist extraction as a series of convolu-

tions on the GPU4, achieving computation rates of 170

Hz (see Table 2 for detailed timings).

In order to identify typical views, we cluster the gist

descriptors of all our input images using the k-means

algorithm. In this initial stage, it is acceptable to pro-

duce an over-clustering of the scene, since in subsequent

stages, we will be able to restore links between clusters

that have sufficient viewpoint similarity. For this rea-

son, we set the number of clusters k to be fairly high

(k = 1200 in the experiments, although the outcome is

not very dependent on the exact value used). In all of

our experiments, the resulting clusters capture the pop-

ular viewpoints quite well. In particular, the largest gist

clusters tend to be quite clean (Figure 3). If we rank the

gist clusters in decreasing order of size, we can see that

the top few clusters have a remarkably high precision

(Figure 7, Stage 1 curve).

3.2 Geometric Verification and Iconic Image Selection

Of course, clustering based on low-dimensional global

descriptors has its drawbacks. For one, the gist descrip-

tor is sensitive to image variation such as clutter (for

4 code in preparation for release
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Fig. 3 Snapshots of two gist clusters for the Statue of Liberty dataset. For each cluster, the figure shows the hundred images closest
to the cluster mean. Even without enforcing geometric consistency, these clusters display a remarkable degree of structural similarity.

example, people in front of the camera), lighting condi-

tions, and camera zoom. These factors can cause images

with similar viewpoints to fall into different clusters.

But also, images that are geometrically or semantically

unrelated may end up having very similar gist descrip-

tors and fall into the same cluster. Examples of two

clusters with inconsistent images are shown in Figure 4.

Since we are specifically interested in recovering scenes

with a static 3D structure, we need to enforce strong

geometric constraints to filter out structurally incon-

sistent images from clusters. Thus, the second step of

our system consists of applying a geometric verification

procedure within each cluster.

The goal of geometric verification is to identify clus-

ters that have at least n images that are consistent in

both appearance as well as geometry (in our current im-

plementation, n = 3). To this end, we start by selecting

an initial subset of n representative images from each

cluster by taking the images whose gist descriptors are

closest to the cluster mean. Next, we attempt to esti-

mate the two-view geometry of every pair in this sub-

set. Inconsistent images within this subset are identified

and replaced by the next closest image to the cluster

mean, until a subset of n valid images is found, or all

cluster images are exhausted. To test whether a pair of

images is consistent, we attempt to estimate a two-view

relationship, i.e., epipolar geometry or a homography.

A valid epipolar geometry implies that a fundamen-

tal matrix exists for freely moving cameras capturing a

non-planar scene. A valid homography indicates planar

scene structure or rotating cameras.

The standard first step in the robust fitting of a

two-view relationship is establishing putative matches

between keypoints extracted from both images. We ex-

tract SIFT keypoints [Lowe, 2004] using an efficient in-

house GPU implementation, SiftGPU5, which is capa-

ble of processing 1024×768 images at speeds of 16Hz on

an Nvidia GTX 280. Feature extraction is performed at

a resolution that is suitable for the geometric verifica-

tion task. Empirically, we have observed that SIFT fea-

tures extracted at the resolution of 1024× 768 produce

registration results that are comparable those achieved

at the original resolution. Putative feature matching

is also performed on the GPU. Finding all pairwise

distances between SIFT descriptors in the two images

reduces to multiplication of large and dense descrip-

tor matrices. Thus, our routine consists of a call to

dense matrix multiplication in the CUBLAS library6

with subsequent instructions to apply the distance ra-

tio test [Lowe, 2004] and to report the established cor-

respondences. To increase the ratio of correct puta-

tive matches, we retain only those correspondences that

constitute a mutual best match in both the forward and

reverse directions.

5 Available online: http://cs.unc.edu/∼ccwu/siftgpu/
6 http://developer.download.nvidia.com/compute/cuda/1 0/

CUBLAS Library 1.0.pdf
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Fig. 4 Snapshots of two clusters containing images inconsistent with the dominant 3D structure. By enforcing two-view geometric
constraints, these images (outlined in red) are filtered out.

Once putative matches have been established, we

estimate the two-view relationship between the images

by applying ARRSAC [Raguram et al., 2008], which

is a robust estimation framework capable of real-time

performance. We couple this estimation algorithm with

QDEGSAC [Frahm and Pollefeys, 2006], which is a ro-

bust model selection procedure that accounts for dif-

ferent types of camera motion and scene degeneracies,

returning either an estimate for a fundamental matrix

or a homography depending on the scene structure and

camera motion. If the estimated relation is supported

by less than m inliers (m=18 in the implementation),

the images are deemed inconsistent.

The image that gathers the largest total number of

inliers to the other n−1 representatives from its cluster

is declared the iconic image of that cluster. The inlier

score of each iconic can be used as a measure of the

quality of each cluster. Precision/recall curves in Fig-

ure 7 (Stage 2a) demonstrate that inlier number of the

iconic does a better job than cluster size in separating

the “good” clusters from the “bad” ones. Note, how-

ever, that ranking of clusters based on inlier number

of the iconic does not penalize clusters that have a few

geometrically consistent images but are otherwise filled

with garbage. Once the iconic images for every clus-

ter are selected, we perform geometric verification for

every remaining image by matching it to the iconic of

its cluster and rejecting it if it has fewer than m in-

liers. As shown in Figure 7 (Stage 2b), this individual

verification improves precision considerably.

As can be seen from Table 2 (Stage 2 column), ge-

ometric verification takes just under an hour on the

Statue of Liberty dataset, and just under half an hour

on the two other datasets. It is important to note that

efficiency gains in this step come not only from limit-

ing the number of pairwise geometric verifications, but

also from targeting the verifications towards the right

image pairs. After all, robust estimation of two-view

geometry tends to be fast for images that are geometri-

cally related and therefore have a high inlier ratio, while

for unrelated images, the absence of a geometric rela-

tion can only be determined by carrying out the max-

imum number of RANSAC iterations. Since images in

the same gist cluster are more likely to be geometrically

related, the average number of ARRSAC iterations for

within-cluster verifications is comparably low.

3.3 Re-clustering and Registration

While the geometric verification stage raises the preci-

sion of the registered images, it also lowers the overall

recall by rejecting relevant images that didn’t happen

to be geometrically consistent with the chosen iconic of

their clusters. Such images often come from less com-

mon aspects of the landmark that did not manage to get

their own cluster initially. To recover such aspects, we

pool together all images that were discarded in the pre-

vious step, and apply a second round of clustering and

verification. As in Section 3.2, we select a single iconic

representative per each new valid cluster. As shown in

Table 2, this contributes a substantial number of addi-

tional iconics to the representation.

After augmenting the initial set of iconics, we per-

form a final “cleanup” attempting to match each left-

over image to the discovered scene structure. In order to

efficiently do this, we retrieve, for each leftover image,

the k nearest iconics in terms of gist descriptor distance

(with k=10 in our current implementation), attempt to

register the image to each of those iconics, and assign it

to the cluster of the iconic with which it gets the most

inliers (provided, of course, that the number of inliers

exceeds our minimum threshold).
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As seen in Figure 7 (Stage 3), re-clustering and reg-

istration increases recall of relevant images from 33%

to 50% on the Statue of Liberty, from 46% to 66% on

the San Marco dataset, and from 38% to 60% on Notre

Dame. In terms of computation time, re-clustering and

registration takes about three times as long as the ini-

tial geometric verification (Table 2, Stage 3 column).

The bulk of this time is spent attempting to register

all leftover images to all iconics, since, not surprisingly,

the inlier ratios of such images tend to be relatively

low. Even with the additional computational expense,

the overall geometric verification portion of our algo-

rithm compares quite favorably to that of the fastest

system to date [Agarwal et al., 2009], which uses mas-

sive parallelism and feature-based indexing to speed up

putative matching. On the Statue of Liberty dataset,

our system performs both stages of clustering and veri-

fication on about 46,000 images in approximately seven

hours on one core (Table 2, Totals column). For the

analogous processing stages, Agarwal et al. [2009] re-

port a running time of five hours on 352 cores (in other

words, 250 times more core hours than our system) for

a dataset of only 1.3 times the size.

3.4 Constructing the Iconic Scene Graph

The next step of our system is to build an iconic scene

graph to capture the full geometric relationships be-

tween the iconic views and to guide the subsequent

3D reconstruction process. To do this, we perform fea-

ture matching and geometric verification between each

pair of iconic images. Note that in our experiments, the

number of iconics is orders of magnitude smaller than

the total dataset size (several hundred iconics vs. tens of

thousands initial images), so exhaustive pairwise verifi-

cation of iconics is fast. Feature matching is carried out

using the techniques described in Section 3.2, but the

geometric verification procedure is different. For verify-

ing the geometric consistency of clusters, we sought to

estimate a fundamental matrix or a homography. But

now, as a prelude to the upcoming SfM stage, we seek

to obtain a two-view metric reconstruction.

Pairwise metric 3D reconstructions can be obtained

by the five-point relative pose estimation algorithm [Nistér,

2004] and triangulating 3D points based on 2D feature

matches. This algorithm requires estimates of internal

calibration parameters for each of the cameras. To get

these estimates, we make the zero skew assumption and

initialize the principal point to be in the center of each

image; for the focal length, we either read the EXIF

data or use the camera specs for a common viewing an-

gle. In practice, this initialization tends to be within the

calibration error threshold of 10% tolerated by the five-

point algorithm [Nistér, 2004], and in the latter stages

of reconstruction, global bundle adjustment refines the

calibration parameters.7 Note that the inlier ratios of

putative matches between pairs of iconic images tend to

be very high and consequently, the five-point algorithm

requires very few RANSAC iterations. For instance, in

the Statue of Liberty dataset, of the image pairs that

contain at least 20 putative matches, 80% of the pairs

have an inlier ratio larger than 50%.

After estimating the two-view pose for every pair

of iconic images, we construct the iconic scene graph,

where nodes are iconic images, and the weight of the

edge connecting two iconics is defined to be the num-

ber of inliers to their estimated pose. Iconic pairs with

too few inliers (less than m) are given zero edge weight

and are thus disconnected in the graph. For all of our

datasets, the iconic scene graphs have multiple con-

nected components corresponding to non-overlapping

viewpoints, day vs. night views, or even geographically

separated instances of the landmark (e.g., copies of the

Statue of Liberty in different cities).

In general, lacking GPS coordinates or higher-level

knowledge, we do not have enough information to deter-

mine whether a given connected component is semanti-

cally related to the landmark. However, we have noticed

that single-node connected components are very likely

to be semantically irrelevant. In many cases, they corre-

spond to groups of near-duplicate images taken by a sin-

gle user and incorrectly tagged (see Figure 5). To prune

out such clusters, we use a rudimentary but effective fil-

ter based on image tags. First, we create a “reference

list” of tags that are considered to be semantically rele-

vant to the landmark by taking the tags from all iconic

images that have at least two connections to other icon-

ics (empirically, these are almost certain to contain the

landmark). To have a more complete list, we also incor-

porate tags from the top ten cluster images registered

to these iconics. The tags in the list are ranked in de-

creasing order of frequency. Next, isolated iconic images

are scored based on the median rank of their tags in the

reference list. Tags that do not occur in the list at all

are assigned an arbitrary high number. Clusters with

a high median rank are considered to be unrelated to

the landmark and removed from the dataset. As shown

by the Stage 4 curves in Figure 7, this further improves

7 Note that our initial focal length estimate can be wrong for
cameras with interchangeable lenses. The error can be particu-
larly large for very long focal lengths, resulting in camera center
estimates that are displaced towards the scene points. For exam-
ple, for a zoomed-in view of Statue of Liberty’s head, the esti-
mated camera center may be pushed off the ground towards the

head. Some of this effect is visible in Figure 11.
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Tags: italy liberty florence europe santacroce church firenze

Tags: letterman late show groundzero timesquare
          goodmorningamerica

Tags: newyorkcity fireworks victoria statueofliberty
     queenmary2 queenelizabeth2

Fig. 5 Sample clusters from the Statue of Liberty dataset that were discarded by tag filtering. Each of these clusters is internally

geometrically consistent, but does not have connections to any other clusters. By performing a simple tag-based filtering procedure,

these spurious iconics can be identified and discarded. Note that in downloading the images, we used Flickr’s full text search option,
so that “Statue of Liberty” does not actually show up as a tag on every image in the dataset.

precision over the previous appearance- and geometry-
based filtering stages.

3.5 Reconstruction

This section describes our novel incremental approach

to reconstructing point cloud 3D models from the set

of iconic images. The algorithm starts by building mul-

tiple 3D sub-models covering the iconic scene graph,

then it looks for common 3D features to merge different

sub-models, and finally, it grows the resulting models

by registering into them as many additional non-iconic

views as possible. The sequence of these steps is shown

in Algorithm 2 and discussed in detail below.

To initialize the process of incremental 3D recon-

struction, we pick the pair of iconic images whose two-

view reconstruction (computed as described in Section

3.4) has the highest inlier number and delivers a suffi-

ciently low reconstruction uncertainty, as computed by

the criterion of Beder and Steffen [2006]. Next, we it-

eratively register additional cameras to this model. At

each iteration, we propagate correspondences from the

reconstructed 3D points to the iconics not yet in the

model that see these points. Then we take the iconic

that has the highest number of correct 2D-3D corre-

spondences to the current sub-model, register it to the

sub-model, and triangulate new 3D points from 2D-2D

matches between the iconic and other images already

in the model. After each iteration, the 3D sub-model

and camera parameters are optimized by an in-house

implementation of fast non-linear sparse bundle adjust-

ment8. If no further iconics have enough 2D-3D inliers

to the current sub-model, the process starts afresh by

picking the next best pair of iconics not yet registered

to any sub-model. Thus, by iterating over the pool of

unregistered iconic images, multiple 3D sub-models are

reconstructed.

The above process may produce multiple sub-models

that contain overlapping 3D structure and even share

some of the same images, but that were not recon-

structed together because neither one of the models

has a single iconic with a sufficient number of 2D-3D

matches to another model. Instead, such models may be

linked by a larger number of images having relatively

few correspondences each. To account for this case, ev-

ery time we finish constructing a sub-model, we collect

all 3D point matches between it and each of the mod-

els already reconstructed, and merge it with a previous

model provided a sufficient number of such matches ex-

ist. The merging step uses ARRSAC to robustly esti-

mate a similarity transformation based on the identified

3D matches.

Even after the initial merging, we may end up with

several separate sub-models coming from the same con-

nected component of the iconic scene graph. This hap-

pens when none of the connections between iconic im-

ages in different sub-models are sufficient for direct reg-

istration. To successfully merge such models, we need to

search for additional non-iconic images to provide the

missing links. To identify the most promising merging

locations, we consider pairs of source and target iconics

that belong to two different models and are connected

8 Available online: http://cs.unc.edu/∼cmzach/oss/SSBA-

1.0.zip
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Algorithm 2 Incremental Reconstruction
Extract connected components of the iconic scene graph and
their spanning trees.
for each connected component do

[Incrementally build and merge sub-models.]

while suitable initial iconic pairs exist do

Create 3D sub-model from initial pair.
while there exist unregistered iconic images with enough

2D-3D matches to sub-model do

Extend the sub-model to the image with the most 2D-
3D matches.
Perform bundle adjustment to refine the sub-model.

end while

Check for 3D matches between current sub-model and
other sub-models in the same component and merge sub-
models if there are sufficient 3D matches.

end while

[Attempt to discover non-iconic links between models.]

for each pair of sub-models connected in the spanning tree
do

Search for additional non-iconic images to provide com-
mon 3D points between the sub-models (see text).
If enough enough common 3D points found, merge the
sub-models.

end for

[Grow models by registering non-iconic images.]
for each 3D model do

while there exist unregistered non-iconic images with
enough 2D-3D matches to the model do

Expand model by adding non-iconic image with high-
est number of 2D-3D correspondences.
If more than 25 images added to model, perform bun-
dle adjustment.

end while

end for

end for

by an edge of the maximal spanning tree (MST) of the

iconic scene graph, and we search for non-iconic images

that can be registered to both of them. The search is

conducted in the iconic clusters of the source and the

target, as well as in the clusters of other iconics con-

nected to the source in the MST (Figure 6). To maintain

efficiency, we stop the search after finding five images

with a sufficient number of correspondences both to the

source and the target. The triplet correspondences are

then registered into the 3D sub-models of the source

and the target, providing common 3D points for merg-

ing. We apply an analogous linking process to attempt

to register iconic images that could not be placed in

any 3D sub-model.

At this point, most of the models having common

structure are typically merged together, and in their

totality, the models cover most of the scene content

present in the iconic images. In the last stage of the

reconstruction algorithm, we try to make the models

as complete as possible by incorporating non-iconic im-

ages from clusters of the registered iconics. This process

takes advantage of feature matches between the non-

iconic images and their respective iconics that were es-

tablished during the earlier geometric verification stage

(Section 3.2). The 2D matches between the image and

its iconic determine 2D-3D correspondences between

the image and the 3D model into which the iconic is

registered, and ARRSAC is used to determine the cam-

era pose. Since the model structure at this point tends

to be fairly stable, we carry out a full bundle adjust-

ment after adding every 25 images. Detailed results of

our 3D reconstruction algorithm are shown in Figures

11-16, and timings are presented in Table 3.

4 Experimental Results

We have tested our system on three large landmark

image datasets: the Statue of Liberty (47,238 images),

Piazza San Marco in Venice (45,322 images), and the

Notre Dame cathedral in Paris (11,900 images). Each

of these datasets presents different challenges for our

system: for example, the relative lack of texture on

the Statue of Liberty poses a problem for SIFT-based

matching, while the often cluttered San Marco square

poses a challenge for gist clustering.

4.1 Data Collection

The datasets used for evaluation were automatically

downloaded from Flickr.com using keyword searches.

We randomly split each dataset into a “modeling” part,

which forms the input to the system described in Sec-

tion 3, and a much smaller independent “testing” part,

which will be used to evaluate recognition performance

in Section 4.4. Because the modeling datasets contain

tens of thousands of images, we have chosen to label

only a small randomly selected fraction of them. Note

that the ground-truth labels are not used by the mod-

eling algorithm itself; they are needed only to measure

recall and precision for the different stages described in

Sections 3.1-3.4. The smaller test sets are completely

labeled. Our labeling is very basic, merely recording

whether the landmark is present in the image or not,

without evaluating the quality or geometric fidelity of

a given view. In particular, artistic depictions of land-

marks are labeled as positive, even though they can-

not be registered to our iconic representation using SfM

constraints. Table 1 gives a breakdown of the numbers

of labeled and unlabeled images in each of our datasets.

The proportions of negative images (40% to 60%) give

a good idea of the initial amount of contamination.
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Fig. 6 3D sub-model merging: The target and source iconics are not registered in the same 3D sub-model due to a lack of common
3D points. In this case, the source iconic is registered to a sub-model encompassing mainly the front of the San Marco square, and
the target is registered to a sub-model of the back of the square. To merge the two sub-models, we need to find additional non-iconic
images matching both the source and the target. We search for such images in the clusters of the source and target iconic, as well as
in the clusters of other iconics connected to the source. The found matching images are then used to establish common 3D points to
register the two 3D sub-models.

Modeling Testing

Dataset Unlabeled Pos. Neg. Pos. Neg.

Statue of Liberty 43,845 1,383 918 631 461
San Marco 39,003 2,094 3,131 384 710
Notre Dame 9,776 562 518 546 498

Table 1 Summary statistics of the datasets used in this paper.
The columns list the numbers of labeled and unlabeled images for
the modeling and testing phases. Links to all the Flickr images
from the datasets can be downloaded from our project website.

4.2 Modeling Results

Figure 7 shows a quantitative evaluation of the perfor-

mance of each of the successive modeling stages of our

approach, corresponding to stages 1-4 in Algorithm 1.

Performance is measured in terms of recall (i.e., out of

all the “positive” landmark images in the dataset, how

many are incorporated into the iconic representation at

the given stage) and precision (out of all the images

currently incorporated, what proportion are “positive”

landmark images). Stage 1 in this Figure 7 corresponds

to ranking images based on the size of their gist clus-

ters. Precision starts off very high for the few largest

clusters, but drops off rapidly for the smaller clusters.

The geometric verification step improves the precision

due to the removal of inconsistent clusters (Stage 2a),

as does registering all images to the iconic of their gist

cluster (Stage 2b). However, geometric verification de-

creases recall due to rejecting positive images not con-

sistent with the iconic of their cluster. The reclustering

and registration stage allows us to incorporate such im-

ages into additional iconic clusters, leading to improved

recall (Stage 3). Finally, the tag filtering stage results

in the removal of geometrically consistent, but seman-

tically irrelevant clusters, leading to an additional in-

crease in precision (Stage 4). Thus, every step of our
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modeling framework is well justified in terms of increas-

ing either the precision or the recall of the iconic rep-

resentation. In the end, we get over 90% precision and

47-64% recall on all datasets. The imperfect precision

is due to images being registered to semantically irrele-

vant iconics, as discussed next, while the recall rates re-

flect the proportion of “unregistrable” positive images,

as discussed further in Section 4.4.

Figures 8, 9 and 10 show the sets of iconic images

(iconic summaries) generated by our system from each

of the three datasets. For the most part, these sum-

maries are very clean and complete, with just a few

irrelevant or ambiguous iconics. For example, the sum-

mary for the Statue of Liberty dataset includes a few

iconics corresponding to views of lower Manhattan, El-

lis Island, and an M&M statue that parodies the Statue

of Liberty. The iconic summary of San Marco contains

a few views of Castillo de San Marcos in Florida, while

the summary for Notre Dame contains some views of

Notre Dame cathedrals in Montreal and Indiana that

did not get removed by our tag-based filtering step (Sec-

tion 3.4).

Table 2 shows running times for Stages 1-3 of the

modeling pipeline (Stage 4, corresponding to pairwise

matching of iconic images, is included in the reconstruc-

tion timings of Table 3). All the processing was done on

a single commodity PC with an Intel core2 duo proces-

sor with 3GHz, 2.5GB RAM and an NVidia 280GTX

graphics card. Total modeling times are about 2.5 hours

for the Notre Dame dataset, and just under seven hours

for the Statue of Liberty and San Marco datasets. The

table also lists the number of iconics present at the end

of each respective stage, along with the total number

of images that the system was able to register to the

iconics.

4.3 Reconstruction Results

Figure 11 shows 3D models reconstructed from the Statue

of Liberty dataset. The largest model (Figure 11 (a))

incorporates front and side views of the Statue of Lib-

erty in New York. We obtain a separate model for the

back view of the Statue (Figure 11 (b)). The front and

back models are not merged because of a lack of con-

necting intermediate views in the dataset, with the lack

of texture on the statue posing an additional challenge.

Figure 12 shows additional models obtained from this

dataset, including the interior of the Ellis Island Na-

tional Monument, and copies of the statue in Las Ve-

gas and Tokyo. For the latter two, we obtain separate

models for day and night views of the same scene. The

merging of the day and night models fails because the

drastic illumination change makes SIFT feature match-

ing unreliable.

Figure 13 (a) shows the biggest reconstructed model

for the San Marco dataset. Unlike the earlier version of

our system [Li et al., 2008], the current implementation

is able to obtain a single, complete model of the entire

square. The model is merged from three initially sep-

arate sub-models: a sub-model encompassing the front

of the square and the cathedral, and day and night sub-

models of the sides and back of the square. Given that

the feature matches between the day and night compo-

nents are fewer and less reliable than matches within

components, the walls of the square from the merged

models do not align perfectly, as illustrated in Figure 13

(b). Figure 14 shows two additional San Marco models:

one of the interior of the cathedral, and another one of

the side of the cathedral as seen from the courtyard of

the Doges’ Palace.

Figure 15 (a) shows the biggest Notre Dame model,

which incorporates 1,300 views of the cathedral facade.

Figure 15 (b,c) shows two additional models, for the

back and side of the cathedral. These two models are

not merged together because the parts of the cathedral

structure visible from the two vantage points are es-

sentially orthogonal to each other. The back and side

models are also not merged with the front, which is

less surprising because there are almost no photographs

that can simultaneously see the facade and any other

part of the cathedral structure. Finally, Figure 16 shows

a couple of models constructed from different parts of

the cathedral’s interior.

Table 3 lists timings for the 3D reconstruction stage,

along with the numbers of reconstructed images for

each of the three datasets. For example, for the Statue

of Liberty, our reconstruction process registers 9,934

images in about 13 hours. This running time is com-

parable to that of Agarwal et al. [2009], who register

about 12,000 images from their Dubrovnik dataset in

16.5 hours on a single core (note that reconstruction is

much harder to parallelize than pairwise image match-

ing and geometric verification). Combining the totals

from Tables 2 and 3, the overall modeling and recon-

struction times are about 20 hours for Statue of Liberty,

14 hours for San Marco, and 9 hours for Notre Dame.

4.4 Recognition Results

This section considers the problem of landmark recog-

nition, which we formulate as follows: given an image

that was not in the initial collection, attempt to regis-

ter it into our iconic representation and report success

or failure. This can be useful in order to perform on-

line updating of the 3D models or simply to answer the
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Fig. 7 Top: Recall/precision curves for modeling. Bottom: summary of final (rightmost) precision and recall values for each curve.
The different stages correspond to stages 1-4 in Algorithm 1. Stage 1: Clustering using gist and ranking each image by the size of
its gist cluster (Section 3.1). Stage 2a: Geometric verification of iconics and ranking each image by the inlier number of its iconic
(Section 3.2). The recall is lower because inconsistent clusters are rejected. Stage 2b: Registering each image to its iconic and ranking
the image by the number of inliers of the two-view transformation to the iconic (Section 3.2). Unlike in the first two stages, images
are no longer arranged by cluster, but ranked individually by this score. The recall is lower because images with not enough inliers
to estimate a two-view transformation are rejected. Stage 3: Images discarded in the previous stages are subject to a second round
of re-clustering and geometric verification (Section 3.3). This results in an increase in recall due to the discovery of additional iconic
clusters. Stage 4: Tag information is used to discard semantically unrelated clusters (Section 3.4). Note the increase in precision due
to the removal of spurious iconics.

Feature Stage 1 Stage 2 Stage 3

extraction Gist Geometric Re-clustering Totals

Gist SIFT clustering verification and registration

Dataset Timing Timing Timing Timing Initial Timing Additional Timing Total Images
hrs:min hrs:min hrs:min hrs:min iconics hrs:min iconics hrs:min iconics registered

Liberty 0:04 2:12 0:21 0:56 260 3:21 212 6:53 454 13,888
San Marco 0:04 3:18 0:19 0:24 270 2:47 195 6:52 417 12,253
Notre Dame 0:01 0:57 0:03 0:22 211 1:02 81 2:25 249 3,058

Table 2 Summary statistics for the modeling stage of the processing pipeline, wherein the raw image collection is reduced to a set of
representative iconic images. The table lists the time taken for each stage of processing, along with the total number of iconic images
present at each step. The summary column lists the final number of iconics, along with the total number of images that could be
registered to these iconics. Note that the final number of iconics reflects the results following the tag-filtering step, where some iconics
are rejected from each dataset. Specifically, this step rejects 20 iconics from the Statue of Liberty dataset, 47 from the San Marco
dataset, and 43 from the Notre Dame dataset. The timing for this step is on the order of a few seconds, and is thus omitted from the

table.

question of whether the image contains the landmark

of interest. In our formulation, landmark recognition is

conceptually very close to the task of registering left-

over images in Stage 3 of our modeling pipeline (Sec-

tion 3.3). In this section, we take a closer look at this

task with a few new goals in mind. First, a separate

evaluation of recognition performance allows us to test

important implementation choices that we have not yet

examined, such as the use of keypoint-based indexing

instead of gist descriptors for image matching. Second,

it allows us to quantify the extent to which our iconic

summaries are representative of all landmark images

marked as positive by human observers. Third, by ex-

amining individual examples of successful and unsuc-

cessful recognition (Figures 18-20), we can get a better
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Fig. 8 Iconic summary of the Statue of Liberty dataset, containing 454 iconic images. Iconic images depict copies of the Statue in New
York, Las Vegas, and Tokyo. There are also a few technically spurious, but related iconics corresponding to views of lower Manhattan,
Ellis Island, and an M&M statue that parodies the Statue of Liberty.
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Fig. 9 Iconic summary of the San Marco dataset, containing 417 iconic images. This summary retains a few spurious iconics that did

not get rejected by our tag filtering step, including views of Castillo de San Marcos in Florida (see also Figure 20-B).
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Fig. 10 Iconic summary of the Notre Dame dataset, containing 249 iconic images. There are a few unrelated iconics showing Notre

Dame cathedrals in Indiana and Montreal (see also Figure 20-A).

idea of the factors that limit the recall and precision of

our system.

We perform recognition by treating the test image

as a retrieval query against the database of iconic im-

ages belonging to the landmark of interest. Specifically,

we retrieve one or more iconic images that obtain the

highest matching score with the test image (according

to a given retrieval scheme) and make a yes/no deci-

sion by setting a threshold on the retrieval score. We

evaluate performance quantitatively by plotting a re-

call/precision curve of the test images ordered from

highest to lowest score. Figure 17 shows the results for

several retrieval strategies, which are as follows:

1. Retrieve images using tag information. This strat-

egy is meant mainly as a baseline to demonstrate

the discriminative power of tags alone, and as such,

it employs a very simple scoring scheme. Given a

test image with associated tags, we retrieve the sin-
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(a) Two views of the Statue of Liberty in New York (9025 cameras).

(b) The back side of the Statue of Liberty (171 cameras).

Fig. 11 Selected final models of the Statue of Liberty dataset. In this and the following model figures, the inset images give repre-

sentative views of the 3D structure covered by the model.
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(a) The interior of the Ellis Island National Monument (73 cameras).

(b) The Statue of Liberty in Las Vegas. Left: day model (223 cameras), right: night model (148 cameras).

(c) The Statue of Liberty in Tokyo. Left: day model (146 cameras), right: night model (27 cameras).

Fig. 12 Additional models constructed from the Statue of Liberty dataset.

gle iconic image that contains the largest fraction of

these tags. It can be seen from Figure 17 that by

itself, this scheme is quite unreliable.

2. Compare the test image to the iconics using either

gist descriptors or a bag-of-features representation

using the vocabulary tree indexing scheme [Nister

and Stewenius, 2006]. In either case, the retrieval

score is the similarity (or inverse distance) between

the query and the single best-matching iconic. The

performance of gist descriptors is shown in Figure

17 (a), and the performance of the vocabulary tree

is shown in (b). For San Marco and Notre Dame,

gist and vocabulary tree have roughly similar per-

formance. However, for the Statue of Liberty, the

performance of the vocabulary tree is almost dis-

astrous – even worse than that of the tag-based

baseline. This is due to the relative lack of texture

in many Statue of Liberty images, which gives too
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(a) Two views of the San Marco Square model (10,338 cameras).

(b) Overhead view of the square highlighting misalignment artifacts between day and night sub-models. The two sample
views come from different models and give rise to inconsistent structure due to a lack of direct feature matches.

Fig. 13 Biggest reconstructed 3D model for the San Marco dataset.
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Fig. 14 Additional models reconstructed from the San Marco Square dataset. Left: the nave of the church (81 cameras). Right: the

side of the church (90 cameras).

Construction of Link discovery and Expansion of models

Dataset initial sub-models merging of sub-models with non-iconic images Total

Timing Reconstructed Timing Reconstructed Timing Reconstructed Timing
hrs:min iconics hrs:min images hrs:min images hrs:min

Liberty 0:32 309 2:51 434 9:34 9,934 12:57
San Marco 0:28 317 0:39 424 6:07 10,429 7:14
Notre Dame 0:10 115 0:21 186 5:46 2,371 6:17

Table 3 Summary statistics of the steps of our 3D reconstruction (refer back to Section 3.5). Note that the first stage, construction
of sub-models, includes the time for finding metric reconstructions between pairs of iconics and constructing the iconic scene graph.
It can be seen that significantly large datasets can be processed on the order of a few hours.

few local feature matches for the vocabulary tree

to work reliably. The strong performance of global

features as compared to local ones validates our im-

plementation choice of relying so extensively on gist

descriptors, given that local features are often pre-

ferred in image search applications [Douze et al.,

2009]. Our results seem to indicate that, provided

that we query against a set of sufficiently diverse

and representative views, global features will work

well for retrieval.

3. Retrieve the top k candidate iconics using either

gist or vocabulary tree and perform geometric veri-

fication with each candidate as described in Section

3.2. In this case, the retrieval score is the number

of inliers to a two-view transformation (homogra-

phy or fundamental matrix) between the test image

and the best-matching iconic. It can be seen that

for both kinds of descriptors, geometric verification

significantly improves accuracy, as does retrieving

more candidate iconics for verification (we show re-

sults for k = 1, 5, and 20). A high inlier score is a

strong indication of the presence of the landmark,

whereas a very low inlier score is inconclusive. The

colored circles on the curves labeled “GIST+kNN”

or “VocTree+kNN” correspond to an inlier thresh-

old of 18, which represents the point up to which

a classification can be made with reasonable con-

fidence. Note that this is the same threshold that

is used for geometric verification of images against

iconics during modeling (Section 3.2). We can see

that the best recall rates reached on the test sets

for this threshold are all in the 60% range, which is

comparable to the recall rates of images registered

into the iconic representation during modeling (Fig-

ure 7).

Figure 18 shows successful recognition examples for

the three datasets. It can be seen that our system is

able to return a correct match in the presence of occlu-

sions (18-B). In addition, in the case of almost identical

landmarks occurring in different locations, such as the
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(a) The front side of the Notre Dame Cathedral (1300 cameras).

(b) The back side of the cathedral (487 cameras).

(c) The right side of the cathedral (94 cameras).

Fig. 15 The three largest final models of the Notre Dame dataset.
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Fig. 16 Two models for different parts of the Notre Dame cathedral interior (118 cameras and 65 cameras, respectively).

Statue of Liberty in Tokyo (18-A), we are able match

the test image to the correct instance of the landmark.

Correct matches are also returned for some atypical

views, such as photographs taken from inside of the

Notre Dame Cathedral (18-C).

Figure 19 shows some typical false negatives where

a test image containing the landmark does not gather

enough inliers to any of the iconics. For instance, in the

case where the landmark occupies only a very small

area of the image (19-A), neither gist descriptors nor

feature-based geometric verification provide strong ev-

idence in favor of the image. Artistic depictions of the

landmark (19-B) fail geometric verification, while sig-

nificantly atypical views (19-C) may not have match-

ing iconics. Based on the recall rates for modeling and

testing presented in Figures 7 and 17, it appears that

roughly 40% of all images labeled as positive by human

observers fall into the above “unregistrable” categories.

As a consequence of the strong geometric constraints

enforced in our system, false positives (or images that

hurt precision) are significantly less frequent. Two ex-

ample cases are shown in Figure 20, where the error

arises because the set of iconic images itself contains

false positives. For example, the iconics for the Notre

Dame dataset include images of the Notre Dame Basil-

ica in Montreal (20-A), and the iconics for the San

Marco dataset include images of the Castillo de San

Marcos in Florida (20-B).

4.5 Browsing

As a final application of the proposed iconic scene rep-

resentation, we describe how to hierarchically organize

landmark images for browsing.

Iconic scene graphs tend to contain clusters of icon-

ics that have strong geometric connections among them,

corresponding to dominant aspects of the landmark.

We identify these components by partitioning the graph

using normalized cuts (N-cuts) [Shi and Malik, 2000].

The N-cuts algorithm requires the desired number of

components to be specified as input. We have found

that specifying 40 to 50 components produces accept-

able results for all our datasets. Note that in our earlier

work [Li et al., 2008], N-cuts was also used to initialize

sub-models during reconstruction. Since then, we have

found that hard initial partitioning is not as conducive

to model merging as the incremental scheme of Section

3.5; however, N-cuts still produce very good results for

the application of browsing.

The components of the iconic scene graph form the

top level of the browsing hierarchy. The second level

of the hierarchy consists of iconic images grouped by

component. The user can click on the representative

iconic of each component (which we select to be the

iconic with the largest gist cluster) to “expand” the

component and see all the iconic images that belong to

it. The third level consists of all remaining non-iconic

images in the dataset grouped by the iconic of their gist

cluster. During interactive browsing, each iconic image

can be expanded to show all the images from its cluster,

which will all tend to be very similar in appearance to

the iconic. Figure 21 gives a snapshot of this three-level

organization for the Statue of Liberty dataset. All three

datasets can be browsed interactively on our website9.

5 Conclusion

In this article, we have presented a scalable, unified so-

lution to the problems of dataset collection, scene sum-

marization, browsing, 3D reconstruction, and recogni-

tion for landmark image collections gathered from the

Internet. By efficiently combining 2D appearance cues

with 3D geometric constraints, we are able to robustly

9 www.cs.unc.edu/PhotoCollectionReconstruction
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Fig. 17 Recall/precision curves for testing. The different retrieval strategies are as follows. GIST 1NN (resp. VocTree 1NN):
retrieval of the single nearest iconic using the gist descriptor (resp. vocabulary tree); GIST kNN+Match (resp. VocTree

kNN+Match): retrieval of k nearest exemplars using gist (resp. vocabulary tree) followed by geometric verification; Tag: tag-based
ranking. The colored circles on the curves correspond to an inlier threshold of 18.
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Fig. 18 An illustration of one successful case for image retrieval for each dataset. In each of the examples A-C, the query image is on
the left. On the right, the top row shows the top five iconics closest to the query in terms of gist distance, re-ranked by the number
of inliers to an estimated two-view transformation. As discussed in the text, inlier threshold of 18 corresponds to reliable registration.
The bottom row shows analogous results for the closest five iconics according to the vocabulary tree score.

deal with the significant amount of clutter present in

community-contributed photo collections. Our imple-

mented system can process up to fifty thousand images

on a single commodity PC in roughly a day. While there

remains much scope for further optimization, this al-

ready represents an order of magnitude improvement

over existing techniques that do not make use of cloud

computing.

A number of interesting research challenges remain

open. In order to further scale our system, we need to

be able to perform the initial gist clustering step in

memory for much larger datasets. To this end, we are

currently exploring techniques for compressing gist de-

scriptors to short binary strings whose Hamming dis-

tances approximate Euclidean distances in the original

feature space [Torralba et al., 2008].

Currently, we assume that the iconic scene graph is

small enough (a few hundred iconic images), so that it

can be computed by exhaustive pairwise matching of

iconics and traversed exhaustively during SfM. Scaling

to much larger graphs will require feature-based index-

ing of iconic images, as well as graph simplification tech-
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Score: 0 Score: 0 Score: 8 Score: 7 Score: 8

Fig. 19 Typical false negatives, or test images that could not be reliably registered to any of the iconics. The layout of the figure is
the same as that of Figure 18.

niques similar to those of Snavely et al. [2008a]. It may

also necessitate the development of efficient out-of-core

bundle adjustment techniques similar to [Ni et al., 2007]

that use the connectivity of the iconic scene graph.

One of the limitations of our current system actually

stems from its greatest source of efficiency, namely, its

reliance on iconic images. By definition, iconic images

correspond to “popular” viewpoints from which many

people take photos of a landmark. While this helps in

drastically reducing the redundancy that is present in

community photo collections, it can pose difficulties

when merging two 3D sub-models, where non-iconic

views may be required to provide the intermediate con-

nections. While the link discovery method described in

Section 3.5 is able to recover some missing links, it is

not always successful. In the future, we plan to work

on improved link discovery algorithms that use more

sophisticated image retrieval techniques such as query

expansion to find rare connecting views.

Illumination changes pose another major challenge

for modeling and recognition. In fact, as discussed in

Section 4, one of the biggest causes of failure for 3D

model merging is a difference in the lighting between

the two components (i.e., day vs. night). Methods for

illumination modeling like those of Haber et al. [2009]

may help in addressing this problem.



26

GIST

Vocabulary Tree

Query

GIST

Vocabulary Tree

Query

A

B

Score: 97 Score: 45 Score: 10 Score: 10 Score: 8

Score: 45 Score: 9 Score: 8 Score: 8 Score: 8

Score: 110 Score: 86 Score: 8 Score: 0 Score: 7

Score: 110 Score: 9 Score: 0 Score: 0 Score: 0

Fig. 20 An illustration of the less common case of false positives in landmark recognition. In both examples, the error arises is
due to the presence of an iconic image that represents a different, though similarly named landmark. The top matching iconic in A
corresponds to the Notre Dame Basilica in Montreal, while the matching iconic in B is of the Castillo de San Marcos in Florida.

Level 1

Level 2

Level 3

Fig. 21 Hierarchical organization of the dataset for browsing. Level 1: components of the iconic scene graph. Level 2: Each component
can be expanded to show all the iconic images associated with it. Level 3: each iconic can be expanded to show the images associated
with its gist cluster. Our three datasets may be browsed online at www.cs.unc.edu/PhotoCollectionReconstruction.
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