I. (38 points)

Page 1
Complete the following reactions as directed. Transformations requiring sequential experimental steps should be numbered appropriately. Show the major organic product(s) unless otherwise specified. Abbreviations for reagents are not allowed. If a product forms as a stereoisomeric mixture, draw one and write "+enantiomer" or "+diastereomer" in the box.

B.

C.

D.

+ enantiomer
II. (37 points)

Name
KEY
Page 2
A. Complete the following multi-step reactions starting from the starting material in the center below. Be sure to number steps where required. If a mixture of stereoisomers results, draw one and write "+enantiomer" or "+diastereomer" in the box. If a mixture of structural isomers results, draw the predicted major product.

B. The following reaction was recently reported (Tetrahedron, 2006, 62, 5717). In the box below, show the mechanism of this reaction. Use $\mathrm{H}-\mathrm{B}$ and B^{-}for any Bronsted acids or bases, if needed. NOTE: Under certain conditions, alkoxy groups (like " OCH_{3} ") can react with a Lewis acid to form a good leaving group.

$25^{\circ} \mathrm{C}, 3 \mathrm{~h}$

III. (33 points)

Name
KEY
Page 3
A. When Compound \mathbf{A} is treated with a stong hindered base, a mixture of structurally isomeric products results. Draw these products.
i)

Compound A
ii) What mechanism is predicted to form these products?

(circle one)			
$\mathrm{S}_{\mathrm{N}} 1$	$\mathrm{~S}_{\mathrm{N}} 2$	E 1	E2

More stable:
iii) Due to relative stability, one of the two products above forms to a much greater extent then the other. Which is the more stable product and why?
(circle one)
Product B
Product C

4

Product C

Why?
Elimination to form product B produces an aromatic ring.
B. Each of the following reactions afford one predominant monosubstitution product. Draw the product.

The following three-step reaction can create two different regioisomeric products. Complete the reaction mechanism with curved arrows and structures as needed and as indicated. Use $\mathrm{H}-\mathrm{B}$ and B^{-}for any Bronsted acids or bases needed.

viii) Draw the structure of the transition state from the step between the starting material and Intermediate 1 A .

ix) Draw an energy diagram of the above reaction. Indicate the locations of all intermediates (I1A, I1B, I2A, I2B), and all transition states (TS). Use the locations of the starting materials (SM) and products (A and B) already drawn.

$$
\mathbf{V} \cdot(53 \text { points })
$$

Name
KEY
Page 5
A. There are seven molecules shown. For each question, you should circle the letter corresponding to the molecule for which the statement is true. You will be graded by the molecule, not the question,

i. Circle the letters for those molecules (A-G) that...

Circle the letters for those molecules (A-G) that...		S	SR	E		Z	E
a) ... has an enantiomer	A	(B)	C	D	E	F	G
b) ... has at least one (R)-stereocenter	A	B	C	D	E	F	G
c) ... is optically active	A	B	C	D	E	F	G
d) ... is unique and has no stereoisomers	A	B	C	D	(E)	F	G
e) ... has at least one optically inactive diastereomer	A	B	C	(D)	E	(F)	G
f) ... has at least one optically active diastereomer	A	B	C	D	E	F	G
g) ... is a meso compound	A	B	C	D	E	F	G
h) ... forms a racemic mixture upon addition by OsO_{4}	A	B	C	(D)	E	F	G
	3	3	3	3	3	3	3

ii. Give the full name of compounds B and F in the appropriate box below.

Compound B

(S)-2-bromo-2-methylpentan-3-ol

Compound F
(Z)-but-2-ene
C. For each of the following compounds, count the number of electrons contained in the cyclic π system - is it aromatic?

VI. (30 points)

Name
KEY
Page 6
A. i. The following bromination reaction results in the formation of two stereoisomeric products. Draw them in the spaces below.

Compound D
4

Compound E
ii. Draw in the substituents for the most stable chair form of compounds D and E on the chairs below. You may use the abbreviation iPr for the isopropyl groups. Be sure to put the right compound in each box. The information in the table on the right may be useful.

-X $\quad \Delta \mathrm{G}$	$\Delta \mathrm{G}^{\mathrm{o}} \mathrm{eq}^{(\mathrm{kcal} / \mathrm{mol})}$
$-\mathrm{CH}_{3}$	1.7
$-\mathrm{CH}_{2} \mathrm{CH}_{3}$	1.8
$-\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$	2.1
-C(CH3) ${ }_{3}$	5.4
-OH	1.0
-Cl	0.5
- Br	0.6

iii. When the mixture of compounds D and E was reacted with sodium ethoxide in ethanol for a short period of time, only one of the two compounds reacted. Which compound reacted, why, and what is the product of that reaction?

Compound D
or
Compound E

Which reacts with ethoxide? (circle one)	Compound D	Compound E	

Why that one and not the other?
One or two sentences will suffice.
In compound E , one of the bromines is ANTI to a $\beta-\mathrm{H}$. That is not true in compound D .

Draw Product F here

