
 1

Project Design Document

Airline System Design

Version 1.2
February 24, 2005

Acceptance

Network name

Network Representative Sarah Tshila and TJ Dorsey

Signature

Date

Submitted as partial fulfillment of the requirements for CS 4322.

 2

Table of Contents

1.0 INTRODUCTION ..3

2.0 USER INTERFACE DESIGN...3

2.1 GENERAL USER INTERFACE..3
2.2 NON-SPECIFIC INTERFACES ..3
2.3 GUEST USER INTERFACE SCREENS ...5
2.4 PASSENGER USER INTERFACE ..6
2.5 EMPLOYEE USER INTERFACE..7
2.6 ADMINISTRATION USER INTERFACE ...8

3.0 DATABASE DESIGN ..10

3.1 USERS DATABASE ..10
3.2 FLIGHTS DATABASE ..11
3.3 RESERVATIONS DATABASE ...11
3.4 WORKASSIGNMENT DATABASE ...11

4.0 PROTOCOL DESIGN ...12

5.0 ARCHITECTURAL DESIGN...14

6.0 CLASS DESIGN ...14

6.1 CLASS DIAGRAMS ..15
6.2 CLASS DESCRIPTIONS ...17

6.2.3 Class: AdminConsole ...18
6.2.4 Class: AirlineClient..18
6.2.5 Class: AirlineServer ...18
6.2.6 Class: ClientConsole..22
6.2.7 Class: CustomerConsole ..22
6.2.8 Class: Day..22
6.2.9 Class: EmployeeConsole..22
6.2.10 Class: Flight...24
6.2.11 Class: Passenger ..25
6.2.12 Class: Person ...25
6.2.13 Class: Reservation..28

7.0 GLOSSARY ..29

APPENDIX A: DOCUMENT CONTROL...30

APPENDIX B: CHANGE CONTROL REQUEST FORM ..31

 3

1.0 Introduction

This design document will explain in detail the aspects of the airline flight system. The user

interfaces will provide a clear understanding of how the user will interact with the system. The protocol

portion will explain how the clients and server will interact with each other to send and request data from

the user and the database. The class designs explain how each part will work in detail and how data is

handled between the database and server, between the server and client, and the client and user.

2.0 User Interface Design

The focus of the user interface design is to make navigation of the client and server as easy as

possible. The interface was broken down into four sections according to the user’s login status: guest,

passenger, employee, and administrator. The guest user will possess the least power, while the

administrator will possess the most power. The user interfaces are designed to inherit features from lower

interfaces.

2.1 General User Interface

 The General Interfaces will include information that is not user-specific, but is significant to the

navigation of the system. Each interface will have menu options displayed at the bottom of each screen to

give the user choices to complete a task.

Guest User Interface will have the following options to choose from:
(S)earch (L)ogin (R)egister (Q)uit

Passenger User Interface will have the following options to choose from:
(S)earch (L)ogout (B)ook Flight (R)eservation (P)rofile (Q)uit

Employee User Interface will have the following options to choose from:
(S)earch (L)ogout (B)ook Flight (R)eservation (P)rofile (W)ork Assignment (Q)uit

Admin User Interface will have the following options to choose from:
(S)earch (L)ogout (B)ook Flight (R)eservation (P)rofile (Q)uit

(F)light Control: Create, Modify, Delete

(T)ime Schedules: Modify

2.2 Non-Specific Interfaces

The Welcome screen will be displayed each time the client program starts up. From this screen, the user

can choose to search for flights, log into the system, or register with the system.

WELCOME SCREEN

**

Welcome to the VSU Airline System

 4

Please choose an option below to proceed.

(S)earch (L)ogin (R)egister (Q)uit

**

The Search screen is where the user will have the option to input flight parameters for the system to try and

find a matching flight according to the user input.

* If all three input lines are left blank, then no search will be done.

SEARCH SCREEN

**

Welcome to the VSU Airline System

Search for a Flight

*NOTE: MUST be a registered user to book flights

Departure City: STRING

Departure Date: STRING in this format, MM/DD/YYYY

Destination City: STRING

*Note: this is a one-way trip

(S)earch (L)ogin (R)egister (Q)uit

**

The Search Results screen will display all available flights with the matching parameters that the user

entered at the Search screen.

SEARCH RESULTS SCREEN

**

Welcome to the VSU Airline System

Search Results

Flight Number, Departure City and Date

Destination City

Price

Examples:

C14, from Atlanta, GA to Las Vegas on February 28, 2005 for $204

A121, from Atlanta, GA to Las Vegas on February 28, 2005 for $251

B52, from Atlanta, GA to Las Vegas on February 28, 2005 for $237

(S)earch (L)ogin (R)egister (Q)uit

**

 5

2.3 Guest User Interface Screens

The guest user is anyone that wishes to use the system is either not a registered user or not logged in. Guest

users cannot book flights or check reservations. They can only search for flights, register with the system

and login as a registered user.

The user login screen is displayed, when a user chooses the Login command from the menu. This will ask

for a username and password to be entered. If the login information is correct and matches an exiting

username and password, then a confirmation screen will be displayed. If the login information is incorrect,

then a notice will be displayed and the user will be taken back to the login screen.

USER LOGIN SCREEN

**

Welcome to the VSU Airline System

User Login

Enter your username:

Enter your password:

(Message will appear either confirming or denying access)

(S)earch (L)ogin (R)egister (Q)uit

**

The user registration screen is where new users will be added to the system. The user will input their

personal information and enter a user name and password also. After the user confirms his information, the

system will add the new user. If the username entered is already in use, then the use will be asked to submit

a different username.

USER REGISTRATION SCREEN

**

Welcome to the VSU Airline System

User Registration

Name:

Address:

City:

State:

Zip Code:

Phone Number:

E-mail address:

Please enter in a unique username and password to log into the system.

Username:

Password:

Verify Password:

Please review User Information and Confirm.

Is the information correct? (Y/N):

Thank you for registering. (if information is correct)

 6

(S)earch (L)ogin (R)egister (Q)uit

**

Other message(s):
Please enter a different username:

2.4 Passenger User Interface

The passenger user is anyone that is registered with the system and not and employee or administrator. This

user has the same search power as a guest user, but passengers can book flights, check reservations, and

change their user information.

The book flight menu will display the flight results from the previous search and give the user the option to

choose a flight to book. The user will select the corresponding number next to the flight they wish to book

and the system will ask for confirmation of his selection.

BOOK FLIGHT

**

Welcome to the VSU Airline System

Book Flight

(1) [Flight Number], [Departure City] to [Destination City] on [Date] for [Price]

Examples:

(1) C14, from Atlanta, GA to Las Vegas on February 28, 2005 for $204

(2) A121, from Atlanta, GA to Las Vegas on February 28, 2005 for $251

(3) B52, from Atlanta, GA to Las Vegas on February 28, 2005 for $237

Choose the flight you want to book:

**

You have chosen the following flight

A121, from Atlanta, GA to Las Vegas on February 28, 2005 for $251

Please confirm choice (Y/N):

Your flight has been booked. Thank you for choosing VSU Air.

(S)earch (L)ogout (B)ook Flight (R)eservation (P)rofile (Q)uit

**

The profile screen will display any personal information about the user and also allow the user to change his

information. After the information is displayed, the system will ask if the user wishes to change his

information. If ‘Y’ is selected, then the user will be able to change his information line-by-line. If ‘N’ is

selected, then is will return to the menu options.

 7

USER PROFILE

**

Welcome to the VSU Airline System

User Profile

Username: bcosby

Password: jellypudding

Status: Passenger

Name: Bill Cosby

Address: 800 Old School Road, Chicago, IL 31754

Phone Number: 345-092-3958

E-mail Address: bcosby@aol.com

Do you wish to update your profile (Y/N):

**

Choose the feature you wish to change by selecting the line number.

(1)Username: bcosby

(2)Password: jellypudding

(3)Name: Bill Cosby

(4)Address: 800 Old School Road, Chicago, IL 31754

(5)Phone Number: 345-092-3958

(6)E-mail Address: bcosby@aol.com

Line to change: 3

Enter new Name: William Cosby

Do you wish to change another line? (Y/N): N

Profile updated.

(S)earch (L)ogout (B)ook Flight (R)eservation (P)rofile (Q)uit

**

2.5 Employee User Interface

An Employee user is anyone that is working for the airline. These users have the same powers as the

passenger user, but employees can also check work assignments. Employees are already in the system and

do not register.

The work assignment screen displays information about when an employee is schedule to work. This

information will include dates and flights.

WORK ASSIGNMENT

**

Welcome to the VSU Airline System

Work Assignment

Name: John Doe

You are scheduled to work on the following days:

 8

[Date] on flight [flight number]

2/22/2005 on flight F1

2/25/2005 on flight A561

(S)earch (L)ogout (B)ook Flight (R)eservation (P)rofile (W)ork Assignment (Q)uit

**

2.6 Administration User Interface

The administrator has the all the options as a regular passenger, plus the power to create, modify and delete

flights and the ability to create, modify and delete work schedules.

The admin will choose ‘F’ for Flight Control and then choose ‘C’ to create a flight. The administrator’s

flight creation screen will ask for a flight number, route information and a price to set for the flight.

(F)light Control: Create, Modify, Delete

Flight Control: (C)reate, (M)odify, (D)elete

ADMIN - CREATE FLIGHT

**

Welcome to the VSU Airline System

Flight Creator

Flight Number:

Departure City:

Departure Date:

Destination City:

Price:

Flight Time: *optional feature to be added later if time permits

(S)earch (L)ogout (B)ook Flight (R)eservation (P)rofile (Q)uit

(F)light Control: Create, Modify, Delete

(T)ime Schedules: Modify

**

The admin will choose ‘F’ for Flight Control and then choose ‘M’ to modify a flight. The administrator’s

flight modify screen will ask for a flight number and display the airline flight information. The system will

ask the administrator to choose which line to modify.

(F)light Control: Create, Modify, Delete

Flight Control: (C)reate, (M)odify, (D)elete

ADMIN - MODIFY FLIGHT

**

Welcome to the VSU Airline System

Flight Modifier

 9

Enter a flight number to modify: F1

Flight Number: F1

(1)Departure City: Atlanta, GA

(2)Departure Date: 04/28/2005

(3)Destination City: Las Vegas

(4)Price: $251

Choose the line to modify:

Enter New Departure City:

Enter New Departure Date:

Enter New Destination City:

Enter New Price:

(S)earch (L)ogout (B)ook Flight (R)eservation (P)rofile (Q)uit

(F)light Control: Create, Modify, Delete

(T)ime Schedules: Modify

**

The admin will choose ‘F’ for Flight Control and then choose ‘D’ to delete a flight. The administrator’s

flight deletion screen will ask for a flight number and display the flight information. It will then as for

confirmation to delete the flight.

(F)light Control: Create, Modify, Delete

Flight Control: (C)reate, (M)odify, (D)elete

ADMIN - DELETE FLIGHT

**

Welcome to the VSU Airline System

Flight Deletion

Enter a flight number to delete: F1

Flight Number: F1

Departure City: Atlanta, GA

Departure Date: 04/28/2005

Destination City: Las Vegas

Price: $251

Do you wish to delete this flight? (Y/N):

(S)earch (L)ogout (B)ook Flight (R)eservation (P)rofile (Q)uit

(F)light Control: Create, Modify, Delete

(T)ime Schedules: Modify

**

The admin will choose ‘C’ for Crew Schedules and then choose ‘M’ to modify a schedule. The

administrator’s flight creation screen will ask for a flight number, route information and a price to set for the

flight.

(C)rew Schedules: Create, Modify, Delete

Crew Schedules: (C)reate, (M)odify, (D)elete

 10

ADMIN – MODIFY CREW SCHEDULE

**

Welcome to the VSU Airline System

Modify Crew Schedule

Which Employee do you want to reassign? John Doe

(Display John Doe’s Schedule)

What Day to you want to change? 04/28/2005

(From here, the admin will change the employee schedule for that day.)

(S)earch (L)ogout (B)ook Flight (R)eservation (P)rofile (Q)uit

(F)light Control: Create, Modify, Delete

(T)ime Schedules: Modify

**

 3.0 Database Design

The database will store information on users, employees, and administrators ranging from personal

information about the individual users to the flights they have booked. The database will also contain

information on various flights available for booking and reservations that have been made by the users. The

database will be located on the server side. Text files have been chosen for this project due to the simplicity

of the data storage. There are three separate database files: user, flights, and reservations. The information

in these files will be loaded at the runtime of the server and then re-saved when the server is shutdown.

3.1 USERS Database

The user database information will be store in the “USERS.TXT” text file. Semicolons will be used

as delimiters.

The elements of the user database are as follows:

• Username – the username used by the passenger, employee or admin

• Password – the password

• userStatus – defines the type of user that is logging into the system

o P for Passenger

o E for Employee

o A for Administrator

• Name – name of the person

• Address – Permanent place of residence

• Phone Number – Current home number

• E-mail address – most frequently used e-mail address

 11

USERS.TXT

username;password;userStatus;Name;Address;Phone Number;E-mail Address

bbthorton;hollywoodman;P;Bill Bob Thorton;902 Hollywood Lane, Los Angeles, CA

90210;350-293-4747;bbthorton@yahoo.com

bcosby;jellypudding;P;Bill Cosby;800 Old School Road, Chicago, IL 31754; 345-092-

3958;bcosby@aol.com

jdoe;iamlost;A;John Doe;1800 Lost World Drive, Tampa, FL 46468; 921-438-

9511;jdoe@yahoo.com

3.2 FLIGHTS Database

The flights database information will be store in the “FLIGHTS.TXT” text file. This file contains all

the information for each flight except the people on it. Semicolons will be used as delimiters.

The elements of the user database are as follows:

• flightNumber – the flight number of the flight from point A to point B

• deptCity – the departure city of the flight

• deptDate – the departure date of the flight

• destCity – the destination city of the flight

• price – the price of the flight

FLIGHTS.TXT

flightNumber;deptCity;deptDate;destCity;price

F1;Atlanta, GA;04/28/2005;Las Vegas, NO;251

A251;Atlanta, GA;04/28/2005;Las Vegas, NO;204

B2;Atlanta, GA;04/28/2005;Las Vegas, NO;238

3.3 RESERVATIONS Database

The reservations database information will be store in the “RESERVATIONS.TXT” text file. This

file contains information on a flight and all the passengers on that flight. Semicolons will be used as

delimiters.

The elements of the user database are as follows:

• flightNumber – the flight number of the flight from point A to point B

• username – username of the passengers of this flight

• resNumber- the reservation code

RESERVATIONS.TXT

resNumber;flightNumber;username;username;username

R001;F1;Atlanta, GA;04/28/2005;Las Vegas, NO;251

R002;A251;Atlanta, GA;04/28/2005;Las Vegas, NO;204

R003;B2;Atlanta, GA;04/28/2005;Las Vegas, NO;238

3.4 WORKASSIGNMENT Database

 12

The work assignments database information will be store in the “WORKASSIGNMENT.TXT” text

file. This file contains information on who is working on a flight and what day they are working.

Semicolons will be used as delimiters.

The elements of the user database are as follows:

• username – the person being assigned work

• flightNumber – the flight they are working on

• date – the date they are working the flight previously noted

Employees could have multi work assignments next to their name, but will not have multiple assignments

for a given day.

WORKASSIGNMENT.TXT

username;flightNumber;date;flightNumber;date

janedoe;F1;05/28/2005;A251;04/28/2005

4.0 Protocol Design

Available on all interfaces:

S – The client recognizes this command as “Search”. It sends the message to the server. The server searches

the data structure and returns the results to the client which then displays them on the console.

R – The client recognizes this command as “Register”. It gets the pieces of information needed one by one;

Name, Address, Phone number, on the client side and concatenates this information and sends it to the

server, which adds this information to the user’s data.

L - The client recognizes this command as “Login”. The client gets the username and password and sends

them to the server. The server runs a password checker. If the user is already logged in, the server will send

that message to the client which will inform the user that they are already logged in.

O - The client recognizes this command as “Logout”. The client gets the username and password and sends

them to the server. The server removes the user’s name from the logged in list.

Q – The client recognizes this command as “Quit”. It then informs the server that it is quitting and

disconnects.

Available on only the interface to registered users:

B– The client recognizes this command as “Book”. It can only be accepted if the user is registered in the

system. Therefore, the server checks the system for the user information and if it is not available, the person

is prompted to register. If the person is registered, they are prompted to enter the flight they want to book

and the booking is added by the server to both the person’s information and the flight information.

P– The client recognizes this command as “Profile”. The client prompts for the username and the server

checks the system for the user information and if it is not available, the person is prompted to register. If the

person is registered, the server returns the person’s information and the person is prompted to update.

 13

U– The client recognizes this command as “Update”. It is displayed by the client after the user accesses

their profile. They can either enter Y or N and if Y is entered, then the new information is written back to

the database through the server. If N is entered, the user is taken back to the previous options.

Available on the interface to Employees:

W– The client recognizes this command as “Work Assignments”. It returns the schedule from the server

that is only available to be viewed.

V- The client recognizes this command as “Vacation”. It is available to employees to view how many sick

and vacation days they have left. They can not use the system, however, to report a future absence or

schedule days off.

Available on interface to Administrators:

F- The client recognizes this command as “Flight”. The client sends a message to the server, which sends

back all available flights that are then displayed for the administrator. The administrator can then choose

from a menu of C, E, or D in order to create, edit, or delete.

P - The client recognizes this command as “Set Price”. This is presented to the administrator in the Flight

menu as well.

T- The client recognizes this command as “Time Schedule” for workers. It sends a message to the server

which in turn sends back the time schedule for all employees. This also presents a menu where the

administrator is requested to choose M, if he wants to modify the schedule.

 14

5.0 Architectural Design

This diagram shows how the OCSF framework interacts with the airline classes. The AbstractServer,

AbstractClient, and ConnectionToClient come within the OCSF package. These classes are then inherited to

create the airline system in which the server sits on one side, and the clients have access to this server and

can interact with it through client interfaces. The ClientIF class will be inherited to present user interfaces

that will be available to different types of users of the system.

5.1 The OCSF Package has the following classes and this diagram shows just the most important

methods.

6.0 Class Design
Structure

The classes will be designed to either work on the client side or on the server side. The AirlineServer

inherits functionality from the AbstractServer and adds the attributes and methods needed to work with the

airline clients. Most of the work will be done on the server. The AirlineClient class is a very thin client,

acting as a mere channel of correspondence between the clients and the server. It mostly sends and receives

messages from the server and also sends and receives from the client consoles, using the method.

Data

The data will be loaded into the AirlineServer’s data structures at run time. It will have linked lists

for flight, the schedule, reservations, and users. These data structures store objects created from the database

text files shown above. Clients will also be able to add, delete or modify the information depending on what

authority they have.

Runtime

 15

 At run time, the server will be started up with theAirlineServer which has a main and the

ClientConsole, which also has a main. The ClientConsole class will obtain the username and password of

the person logged in and determine whether they are a customer, employee, or administrator from the users

list on the server. It will then use the given information to display a ClientConsole that is either a

CustomerConsole, EmployeeConsole, or AdminConsole. If the user does not exist in the system, they will

be prompted to register.

 If they are registered with the system they will be able to perform commands like searching, booking

flights and more.

Navigation

The clients will only be able to view what is available on their console. They will navigate using the

commands and have the option to go back to the previous screen. The commands available on the screen are

dependent on the type of person logged in. The client will determine what kind of console to display using

the authority() method. The display() method will be inherited by all consoles from the ClientConsole and

implemented differently.

6.1 Class Diagrams

The diagram below shows the methods and attributes in the client and the server parts of the system.

The AbstractServer and AbstractClient classes have more methods than the ones shown in the diagram. The

diagram simply shows the key methods in the ocsf classes. The ClientConsole class is associated with the

EmployeeConsole, AdminConsole and CustomerConsole classes and will provide them functionality as

well. It contains the main method, and starts at runtime. When started, it determines from the client what

kind of user has logged in and displays the appropriate console.

The Server Side:

The AirlineServer will load up all data at run time and store the data from the text files into data

structures so that the data is available in memory. The classes associated with the AirlineServer class will

enable it to store objects in the data structures like flights, persons, bookings, which will encapsulate

information about each entity and be easier to access.

If an object, for example a flight is requested by a client, the Airline server will toString() that object

and send it to the client as it’s string representation and the client interfaces will handle what and how the

information is displayed.

The client Side:

 The AirlineClient will communicate with the AirlineServer to enable users to access the data on the

server as well as send data to it. The client will be able to perform some functions beyond the

AbstractClient. It will handle requests made by users and convert them into commands that the server can

recognize and execute, and it will have some methods as well, but it will not store any data.

 16

 17

The following diagram shows all the classes in the system, but without attributes and methods listed.

It shows how all the airline system classes interact with the client and server structure.

6.2 Class Descriptions

Classes defined:

6.2.1. AbstractClient(Not listed)

6.2.2. AbstractServer(Not listed)

6.2.3. AdminConsole

6.2.4. AirlineClient

6.2.5. AirlineServer

6.2.6. ConnectionToClient(Not listed)

6.2.7. ClientConsole

6.2.8. CustomerConsole

6.2.9. Day

6.2.10. EmployeeConsole

6.2.11. Flight

6.2.12. Person

6.2.13. Reservation

 18

 6.2.1-AbstractClient, 6.2.2-AbstractServer, 6.2.5-ConnectionToClient, are from the OCSF

framework and none of the attributes or methods will be changed in the airline system. To avoid

packing the document with so much, their methods and attributes will not been listed.

 The ‘getter’ and ‘setter’ methods in all the classes have also not been listed either because

almost all the attributes will have them. They will be used to access the attributes in order to maintain

data integrity.

To avoid further repetition, the methods and attributes of child classes that are inherited from

parent classes are not listed as well. Each class has a description of the class(es) from which it inherits

and therefore, is assumed to have all the attributes and methods from that class in addition to its own.

 6.2.3 Class: AdminConsole

Description: This class will inherit all its methods and attributes from the ClientConsole class. It

will be called by the ClientConsole class to display the administrator interface. The only method

that will be different is the display method.

Attributes:

No attributes yet

Methods:

Name Scope Return Type Description Arguments Algorithm

display public string This method

will show the

options

available to an

administrator

on the console.

None It will have

different

conditional

statements to

determine

where the

administrator is

in the system

and what to

display.

6.2.4 Class: AirlineClient

Description: This class will inherit all its methods and attributes from the AbstractClient class. It

will be called by the ClientConsole to send and receive information from the server. It will only

implement 4 methods from the AbstractClient, handleMessageFromClientUI,

handleMessageFromServer, level and quit. Authority is a security feature that ensures that only

authorized users access certain information

Attributes:

No attributes yet

Methods:

Name Scope Return

Type

Description Arguments Algorithm

handleMessageFromClientUI public none This method

will be used

string It will parse

the entered

 19

to read

messages

from the UI

and send them

to the server

unless they

are client

messages

messages to

determine

what kind of

command

they are and

let the server

know what to

do.

handleMessageFromServer public none This method

will be used

to read

messages

from the

server and

send them to

the clients.

string It will send

the message

to the UIs.

authority(level l) private string Makes sure

the user is

authorized to

execute a

command

level Checks the

Level

attribute of

the console

and returns a

string that

says whether

or not the

client is

allowed to

access that

information

Quit public none It closes the

client

none this method

will

communicate

to the server

about logging

the client off

first and then

close the

client

6.2.5 Class: AirlineServer

Description: This class will inherit all its methods and attributes from the AbstractServer class. It

will execute all the requests from clients and have data structures to store all client data. It will

receive and send messages to the client.

Attributes:

Name Scope Type Description

WorkSchedule public listMap(tentatively)
This will be a data

structure to store all

the working Days

 20

and who is

scheduled to work

on those Days.

FlightList public listMap(tentatively)
This will be a data

structure to store all

the Flight objects

that are available.

UsersList public listMap(tentatively)
This will be a data

structure to store all

the Person objects

that are available.

ReservationList public listMap(tentatively)
This will be a data

structure to store all

the Reservation

objects that are

available.

LoggedInList public listMap(tentatively)
This will be a data

structure to store all

the Person objects

that are logged into

the system at any

one moment

Methods:

Name Scope Return

Type

Description Arguments Algorithm

main() public none This method

will execute

at run time

and create a

new

AirlineServer

String []args Not yet written.

find() public none This method

will be used

to search

FlightList for

a specified

flight

string It will search the

data list and send the

found Flight back to

the client or nothing.

addUser(Person p) public none Adds a

Person to the

UsersList and

Person Appends the Person

object to the end of

the UsersList data

 21

brands them

as a customer.

structure

logInUser(Person p) public none Adds a

Person to the

LoggedInList

in order to

know who is

logged in.

Person Appends the Person

object to the end of

the LoggendInList

data structure

logOutUser(Person p) public none Removes a

Person from

the

LoggedInList

Person Removes the person

from the

LoggedInList

book(Person p, Flight f) public String This method

books is used

to book

someone on a

flight

Person p,

Flight f

It takes a Flight and

Person objects and

creates a

Reservation that it

adds to the

ReservationList.

Then it updates the

Person information

by adding this

Reservation the

Person’s

Reservations

arrayList

printProfile(Person p) public String Returns a

Person’s

profile

Person It creates a string out

of the Person’s

profile by calling the

Person.toString()

method

update(String attribute,

String msg)

public none Updates a

person’s

information.

String

attribute,

String msg

It takes the attribute

string and makes

Person.“attribute” =

msg

work() public string Returns the

entire work

schedule

None Creates a string from

the WorkSchedule

to display.

vac(Person p) public string Returns the

person’s

available day

for vacation.

None Creates a string from

the Person’s

vacation

information. This is

obtained from the

Array,

VacationDays that is

in the Person class.

Not applicable to

Customers

createFlight (String

flightNumber, String

public None It creates a

flight from

String Flight f1 = new

Flight(flightNumber,

 22

deptCity, String deptDate,

String destCity, String

Price)

given

information.

deptCity, deptDate,

destCity, Price).

Quit public none It closes the

client

none this method will

communicate to the

clients about closing

and then close the

server

6.2.6 Class: ClientConsole

Description: This class will start at runtime and will provide an interface with which clients can

communicate with the server. It will be inherited by the AdminConsole, EmployeeConsole, and

CustomerConsole classes. The only method that will be overridden in those classes is the display

method.

Attributes:

No attributes yet

Methods:

Name Scope Return Type Description Arguments Algorithm

main() public none This method is

responsible for

the creation of

the Client UI.

String[] args The algorithm

will be created

at

implementation

time.

display() public string Method that

when overriden

in child classes

is used to

display objects

onto a UI.

String message The display

method will be

used by the

client to display

messages on the

console

accept() public none This method

reads input

from the user.

 It will wait for

messages from

the user

6.2.7 Class: CustomerConsole

Description: This class will inherit all its methods and attributes from the ClientConsole class. It

will be called by the ClientConsole class to display the customer interface. The only method that will

be different is the display method.

Attributes:

No attributes yet

Methods:

Name Scope Return Type Description Arguments Algorithm

display() public string This method None It will have

 23

will show the

options

available to an

customer on the

console.

different

conditional

statements to

determine

where the

customer is in

the system and

what to display.

6.2.8 Class: Day

Description: This class will encapsulate a date. It will be used in order to store day objects in the

WorkSchedule linked list so that the schedule can be accessed a lot easier.

Attributes:

Name Scope Type Description

Date public string
This will be a

string attribute

containing the date.

dayFlights

public

Array of strings

It will be an array

containing flight

numbers

Crew public Array of strings

This will be an

array of crew

members and it can

be a list with names

or the employee’s

user-IDs

Methods:

Name Scope Return Type Description Arguments Algorithm

toString() public string This method

will show the

date.

None It will display

the date object

as a string in

the format

mm/dd/yyyy.

6.2.9 Class: EmployeeConsole

Description: This class will inherit all its methods and attributes from the ClientConsole class. It

will be called by the ClientConsole class to display the customer interface. The only method that will

be different is the display method.

Attributes:

No attributes yet

 24

Methods:

Name Scope Return Type Description Arguments Algorithm

display() public string This method

will show the

options

available to an

employee on

the console.

None It will have

different

conditional

statements to

determine

where the

employee is in

the system and

what to display.

6.2.10 Class: Flight

Description: This class provides functions that will be inherited by every flight object.

Attributes:

Name Scope Type Description

flightNumber public string
The flight number

will be a 3 digit

number followed

by a letter. For

example 112A and

we will consider it

as a string.

deptCity

public

string

This will have the

information about

where the flight is

departing from.

deptDate

public string Includes

information about

the date on which

the flight is

departing.

destCity public string This will have the

information about

where the flight is

arriving.

price

public string The price set by the

administrator for

this flight.

Reservations
public arrayList This arrayList will

hold the reservation

numbers that are

 25

linked to this flight

Methods:

Name Scope Return Type Description Arguments Algorithm

setPrice public string Sets the price to

the argument

passed in.

float Gets the given

float value and

makes this.price

equal to that

value.

toString public string Returns a print

out of the flight

information as

listed in the

flights.txt file.

None Concatenate all

the information

about the flight

from the txt file

or data structure

for display

6.2.11 Class: Passenger

Description: This class will represent a customer that is already registered with the system.

Attributes:

Name Scope Type Description

Flights public array
This will be an

array containing

flights that the

person is booked

on

userName

public

string

This will be a

string containing

the person’s userID

resNumber public string
This will contain

some kind of

number to identify

the reservation

with.

Methods:

Name Scope Return Type Description Arguments Algorithm

toString public string Returns a print

out that says

something like

this is booking

number x for

None Concatenate all

the information

about the

reservation

from the txt file

 26

passenger y on

flight z.

or data structure

for display

6.2.12 Class: Person

Description: The person will provide functionality for the Employee, Admin and Passenger entities.

It holds the basic functions and attributes that any of the clients will be able to perform. The person

will have a status that will identify them to the system.

Attributes:

Name Scope Type Description

Username public string
The username, will

be a string that the

object carries in

order to identify the

user in the system.

password

public

string

The password will

be a maximum

string of 8 digits

and minimum of 6.

Status public string
The user status will

be a letter to

symbolize what

type of user it is.

Name public string This will hold the

person’s name and

can be a string of

any number of

characters.

Address public string This again will be a

string containing

the person’s full

address which

includes street

address, city, state,

and zip code.

Phone public string This will be a

string containing

10 characters

without spaces or

hyphens to

represent the

person’s phone

number.

email public string This will be a

 27

string containing

the person’s email

address. It will

have to be in the

format *@* (1 or

more characters

before the @ sign,

and 1 or more

after)

Reservations public ArrayList This will be an

ArrayList to store

all the reservations

this Person has

made.

VacationDays public Array This will be an

array containing a

Person’s days off.

This will be empty

for a customer.

Methods available to every Person:

Name Scope Return Type Description Arguments Algorithm

search public string Used to

search for a

flight in the

database

string deptCity,

string date,

string city

It sends the message to the server.

The server searches the data

structure and returns the results to

the client which then displays

them on the console.

login public none Logs the

person into

the system

string username,

string password

The client gets the username and

password and sends the

information to the server. The

server runs a password checker. If

the user is already logged in, the

server will send that message to

the client.

logout public none Logs the

person out of

the system

none This disconnects the client from

the server.

register public none Adds this

user’s

information to

the system

data

string name,

string address,

string phone,

string email,

string userName,

string password

Uses the data provided in the

arguments to add the user to the

users database. This information

will be added as a string

 28

quit public none Completely

disconnects

the client and

exits

none It makes the client exit the

system.

toString public string Returns a

print out that

holds all the

information

about the

client

None Concatenate all the information

about the Person from the

UsersList data structure for

display.

Methods available to a Person with status ‘E’ and ‘A’:

logout public none Logs the

person out of

the system

none This disconnects the client from

the server.

register public none Adds this

user’s

information to

the system

data

string name,

string address,

string phone,

string email,

string userName,

string password

Uses the data provided in the

arguments to add the user to the

users database. This information

will be added as a string

quit public none Completely

disconnects

the client and

exits

none It makes the client exit the

system.

6.2.13 Class: Reservation

Description: This class will represent a flight booking that will contain information about both the

flight and the passenger.

Attributes:

Name Scope Type Description

flightNumber public string
The flight number

will be a 3 digit

number followed

by a letter. For

example 112A and

we will consider it

as a string.

userName

public

string

This will be a

string containing

the person’s userID

 29

resNumber public string
This will contain

some kind of

number to identify

the reservation

with.

Methods:

Name Scope Return Type Description Arguments Algorithm

toString public string Returns a print

out that says

something like

this is booking

number x for

passenger y on

flight z.

None Concatenate all

the information

about the

reservation

from the txt file

or data structure

for display

7.0 Glossary

• Administrator – Person that control almost every aspect of the system

• Airline System – the entire collection of clients and the server defined in this document

• Client – Handles the interaction between the system and the user

• Employee – Person employed by the airline system; this person does not register with system

like the passenger

• Flight – Airline flight from point A to point B

• Guest – Anyone that is not logged into or registered with the system

• Passenger – A person that is registered with the system

• Server – This part of the system manages the database and communication of the clients

• User Interface – Provides a visual means by which the user can easily interact with the system

 30

Appendix A: Document Control

Document Revision History

Version Release Date Revised By Revision Description

1.0 January 25, 2004 Sarah Tshila
TJ Dorsey

Initial version

1.1 February 24, 2004 Sarah Tshila
TJ Dorsey

Final version

1.2 March 6, 2004 Sarah Tshila
TJ Dorsey

Revised Final version

Document Owner
Sarah Tshila and TJ Dorsey

 31

Appendix B: Change Control Request Form

Change Request Form

Project Name: VSU Air

Airline
System

Original Delivery
Date:

 Status:

Request Author: Change Order
Date:

Owner: Date Resolved:

Change Request Description (to be filled out by request author)

Resolution Description (to be filled out by Project Manager)

Activity Log

Date Name Notes

