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Abstract

We show that quasi-elastic inclusive electron scattering data on light nuclei

for medium Q2 furnish information on Gn
M (Q2), whereas the deep- inelastic

region for large Q2, provides the Structure Function Fn
2 (x,Q2). Common to

the two extractions is the possibility to de-convolute medium effects, which is

most accurately done for light targets. Results are independent of the target.

Introduction. Most neutron observables can only indirectly be extracted from experi-

ments on a nuclear medium, in which the n is embedded. We discuss below the

neutron static magnetic form factor and its Structure Function (SF).

Consider the reduced cross section for inclusive scattering of unpolarized electron of

energy E from non-oriented targets A over een angle θ

A−1d2σeA(E; θ, ν)/dΩ dν

σM (E; θ, ν)
=

[2xM

Q2
F A

2 (x, Q2) +
2

M
tan2(θ/2)F A

1 (x, Q2)
]

(1)

FA
k (x, Q2) are two nuclear structure functions (SF), functions of Q2 = q

2 − ν2 (ν, q are the

energy-momentum transfer) and the Bjorken variable x = Q2/2Mν, with range 0 ≤ x ≤ A
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(M is the nucleon mass). Of crucial importance is a relation between the SF of nuclei and

of nucleons. For instance (for Z = N) [1]

F A
k (x, Q2) =

∫ A

x

dz

z2−k
[fPN,A(z, Q2)

[

F p
k

(x

z
, Q2

)

+ F n
k

(x

z
, Q2

)]/

2 (2)

The two SF are related by fPN,A, the SF of a nucleus, composed of point-nucleons. A

standard calculation of F A
k thus requires data on F p

k , an assumed form for F n
k and in addition,

a computed, unphysical fPN,A.

We separate F N
k in NE (Γ∗+N → N) and NI parts (γ∗+N → hadrons, partons), leading

to the corresponding components F A,NE
k [2] (η = Q2/4M2)

FA,NE
1 (x) =

fPN,A(x)

4
G2

d[(αpµp)
2 + (αnµn)2] (3a)

FA,NE
2 (x) =

xfPN,A(x)G2
d

2(1 + η)

[

(αpγ)2 +
( µnη

1 + 5.6η

)2

+ η[(αpµp)
2 + (αnµn)

2]
]

, (3b)

where reference to Q2 has been dropped. Instead of the actual static electromagnetic form

factors GN
M,E(Q2), we use in Eq. (3) their deviations from the standard dipole form [3–5].

αN ≡ GN
M/µNGd ; N = p, n (4a)

γ ≡
µpG

p
E

Gp
M

=
Gp

E

αpGd

(4b)

γ = 1 + θ(Q2 − 0.3) ≈ [1 − 0.14(Q2 − 0.3)] ; Q2 . 5.5 (4c)

For Gn
E we use the Galster parametrization [6]. Nuclear NI components completely dominate

cross sections on the inelastic side x . 1 of the QEP, while for x & 1 NE>NI. Those regions

will be treated separately.

Quasi-elastic region x . 1 : Gn
M . Consider first the x, Q2 dependence of F A,NE

k (x, Q2).

The latter is primarily due to the form factors in Eqs. (3), which decrease with growing

Q2. The x-dependence resides in fPN,A(x, Q2), which sharply decreases with growing |1−x|

away from the QEP at x ≈ 1. From the above one concludes that ln[σA,NE/A] grows with

increasing ν (decreasing x for fixed Q2), while in general for A ≥ 12 there is a mere break

in the slope in the QE region |1 − x| ≪ 1 for A ≥ 12 (Fig. 1a) [7].
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The unusual structure of the lightest nuclei, causes fPN,A(x, Q2) to be narrow and sharply

peaked. With no interference of NI, the above change in slope may develop into a QE peak,

as observed for D [8] and 4He [9] (Fig. 1b). For the same targets one can compute with

great precision ground states [10] and non-diagonal target density matrices in the expression

for fPN,A [11,12].

Under the above circumstances one tends to ascribe the total cross sections on the elastic

side x & 1 to NE. With Gp
E,M known and small Gn

E, this enables the extraction of Gn
M from

NE. Tests for the above allocations are: i) Around x . 1, σA/σM ∝ f(x, Q2), i.e. of a bell

shape in 1 − x. ii) Gn
M(Q2) should be independent of the value of the individual x from

which the one extracts Gn
M . iii) Idem for the chosen target.

Our analysis comprises older D data, where separation into transverse and longitudinal

SF, with the former RT ∝ [Gp
M ]2 + [Gn

M ]2 [13]. Although direct and simple, it requires

high-quality data in order to allow an accurate Rosenbluth separation and to obtain a

precise Gn
M . Table I summarizes all our findings for αn(Q2) while Fig. 2 shows all αn(Q2),

extracted thus far. Our values follow the trend of previously measured values and adds

points for intermittent Q2. Hardly any target dependence has been detected.

The deep-inelastic region, x ≪ 1: extraction of F n
2 (x, Q2). That region is dominated by

NI. We focus on F n
2 (x, Q2), commonly estimated from the ′primitive′ ansatz F n

2 ≈ 2F D
2 −F p

2 ,

which is only reliably for x . 0.3. Instead of a vehicle to compute F A
k , we now consider Eq.

(2) in the inverse sense: Can one, with data on σA, Eq. (1), known F p
2 and computed fPN,A

extract F n
2 (x, Q2)?

Virtually all previous methods addressed a D target (e.g. [14]). We outline and apply a

method [19], which with sufficient kinematics available [7,8], is applicable to all targets.(see

Refs. [15,16] for treatments of isobar pairs). Again a test is an outcome, independent of

A. As to F A
2 , in order to separate it from F A

1 , one needs in addition to cross sections, an

assumption on R−1(x, Q2) + 1 ∝ 2xF A
1 (x, Q2)/FA

2 (x, Q2). Alternatively, one may for every

data point determine a relative deviation of theory and data, and ascribe it in equal measure

to the two SF. The procedure produces quasi-data for F A;qd
2 .
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All modern data thus far [7,8] appear to yield F A
2 in disjoint x, Q2 regions, whereas

the inversion of Eq. (2) requires data over a large x-range for the same Q2. Even with

careful binning and/or interpolation, we could only construct a single set for Q2 ≈ 3.5

GeV2 , x & 0.55, which x-range misses a crucial part of the DI region. Fortunately, one can

use the fact, that, independent on Q2, F p
2 (x, Q2) ≈ 0.32 for x ≈ 0.16. Eq. (2) then proves

the same for F A
2 (x, Q2), permitting extrapolation into the vital DI region.

We have used several inversion methods, all based on a parametrization

F n
2 (x, Q2) = F n

2 (x, Q2; dk) = C(x, Q2; dk)F
p
2 (x, Q2)

C(x, Q2; dk) =
∑

k≥0

dk(Q
2)(1 − x)k, (5)

with mildly constrained parameters. First we take C(0) = 1, ensuring a finite outcome for

the Gottfried sumrule SG(Q2) =
∫ 1

0
dx
x

[F p
2 (x, Q2) − F n

2 (x, Q2)]. Next we exploit the above

′primitive′ ansatz for, say, x = 0.2. For the simplest choice kmax = 2 only one parameter is

left, e.g. d0 = C(1). It moreover proved useful to parametrize F p
2 as follows

F p
2 (x, Q2) = x−a2

∑

m≥1

cm(1 − x)m; x ≥ 0.02 (6a)

= 0.42 ; x ≤ 0.02 (6b)

In the region 0.02 . x . 0.9, the above practically coincides with the standard parametriza-

tion [17]. Fig. 3 shows our results for C, F n
2 for fixed Q2 = 3.5 GeV2 and given F p

2 . The

band in C reflects results from several inversion methods and from different targets D,C,Fe.

The value of C at the elastic point x = 1 has been the subject of several estimates with

results, marked by small horizontal lines. All those, as well as our C, assumed smooth, i.e.

resonance-averaged behaviour of F N
2 (cf. lower part of Fig. 3).

The above is an undesired feature of averaging: the lowest inelastic threshold of

FN
2 (x, Q2), occurs at a mass M + mπ, or equivalently, at xthr(Q

2) = [1 + 2Mmπ/Q2]−1.

In particular xthr(3.5) ≈ 0.93, which is marked in Fig. 3 by a vertical line. For

xth < x < 1 , FN(x, Q2) is strictly 0. In particular the mention prediction of C out to
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the elastic border, merely reflects the different approach to 0 of the p, n SF. As a conse-

quence C(x → 1) is due to purely NE parts of F N
2 , and equals (cf. Eq. (3b))

lim
x→1

C(x, Q2) =
[µnαn(Q2)

µpαp(Q2)

][

1 +
4M2

Q2

(γ(Q2)

µp

)2]−1

, (7)

From Eqs. (4), (7) one then computes

C(x = 1, 3.5) ≈ 0.61, (8)

surprisingly close to the extracted value as the ratio of the two F N
2 , which tend to 0 in a

different way for x → 1. More extensive reports can be found in Refs. [18,19].

Acknowledgements; Part of this work has been done in collaboration with M.F. Taragin

and M. Viviani.
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Figure captions

Fig. 1a,b. Partial data and predictions for inclusive cross sections (E = 4.045 GeV,

θ = 15◦, 23◦, 30◦) on D,Fe.

Fig. 2. αn = Gn
M/µnGd as function of Q2. Shown are some previous representative

results. Filled squares, diamonds, triangles and stars are our results.

Fig. 3. The ratio C(x, 3.5) = F n
2 (x, 3.5)/F p

2 (x, 3.5) for Q = 3.5 GeV2 from data on

D, C, Fe. The drawn line corresponds to C(1) = 0.54 and the band represents the spread

from averages over different targets and methods. The numbers on the right abscissa are

standard quark model and QCD predictions for C(1) with 0.61, the NE limit (7).
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TABLES

TABLE I. Extraction of αn(Q2) from QE inclusive scattering data on D, 4He. Columns give

target, beam energy E, scattering angle θ, ranges of Bjorken x and Q2, range of SF of target

composed of point-nucleons and (between brackets) its maximal value. The last column gives

αn(Q2) with deviations from average over the considered x-intervals.

target E (in GeV) θ x Q2(in GeV2) fPN,A(x,Q2) αn(Q2)

4He [9] 2.02 20◦ 1.125-0.848 0.444-0.430 0.97-1.49 (1.49) 0.988±0.055

- 3.595 16◦ 1.125-0.930 0.887-0.864 1.16-1.90 (1.90) 0.967±0.028

- 3.595 20◦ 1.095-0.925 1.295-1.250 1.44-2.16 (2.16) 0.988±0.018

D [8] 4.045 15◦ 1.131-0.953 0.988-0.972 1.31-3.65 (4.30) 1.039 ±0.020

- 4.045 23◦ 1.079-0.978 1.976-1.929 2.44-5.18 (5.18) 1.062 ±0.009

D [13] 5.507 15.2◦ 1.063-0.978 1.769-1.741 2.89-5.04 (5.31) 1.047 ±0.019

- 2.407 41.1◦ 1.081-0.957 1.803-1.721 2.37-4.89 ((5.32) 1.048 ±0.007

- 1.511 90.0◦ 1.059-0.977 1.812-1.728 3.21-4.79 (5.26) 1.057 ±0.009

RD,NE
T

[13]
3.809 20◦ 1.141-0.962 < Q2 >=1.75 1.79-3.38 (5.31) 1.004±0.014

(

1.052 [13]

)

D [13] 5.507 19.0◦ 1.104-1.000 2.561-2.501 1.69-5.65 (5.98) 1.030 ±0.016

- 2.837 45.0◦ 1.101-0.991 2.613-2.500 1.69-5.91 (5.94) 1.031 ±0.018

- 1.968 90.0◦ 1.064-0.984 2.608-2.474 3.06-5.71 (5.90) 1.078 ±0.027

RD,NE
T

[13]
5.016 20◦ 1.068-0.940 < Q2 >=2.50 2.92-4.16 (5.94) 0.986 ±0.014

(

1.014 [13]

)

RD,NE
T

[13]
5.016 20◦ 1.051-0.958 < Q2 >=3.25 3.50-6.15 (6.43) 0.940±0.013

(

0.967 [13]

)

RD,NE
T

[13]
5.016 20◦ 1.079-1.038 < Q2 >=4.00 3.80-6.20 (6.50) 0.830±0.016

(

0.923 [13]

)
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