Extraction of the static magnetic form factor and the structure function of the neutron from inclusive scattering data on light nuclei

A.S. Rinat
Weizmann Institute of Science, Department of Particle Physics, Rehovot 76100, Israel

(October 9, 2002)

Abstract

We show that quasi-elastic inclusive electron scattering data on light nuclei for medium Q^{2} furnish information on $G_{M}^{n}\left(Q^{2}\right)$, whereas the deep- inelastic region for large Q^{2}, provides the Structure Function $F_{2}^{n}\left(x, Q^{2}\right)$. Common to the two extractions is the possibility to de-convolute medium effects, which is most accurately done for light targets. Results are independent of the target.

Introduction. Most neutron observables can only indirectly be extracted from experiments on a nuclear medium, in which the n is embedded. We discuss below the neutron static magnetic form factor and its Structure Function (SF).

Consider the reduced cross section for inclusive scattering of unpolarized electron of energy E from non-oriented targets A over een angle θ

$$
\begin{equation*}
\frac{A^{-1} d^{2} \sigma_{e A}(E ; \theta, \nu) / d \Omega d \nu}{\sigma_{M}(E ; \theta, \nu)}=\left[\frac{2 x M}{Q^{2}} F_{2}^{A}\left(x, Q^{2}\right)+\frac{2}{M} \tan ^{2}(\theta / 2) F_{1}^{A}\left(x, Q^{2}\right)\right] \tag{1}
\end{equation*}
$$

$F_{k}^{A}\left(x, Q^{2}\right)$ are two nuclear structure functions (SF), functions of $Q^{2}=\boldsymbol{q}^{2}-\nu^{2}(\nu, \boldsymbol{q}$ are the energy-momentum transfer) and the Bjorken variable $x=Q^{2} / 2 M \nu$, with range $0 \leq x \leq A$
(M is the nucleon mass). Of crucial importance is a relation between the SF of nuclei and of nucleons. For instance (for $Z=N$) [1]

$$
\begin{equation*}
F_{k}^{A}\left(x, Q^{2}\right)=\int_{x}^{A} \frac{d z}{z^{2-k}}\left[f^{P N, A}\left(z, Q^{2}\right)\left[F_{k}^{p}\left(\frac{x}{z}, Q^{2}\right)+F_{k}^{n}\left(\frac{x}{z}, Q^{2}\right)\right] / 2\right. \tag{2}
\end{equation*}
$$

The two SF are related by $f^{P N, A}$, the SF of a nucleus, composed of point-nucleons. A standard calculation of F_{k}^{A} thus requires data on F_{k}^{p}, an assumed form for F_{k}^{n} and in addition, a computed, unphysical $f^{P N, A}$.

We separate F_{k}^{N} in NE $\left(\Gamma^{*}+N \rightarrow N\right)$ and NI parts $\left(\gamma^{*}+N \rightarrow\right.$ hadrons, partons), leading to the corresponding components $F_{k}^{A, N E}[2]\left(\eta=Q^{2} / 4 M^{2}\right)$

$$
\begin{align*}
& F_{1}^{A, N E}(x)=\frac{f^{P N, A}(x)}{4} G_{d}^{2}\left[\left(\alpha_{p} \mu_{p}\right)^{2}+\left(\alpha_{n} \mu_{n}\right)^{2}\right] \tag{3a}\\
& F_{2}^{A, N E}(x)=\frac{x f^{P N, A}(x) G_{d}^{2}}{2(1+\eta)}\left[\left(\alpha_{p} \gamma\right)^{2}+\left(\frac{\mu_{n} \eta}{1+5.6 \eta}\right)^{2}+\eta\left[\left(\alpha_{p} \mu_{p}\right)^{2}+\left(\alpha_{n} \mu_{n}\right)^{2}\right]\right] \tag{3b}
\end{align*}
$$

where reference to Q^{2} has been dropped. Instead of the actual static electromagnetic form factors $G_{M, E}^{N}\left(Q^{2}\right)$, we use in Eq. (3) their deviations from the standard dipole form [3-5].

$$
\begin{align*}
& \alpha_{N} \equiv G_{M}^{N} / \mu_{N} G_{d} \quad ; N=p, n \tag{4a}\\
& \gamma \equiv \frac{\mu_{p} G_{E}^{p}}{G_{M}^{p}}=\frac{G_{E}^{p}}{\alpha_{p} G_{d}} \tag{4b}\\
& \gamma=1+\theta\left(Q^{2}-0.3\right) \approx \quad {\left[1-0.14\left(Q^{2}-0.3\right)\right] ; Q^{2} \lesssim 5.5 } \tag{4c}
\end{align*}
$$

For G_{E}^{n} we use the Galster parametrization [6]. Nuclear NI components completely dominate cross sections on the inelastic side $x \lesssim 1$ of the QEP, while for $x \gtrsim 1$ NE $>$ NI. Those regions will be treated separately.

Quasi-elastic region $x \lesssim 1: G_{M}^{n}$. Consider first the x, Q^{2} dependence of $F_{k}^{A, N E}\left(x, Q^{2}\right)$. The latter is primarily due to the form factors in Eqs. (3), which decrease with growing Q^{2}. The x-dependence resides in $f^{P N, A}\left(x, Q^{2}\right)$, which sharply decreases with growing $|1-x|$ away from the QEP at $x \approx 1$. From the above one concludes that $\ln \left[\sigma^{A, N E} / A\right]$ grows with increasing ν (decreasing x for fixed Q^{2}), while in general for $A \geq 12$ there is a mere break in the slope in the QE region $|1-x| \ll 1$ for $A \geq 12$ (Fig. 1a) [7].

The unusual structure of the lightest nuclei, causes $f^{P N, A}\left(x, Q^{2}\right)$ to be narrow and sharply peaked. With no interference of NI, the above change in slope may develop into a QE peak, as observed for $\mathrm{D}[8]$ and ${ }^{4} \mathrm{He}[9]$ (Fig. 1b). For the same targets one can compute with great precision ground states [10] and non-diagonal target density matrices in the expression for $f^{P N, A}[11,12]$.

Under the above circumstances one tends to ascribe the total cross sections on the elastic side $x \gtrsim 1$ to NE. With $G_{E, M}^{p}$ known and small G_{E}^{n}, this enables the extraction of G_{M}^{n} from NE. Tests for the above allocations are: i) Around $x \lesssim 1, \sigma^{A} / \sigma_{M} \propto f\left(x, Q^{2}\right)$, i.e. of a bell shape in $1-x$. ii) $G_{M}^{n}\left(Q^{2}\right)$ should be independent of the value of the individual x from which the one extracts G_{M}^{n}. iii) Idem for the chosen target.

Our analysis comprises older D data, where separation into transverse and longitudinal SF, with the former $\mathcal{R}_{T} \propto\left[G_{M}^{p}\right]^{2}+\left[G_{M}^{n}\right]^{2}[13]$. Although direct and simple, it requires high-quality data in order to allow an accurate Rosenbluth separation and to obtain a precise G_{M}^{n}. Table I summarizes all our findings for $\alpha_{n}\left(Q^{2}\right)$ while Fig. 2 shows all $\alpha_{n}\left(Q^{2}\right)$, extracted thus far. Our values follow the trend of previously measured values and adds points for intermittent Q^{2}. Hardly any target dependence has been detected.

The deep-inelastic region, $x \ll 1$: extraction of $F_{2}^{n}\left(x, Q^{2}\right)$. That region is dominated by NI. We focus on $F_{2}^{n}\left(x, Q^{2}\right)$, commonly estimated from the'primitive' ansatz $F_{2}^{n} \approx 2 F_{2}^{D}-F_{2}^{p}$, which is only reliably for $x \lesssim 0.3$. Instead of a vehicle to compute F_{k}^{A}, we now consider Eq. (2) in the inverse sense: Can one, with data on σ^{A}, Eq. (1), known F_{2}^{p} and computed $f^{P N, A}$ extract $F_{2}^{n}\left(x, Q^{2}\right)$?

Virtually all previous methods addressed a D target (e.g. [14]). We outline and apply a method [19], which with sufficient kinematics available [7,8], is applicable to all targets.(see Refs. $[15,16]$ for treatments of isobar pairs). Again a test is an outcome, independent of A. As to F_{2}^{A}, in order to separate it from F_{1}^{A}, one needs in addition to cross sections, an assumption on $R^{-1}\left(x, Q^{2}\right)+1 \propto 2 x F_{1}^{A}\left(x, Q^{2}\right) / F_{2}^{A}\left(x, Q^{2}\right)$. Alternatively, one may for every data point determine a relative deviation of theory and data, and ascribe it in equal measure to the two SF. The procedure produces quasi-data for $F_{2}^{A ; q d}$.

All modern data thus far $[7,8]$ appear to yield F_{2}^{A} in disjoint x, Q^{2} regions, whereas the inversion of Eq. (2) requires data over a large x-range for the same Q^{2}. Even with careful binning and/or interpolation, we could only construct a single set for $Q^{2} \approx 3.5$ $\mathrm{GeV}^{2}, x \gtrsim 0.55$, which x-range misses a crucial part of the DI region. Fortunately, one can use the fact, that, independent on $Q^{2}, F_{2}^{p}\left(x, Q^{2}\right) \approx 0.32$ for $x \approx 0.16$. Eq. (2) then proves the same for $F_{2}^{A}\left(x, Q^{2}\right)$, permitting extrapolation into the vital DI region.

We have used several inversion methods, all based on a parametrization

$$
\begin{align*}
F_{2}^{n}\left(x, Q^{2}\right)=F_{2}^{n}\left(x, Q^{2} ; d_{k}\right) & =C\left(x, Q^{2} ; d_{k}\right) F_{2}^{p}\left(x, Q^{2}\right) \\
C\left(x, Q^{2} ; d_{k}\right) & =\sum_{k \geq 0} d_{k}\left(Q^{2}\right)(1-x)^{k} \tag{5}
\end{align*}
$$

with mildly constrained parameters. First we take $C(0)=1$, ensuring a finite outcome for the Gottfried sumrule $S_{G}\left(Q^{2}\right)=\int_{0}^{1} \frac{d x}{x}\left[F_{2}^{p}\left(x, Q^{2}\right)-F_{2}^{n}\left(x, Q^{2}\right)\right]$. Next we exploit the above 'primitive' ansatz for, say, $x=0.2$. For the simplest choice $k_{\max }=2$ only one parameter is left, e.g. $d_{0}=C(1)$. It moreover proved useful to parametrize F_{2}^{p} as follows

$$
\begin{array}{rlr}
F_{2}^{p}\left(x, Q^{2}\right)= & x^{-a^{2}} \sum_{m \geq 1} c_{m}(1-x)^{m} ; & x \geq 0.02 \\
& =0.42 & ; x \leq 0.02 \tag{6b}
\end{array}
$$

In the region $0.02 \lesssim x \lesssim 0.9$, the above practically coincides with the standard parametrization [17]. Fig. 3 shows our results for C, F_{2}^{n} for fixed $Q^{2}=3.5 \mathrm{GeV}^{2}$ and given F_{2}^{p}. The band in C reflects results from several inversion methods and from different targets D,C,Fe. The value of C at the elastic point $x=1$ has been the subject of several estimates with results, marked by small horizontal lines. All those, as well as our C, assumed smooth, i.e. resonance-averaged behaviour of F_{2}^{N} (cf. lower part of Fig. 3).

The above is an undesired feature of averaging: the lowest inelastic threshold of $F_{2}^{N}\left(x, Q^{2}\right)$, occurs at a mass $M+m_{\pi}$, or equivalently, at $x_{t h r}\left(Q^{2}\right)=\left[1+2 M m_{\pi} / Q^{2}\right]^{-1}$. In particular $x_{t h r}(3.5) \approx 0.93$, which is marked in Fig. 3 by a vertical line. For $x_{\text {th }}<x<1, F^{N}\left(x, Q^{2}\right)$ is strictly 0 . In particular the mention prediction of C out to
the elastic border, merely reflects the different approach to 0 of the $p, n \mathrm{SF}$. As a consequence $C(x \rightarrow 1)$ is due to purely NE parts of F_{2}^{N}, and equals (cf. Eq. (3b))

$$
\begin{equation*}
\lim _{x \rightarrow 1} C\left(x, Q^{2}\right)=\left[\frac{\mu_{n} \alpha_{n}\left(Q^{2}\right)}{\mu_{p} \alpha_{p}\left(Q^{2}\right)}\right]\left[1+\frac{4 M^{2}}{Q^{2}}\left(\frac{\gamma\left(Q^{2}\right)}{\mu_{p}}\right)^{2}\right]^{-1} \tag{7}
\end{equation*}
$$

From Eqs. (4), (7) one then computes

$$
\begin{equation*}
C(x=1,3.5) \approx 0.61 \tag{8}
\end{equation*}
$$

surprisingly close to the extracted value as the ratio of the two F_{2}^{N}, which tend to 0 in a different way for $x \rightarrow 1$. More extensive reports can be found in Refs. [18,19].

Acknowledgements; Part of this work has been done in collaboration with M.F. Taragin and M. Viviani.

REFERENCES

[1] S.A. Gurvitz and A.S. Rinat, TR-PR-93-77/ WIS-93/97/Oct-PH; Progress in Nuclear and Particle Physics, Vol. 34 (1995) 245.
[2] A.S. Rinat and M.F. Taragin, Phys. Rev. C 62, 034602 (2000).
[3] A.F. Sill et al, Phys. Rev. D 48, 29 (1993); L. Andivahis et al, Phys. Rev. D50, 549 (1994).
[4] E. Brash, A. Kozlov, Sh. Li, G.M. Huber, hep-ex/0111038v2.
[5] M. Jones et al, Phys. Rev. Lett. 84, 1398 (2000); Third Workshop on 'Perspective in Hadronic Physics' Trieste 2001, IT; to be published; O. Gayou et al, Phys. Rev. C64, 038202 (2001).
[6] S. Galster et al Nucl. Phys. B32, 221 (1971).
[7] J. Arrington et al, Phys. Rev. Lett. 82 (1999) 2056; CalTech PhD thesis 1998.
[8] I. Niculescu et al Phys. Rev. Lett. 85, 1182 (2000); J. Arrington, private comm.
[9] D.B. Day et al, Phys. Rev. C 40 (1993) 1849.
[10] H. Kamado et al, Phys. Rev. C 64, 044001 (2001).
[11] A.S. Rinat and M.F. Taragin, Phys. Rev. C 65, 042201(R) (2002).
[12] M. Viviani, A. Kievsky and A.S. Rinat, nucl-th/0111049, submitted to Phys. Rev. C.
[13] A. Lung et al, Phys. Rev. Lett. 70, 718 (193); PhD. thesis. The American University, Washington D.C., 1992.
[14] W. Melnitchouk and A.W. Thomas, Phys. Lett. B 377 (1996) 11.
[15] I.R. Afnan, F. Bissey, J. Gomez, A.T. Katramatou, W. Menitchouk, G.G. Petratos and A.W. Thomas, Phys. Lett. B 493 (2000) 36; F. Bissey, A.W. Thomas and I.R. Afnan, Phys. Rev. C 64 (2001) 024004.
[16] E. Pace, G. Salmè, S. Scopetta and A. Kievsky, Phys. Rev. C64 (2000)05523; Nucl. Phys. A 689 (2001) 453.
[17] P. Amadrauz et al, Phys. Lett B295 (1992) 159; M. Arneodo et al, ibid B364 (1995) 107.
[18] A.S. Rinat, M.F. Taragin and M. Viviani, in preparation.
[19] A.S. Rinat and M.F. Taragin, nucl-th/0204071, submitted to Phys. Lett. B.

Figure captions

Fig. 1a,b. Partial data and predictions for inclusive cross sections $(E=4.045 \mathrm{GeV}$, $\left.\theta=15^{\circ}, 23^{\circ}, 30^{\circ}\right)$ on D, Fe.

Fig. 2. $\alpha_{n}=G_{M}^{n} / \mu_{n} G_{d}$ as function of Q^{2}. Shown are some previous representative results. Filled squares, diamonds, triangles and stars are our results.

Fig. 3. The ratio $C(x, 3.5)=F_{2}^{n}(x, 3.5) / F_{2}^{p}(x, 3.5)$ for $Q=3.5 \mathrm{GeV}^{2}$ from data on D, C, Fe. The drawn line corresponds to $C(1)=0.54$ and the band represents the spread from averages over different targets and methods. The numbers on the right abscissa are standard quark model and QCD predictions for $C(1)$ with 0.61 , the $N E$ limit (7).

TABLES

TABLE I. Extraction of $\alpha_{n}\left(Q^{2}\right)$ from QE inclusive scattering data on $\mathrm{D},{ }^{4} \mathrm{He}$. Columns give target, beam energy E, scattering angle θ, ranges of Bjorken x and Q^{2}, range of SF of target composed of point-nucleons and (between brackets) its maximal value. The last column gives $\alpha_{n}\left(Q^{2}\right)$ with deviations from average over the considered x-intervals.

target	$E($ in GeV$)$	θ	x	$Q^{2}\left(\right.$ in $\left.\mathrm{GeV}^{2}\right)$	$f^{P N, A}\left(x, Q^{2}\right)$	$\alpha_{n}\left(Q^{2}\right)$
${ }^{4} \mathrm{He}{ }^{[9]}$	2.02	20°	1.125-0.848	0.444-0.430	0.97-1.49 (1.49)	0.988 ± 0.055
-	3.595	16°	1.125-0.930	0.887-0.864	1.16-1.90 (1.90)	0.967 ± 0.028
-	3.595	20°	1.095-0.925	1.295-1.250	1.44-2.16 (2.16)	0.988 ± 0.018
$D^{[8]}$	4.045	15°	1.131-0.953	0.988-0.972	1.31-3.65 (4.30)	1.039 ± 0.020
-	4.045	23°	1.079-0.978	1.976-1.929	2.44-5.18 (5.18)	1.062 ± 0.009
$D^{[13]}$	5.507	15.2°	1.063-0.978	1.769-1.741	2.89-5.04 (5.31)	1.047 ± 0.019
-	2.407	41.1°	1.081-0.957	1.803-1.721	2.37-4.89 ((5.32)	1.048 ± 0.007
-	1.511	90.0°	1.059-0.977	1.812-1.728	3.21-4.79 (5.26)	1.057 ± 0.009
$\mathcal{R}_{T}^{\text {D,NE }}{ }^{[13]}$	3.809	20°	1.141-0.962	$<Q^{2}>=1.75$	1.79-3.38 (5.31)	$1.004 \pm 0.014\left(1.052^{[13]}\right)$
$D^{[13]}$	5.507	19.0°	1.104-1.000	2.561-2.501	1.69-5.65 (5.98)	1.030 ± 0.016
-	2.837	45.0°	1.101-0.991	2.613-2.500	1.69-5.91 (5.94)	1.031 ± 0.018
-	1.968	90.0°	1.064-0.984	2.608-2.474	3.06-5.71 (5.90)	1.078 ± 0.027
$\mathcal{R}_{T}^{\text {D,NE [13] }}$	5.016	20°	1.068-0.940	$<Q^{2}>=2.50$	2.92-4.16 (5.94)	$0.986 \pm 0.014\left(1.014{ }^{[13]}\right)$
$\mathcal{R}_{T}^{D, N E[13]}$	5.016	20°	1.051-0.958	$<Q^{2}>=3.25$	3.50-6.15 (6.43)	$0.940 \pm 0.013\left(0.967^{[13]}\right)$
$\mathcal{R}_{T}^{D, N E[13]}$	5.016	20°	1.079-1.038	$<Q^{2}>=4.00$	3.80-6.20 (6.50)	$0.830 \pm 0.016\left(0.923{ }^{[13]}\right)$

