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INTRODUCTION
MicroRNAs (miRNAs) are endoge-

nous small noncoding RNAs that

can have important roles in the reg-

ulation of genes in animals and

plants. The mature miRNA is tran-

scribed from the miRNA gene fol-

lowed by successive cleavage by

enzymes Drosha and Dicer and is

typically 19–23 nucleotides long.

So far, more than 300 human miR-

NAs have been identified (Griffiths-

Jones et al., 2006; Hsu et al., 2006)

(Fig. 1), and it has been suggested

that the total number of human

miRNAs is at least 800 (Bentwich et

al., 2005). An example of human

miRNAs is shown in Figure 2. miR-

NAs can target mRNAs for posttran-

scriptional regulation, such as

translational repression (mostly

animals) and mRNA cleavage

(mostly plants), as illustrated in

Figure 3. It has been estimated that

miRNAs target more than 5300 hu-

man genes (Lewis et al., 2005).

Many plant miRNAs are mostly in-

volved in transcriptional regulation,

whereas the regulatory impact of

animal miRNAs are more pervasive,

with roles identified in developmen-

tal timing, cell death, cell prolifera-

tion, hematopoiesis, and pattern-

ing of the nervous system (Ambros,

2004). A further review of the biol-

ogy of miRNAs can be found in

other articles in this issue or in Am-

bros (2004), Bartel (2004), and

Bartel and Chen (2004).

Since the very first miRNAs lin-4

and let-7 were identified by genetic

analysis of C. elegans developmen-

tal timing (Lee et al., 1993; Rein-

hart et al., 2000), researchers have

developed numerous computa-

tional models and tools that can

complement biological experiments

to understand the diverse regula-

tory roles of miRNAs. These bioin-

formatics approaches have been

invaluable in coping with the com-

plexity of finding putative miRNA

genes and their targets, as well as

in deciphering their functions. Most

computational methods that have

been used for miRNA studies can be

classified into two broad catego-

ries, namely miRNA identification

and miRNA target identification.

Methods in each category can fur-

ther be divided depending on

whether a method is for animals,

plants, or viruses, since the biology

of miRNAs is somewhat different in

each case. The organization of this

review follows this categorization.

Regardless of these categories,

the basic principle of many compu-

tational methods is simple: learn

from known examples to find new

ones. For instance, an miRNA tar-

get detection algorithm can be

trained using the properties of

known miRNA-mRNA duplexes and

can then be used for finding new

miRNA-mRNA duplexes. From a

computational perspective, this

corresponds to the problem of ma-

chine learning, an area of artificial

intelligence used to develop tech-
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niques that allow computers to

learn from examples (Mitchell,

1997; Hastie et al., 2001; Alpaydin,

2004). Since all the mechanisms

behind miRNAs and their actions

are not completely revealed, com-

putational tasks associated with

miRNA studies are often posed as a

challenging machine learning prob-

lem with limited prior information.

COMPUTATIONAL

IDENTIFICATION OF

miRNA GENES

Challenges

As previously stated, the task of

computationally identifying miRNA

genes can be formulated as a ma-

chine learning problem. As such,

the main difficulty is to increase

the specificity of a prediction

algorithm or to reduce the num-

ber of false-positive predictions of

miRNA genes. Primary sequence

information alone or secondary

structure information alone is not

specific enough. This is because

the length of a miRNA sequence is

small, and the number of stem-

loop or hairpin structures that ex-

ist along a genome is huge. Typi-

cally, it is not a good idea to

simply scan the genome for hair-

pins, hoping to identify miRNA

genes. Additional filtering is re-

quired to increase specificity, as is

described in the next section.

Another computational chal-

lenge arises due to the lack of in-

formation on the level of miRNA

expressions (Aravin and Tuschl,

2005). Given the many stages of

development and many different

cell and tissue types as well as en-

vironmental conditions, it is often

difficult to validate whether a pre-

diction is a false positive or not.

Posttranscriptional modifications

of miRNAs may only be identified

using a cloning approach (Bartel,

2004; Pfeffer et al., 2004), and

direct cloning and sequencing

coupled with computational meth-

ods may be most effective. For a

review of miRNA gene validation

methods, the reader is directed to

Bentwich (2005).

Prediction Principles

miRNA genes can be searched by

motif searches combining se-

quence, structure, and conserva-

tion information. More specifically,

algorithms to detect new miRNA

genes use the following properties

of the known miRNA genes as pre-

diction principles:

● miRNA genes are small noncod-

ing genes (�150 bp). They are

typically cloned multiple times,

Figure 1. The total numbers of predicted and experimentally validated miRNAs for four
different species (http://mirnamap.mbc.nctu.edu.tw/php/statistics.php).

Since all the

mechanisms behind

miRNAs and their

actions are not

completely revealed,

computational tasks

associated with

miRNA studies are

often posed as a

challenging machine

learning problem

with limited prior

information.

Figure 2. An example of human miRNA
(hsa-mir-16-1). Shown are stem loops in-
volving the mature miRNAs (red) and
flanking sequences (black). The plot was
generated from the miRNAMap server
(Hsu et al., 2006) using the Mfold package
(Mathews et al., 1999; Zuker, 2003). Hu-
man miR-16 has been cloned by indepen-
dent groups (Lagos-Quintana et al., 2001;
Mourelatos et al., 2002). Two identical
chromosome 13 loci were reported, and
they appear to map to the same locus in
subsequent genome assemblies (Lim et
al., 2003a). This gene and miR-15a are
clustered within 0.5 kb at 13q14. This re-
gion has been shown to be deleted in more
than half of B cell chronic lymphocytic leu-
kemias (CLL). Both miR-15a and miR-16
are deleted or downregulated in more than
two-thirds of CLL cases (Lim et al., 2003a).
A second putative mir-16 hairpin precursor
is located on chromosome 3.
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and their clone length distribu-

tion sharply peaks between 21

and 23 nt (Bartel, 2004; Pfeffer

et al., 2004).

● A mature miRNA is derived from

its precursor miRNA called a pri-

mary RNA, and its structure can

be used as a search template. A

primary RNA forms a short (�60-

nt) stable extended stem-loop

structure (or a hairpin structure),

with continuous helical pairing

and a few internal bulges (Fig. 1).

The genomic sequence flanking

an miRNA contains a highly com-

plementary (20- to 30-nt) seg-

ment, which is required to form

the characteristic pre-miRNA

hairpin structure (Bartel, 2004;

Pfeffer et al., 2004). To identify a

precursor structure and the

miRNA embedded in the stem

(and not the loop) of the precur-

sor, an RNA folding program such

as the Vienna package (Hofacker,

2003) or the Mfold package

(Mathews et al., 1999; Zuker,

2003) is used. A precursor should

have a low free energy level to be

stable (�30 kcal/mol), and the

precursor structure should be un-

branched (Bengert and Dan-

dekar, 2005). To avoid repetitive

DNAs and other uninformative

predictions, we can also check if

each of the four nucleotides is

sufficiently represented in the

structure (Bengert and Dan-

dekar, 2005).

● miRNAs are normally highly con-

served in the genomes of related

species, although a small number

of miRNAs may be universally

conserved in all animals (Bartel,

2004; Pfeffer et al., 2004). Most

prediction methods, therefore,

search for the conservation of

miRNA gene sequences (Bonnet

et al., 2004) and stem-loop

structures across species (Lai et

al., 2003; Lim et al., 2003a,

2003b). This approach is helpful

for screening out many false pos-

itives but finds only conserved

miRNAs, so some recent ap-

proaches do not rely on sequence

conservation (Bentwich et al.,

2005). The conservation profile

often resembles a saddle-like

structure because the loop se-

quence and sequences flanking

the stem structure are much

more variable than the miRNA

and its complementary miRNA*

sequence (Lai et al., 2003; Al-

tuvia et al., 2005; Berezikov et

al., 2005). The evolutionary di-

vergence between orthologous

miRNAs shows a characteristic

pattern: the terminal loops usu-

ally have more mutations than

the arms of the stem-loops, and

the miRNA-coding arms are more

conserved than the non-miRNA-

coding arms (Kong and Han,

2005).

● Many miRNAs occur in clusters,

usually separated by a few kilo-

bases (Seitz et al., 2003; Sachi-

danandam, 2005; Sewer et al.,

2005). These clusters can be de-

tected by mapping the miRNA

genes to the genome. The miRNA

genes in each cluster can be tran-

scribed together and may control

mRNAs involved in related func-

tions (Sachidanandam, 2005).

● An miRNA has to be complemen-

tary to the 3� untranslated re-

gions (UTRs) of a target mRNA

(Bartel, 2004).

● miRNAs can occur in intergenic

regions, in introns of protein cod-

ing regions, or in exons and in-

trons of noncoding genes (Rodri-

guez et al., 2004).

In addition, the prediction of miR-

NAs in plants or viruses needs some

special considerations:

● Plant miRNAs tend to have char-

acteristics somewhat different

from animal counterparts. For in-

stance, the level of sequence

conservation of miRNA precur-

sors is lower in plants. The length

of hairpin structures is also more

variable in plants, and some al-

gorithms that use a fixed-sized

sequence window need to be

modified appropriately. In addi-

tion, the G � C content often dif-

fers in plants and animals (Jones-

Rhoades and Bartel, 2004;

Sachidanandam, 2005).

● Viral miRNAs are rarely evolu-

tionarily conserved according to

the cloning of small RNAs from

virus-infected cells (Aravin and

Tuschl, 2005). Thus, viral miRNA

prediction algorithms often do

not consider miRNA primary se-

quence conservation (Pfeffer et

al., 2004).

Methods to Detect Animal

miRNAs

PalGrade

Bentwich et al. (2005) developed

an integrative approach combining

Figure 3. miRNAs and targets (Lai, 2004). A: Plant miRNAs exhibit extensive comple-
mentarity to their targets, but animal miRNAs generally do not. B: Various configurations
for miRNA-target duplexes: one near-perfect binding site for one miRNA (upper left), one
strong site for one miRNA (lower left), multiple modest sites for one miRNA (upper right),
and multiple modest sites for multiple miRNAs (lower right).
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computational predictions with mi-

croarray analysis and sequence-di-

rected cloning to prove their hy-

pothesis that the total number of

miRNAs may be much larger and

that several have emerged only in

primates. Their algorithm, called

PalGrade, does not rely on se-

quence conservation, unlike many

other techniques described in this

section. Thus, PalGrade could iden-

tify a large number of miRNAs that

are unique to primates and are un-

detected by other prediction algo-

rithms. They reported 89 novel hu-

man miRNAs, 53 of which are not

conserved beyond primates, and

suggested that the total number of

miRNAs in human could be at least

800.

MiRscan

Lim et al. (2003a, 2003b) devel-

oped a computational method

called MiRscan to find miRNA genes

conserved in more than one ge-

nome. They identified 30 novel

miRNAs in C. elegans and 38 novel

human miRNAs. The program MiR-

scan used the secondary structure

prediction program RNAfold (Ho-

facker, 2003) to identify evolution-

arily conserved hairpin structures,

each of which was considered as a

potential miRNA precursor. To fur-

ther assess the location of the

miRNA within each hairpin struc-

ture, MiRscan passed a 21-nt win-

dow along the hairpin and assigned

a log-likelihood score to each posi-

tion for its similarity to known miR-

NAs. A total of 50 published miRNAs

from C. briggsae and C. elegans

were used as a training set for their

algorithm, which successfully iden-

tified conserved miRNAs within

many conserved hairpins found in

the genome (�35,000 hairpins con-

served between C. briggsae and C.

elegans and �15,000 hairpins con-

served between man, mouse, and

puffer fish).

Ohler et al. (2004) further im-

proved the accuracy of MiRscan by

considering sequence conservation

about 200 bp upstream of the

miRNA fold-back and a highly sig-

nificant sequence motif (with con-

sensus CTCCGCCC) that is present

upstream of almost all inde-

pendently transcribed nematode

miRNA genes. They observed that

sequence features outside of the

RNA secondary structure can there-

fore be very useful for the compu-

tational identification of eukaryotic

noncoding RNA genes. They esti-

mated that the total number of con-

fidently identified nematode miR-

NAs could be as many as 100.

Phylogenetic shadowing

Berezikov et al. (2005) identified

16 novel human miRNAs using phy-

logenetic shadowing, a powerful

technique that can assess the de-

gree of conservation of each nucle-

otide in a sequence (Boffelli et al.,

2003). They sequenced 122 miR-

NAs in 10 primate species to reveal

conservation characteristics of

miRNA genes. They observed that

nucleotides in the stem of miRNA

hairpin precursors are significantly

more conserved than in sequences

flanking the hairpin structure and in

the loops of the hairpins. Their re-

sults suggested the presence of sig-

nificantly higher numbers of miR-

NAs in the human genome than

previously estimated. They esti-

mated that there could be at least

200–300 new putative human miR-

NAs, a two-fold increase over pre-

vious studies such as (Lim et al.,

2003a).

miRseeker

Lai et al. (2003), using a detection

program called miRseeker, esti-

mated that Drosophila genomes

contain around 110 miRNA genes

and identified 48 miRNA candi-

dates. They examined the folding of

RNA sequences conserved between

two Drosophila species using the

Mfold package (Mathews et al.,

1999; Zuker, 2003) in order to de-

tect extended stem-loop structures

having a nucleotide divergence

characteristic of known miRNAs.

ProMiR

Nam et al. (2005) proposed ProMiR,

a genetic programming approach to

learn common structures of miR-

NAs from known miRNA precursors.

Unlike previous approaches that

could detect only abundantly ex-

pressed miRNAs or close homologs

of previously identified miRNAs,

their method is a probabilistic

colearning model for miRNA gene

finding, which simultaneously con-

siders the structure and sequence

of miRNA precursors. Their study

suggested that the miRNA gene

family may be more abundant than

previously anticipated and confer

highly extensive regulatory net-

works on eukaryotic cells.

Cluster approaches

Sewer et al. (2005) exploited the

property that miRNAs are occasion-

ally found in clusters and focused

on genomic regions around already

known miRNAs. Starting with the

known human, mouse, and rat

miRNAs, they analyzed 20 kb of

flanking genomic regions for the

presence of putative precursor

miRNAs. Their result is available at

http://www.mirz.unibas.ch.

Seitz et al. (2003) scanned for

stem-loops near known miRNAs,

based upon the observation that

miRNA genes appear to be orga-

nized in clusters.

Comparative methods

Xie et al. (2005) presented a com-

parative analysis of the human,

mouse, rat, and dog genomes to

create a systematic catalog of com-

mon regulatory motifs in promoters

and 3� UTRs. In this approach, con-

served sequence motifs within 3�

UTRs of mRNAs were first identi-

fied, and then conserved candidate

miRNAs were predicted. These mo-

tifs were about 7-nt-long and were

mostly complementary to the 5�

end of known miRNA sequences as

well as candidate sequences with

fold-back structure. Their results

suggested that previous estimates

of the number of human miRNA

genes were low.

Weber (2005) reported the re-

sults of a systematic search for in-

terspecies orthologs of miRNA

precursors. These authors first

compared the entire human and

mouse precursors and mature miR-
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NAs in the miRNA Registry (Grif-

fiths-Jones, 2004; Griffiths-Jones

et al., 2006) with the human ge-

nome using a sequence comparison

tool. They further used RNA folding

and G-U base pairing criteria and

identified 35 human and 45 mouse

novel miRNA genes.

Other methods

Ambros et al. (2003) employed

cDNA sequencing and comparative

genomics to identify C. elegans

small RNAs with properties similar

to miRNAs. The program Mfold

(Mathews et al., 1999; Zuker,

2003), which predicts RNA second-

ary structure by free energy mini-

mization, was used to identify novel

miRNAs.

Grad et al. (2003) developed a

method to predict miRNAs in the C.

elegans genome using sequence

conservation and structural similar-

ity to known miRNAs and generated

214 candidates. They estimated

that the C. elegans genome may

encode between 140 and 300 miR-

NAs and potentially many more.

Their search strategy was similar to

MiRscan (Lim et al., 2003a, 2003b),

but used different selection criteria

and reported fewer (14 miRNAs in

total) experimentally validated

candidates.

Legendre et al. (2005) estimated

how many new miRNAs could be re-

covered using a profile-based strat-

egy and produced 265 new miRNA

candidates that were not previously

found in miRNA databases.

Rodriguez et al. (2004) anno-

tated the genomic position and con-

text of the class of noncoding RNAs

(ncRNAs) in the human and mouse

genomes, in order to derive a global

perspective on the transcription of

miRNAs in mammals.

Methods to Identify miRNA

Genes in Plants or Viruses

Computational methods for pre-

dicting plant miRNAs have been fo-

cused on the Arabidopsis thaliana

and Oryza sativa genomes.

Wang et al. (2004a) described

the identification of 20 miRNAs

from a cDNA library for O. sativa.

Bonnet et al. (2004) presented a

genome-wide computational pipe-

line known as MIRFINDER and pre-

dicted 91 miRNA genes in the A.

thaliana genome. Their method

was based on the conservation of

short sequences between two ge-

nomes, A. thaliana and O. sativa, as

well as on properties of the second-

ary structure of miRNA precursors.

This method was fine-tuned to take

into account plant-specific proper-

ties, such as the variable length of

the miRNA precursor sequences.

Wang et al. (2004b) predicted 95

miRNA genes in A. thaliana using a

computational method for genome-

wide prediction of miRNAs and their

target mRNAs. This method used

characteristic features of known

plant miRNAs as criteria to search

for miRNAs conserved between A.

thaliana and O. sativa. Their results

suggested that at least some

miRNA precursors are polyadenyl-

ated at certain stages.

Jones-Rhoades and Bartel (2004)

developed a comparative genomic

approach to systematically identify

both miRNAs and their targets that

are conserved in A. thaliana and O.

sativa.

Adai et al. (2005) presented a

single genome approach for the de-

tection of miRNAs in A. thaliana.

Their tool, called findMiRNA, pre-

dicted potential miRNAs within can-

didate precursor sequences that

have corresponding target sites

within transcripts.

Recently, methods that use ex-

pressed sequence tag (EST) analy-

sis have been proposed. Williams et

al. (2005) developed a protocol to

mine a nonannotated, noncoding

EST database in order to discover

new A. thaliana small RNA. Zhang

et al. (2005) identified and charac-

terized new plant miRNAs using

EST analysis. A total of 338 new

potential miRNAs were identified in

60 plant species.

miRNAs have also been identified

in viruses such as the Epstein-Barr

virus (EBV), herpes virus, and HIV.

Pfeffer et al. (2005) combined a

new miRNA gene prediction method

with small-RNA cloning from sev-

eral virus-infected cell types, and

identified miRNA genes in herpes

virus, a pathogenic virus. Pfeffer et

al. (2004) showed that EBV ex-

presses several miRNA genes. Cou-

turier and Root-Bernstein (2005)

hypothesized that viral-encoded

miRNA from HIV-1 may directly al-

ter T cell, macrophage, and den-

dritic cell activity. To investigate a

potential correlation between the

genomic complementarity of HIV-1

and host cell protein expression, a

local alignment search was per-

formed to assess for regions of

complementarity between the

HIV-1 proviral genome and the

mRNA coding sequence of various

proteins expressed by CD� T cells

and macrophages.

COMPUTATIONAL

PREDICTION OF miRNA

TARGETS

Prediction of Plant miRNA

Targets

Because of the near perfect

complementarity of miRNAs to their

targets, the prediction of miRNA

targets in plants is straightforward

(Rhoades et al., 2002), and auto-

mated plant miRNA target predic-

tion can now be performed online

(Zhang, 2005). Transcription fac-

tors represent only about 5% of

A. thaliana protein-coding genes

(Rhoades et al., 2002; Jones-

Rhoades and Bartel, 2004), but

more than 50% of the putative

plant miRNA targets are transcrip-

tion factors. These miRNA-regu-

lated transcription factors regulate

developmental patterning, cell pro-

liferation, and environmental and

hormonal responses (Kidner and

Martienssen, 2005). Interestingly,

miRNAs can tune their own expres-

sion, suggesting a negative feed-

back mechanism (Rhoades et al.,

2002; Xie et al., 2003; Vaucheret et

al., 2004).

Principles of Predicting

miRNA Targets in Animals

Computational prediction of miRNA

targets is more challenging in ani-

mals because of the imperfect

complementarity of miRNAs to their

targets. The detection principles

used by most approaches are rela-

tively similar, and are based on pre-

122 YOON AND DE MICHELI

Birth Defects Research (Part C) 78:118–128, (2006)



vious knowledge on the pairing of

mRNAs and miRNAs such as lin-4

(Lee et al., 1993) and let-7 in C.

elegans (Pasquinelli et al., 2000;

Reinhart et al., 2000), as well as

bantam in Drosophila (Brennecke

et al., 2003). Prediction criteria in-

clude the following:

● The miRNA sequence is comple-

mentary to the 3� UTR sequence

of potential target mRNAs. Espe-

cially, the strong binding of the 5�

end (the first eight base pairs) of

the mature miRNA to the 3� UTR

sequence is very important for

targeting, whereas the G:U wob-

ble pairing reduces the silencing

efficiency (Doench and Sharp,

2004). In addition to the 3� UTR

regions, Ambros (2004) sug-

gested that 5� UTR regions of a

potential target mRNA should

also be checked.

● The kinetics and thermodynam-

ics of RNA-RNA duplexes can be

determined by RNA folding pro-

grams, and have been consid-

ered important by most algo-

rithms. However, a recent study

by Lewis et al. (2005) showed

that this condition can be omitted

without lowering the specificity of

a detection algorithm by incorpo-

rating other conserved sequence

information.

● The conservation of target 3� UTR

sites in related genomes is criti-

cal. TargetScanS (Lewis et al.,

2005) also considered the pres-

ence of conserved adenosines

surrounding the seed miRNA se-

quence.

● More than one miRNA typically

regulates one message, indica-

tive of cooperative translational

control, whereas one miRNA may

have several target genes, re-

flecting target multiplicity (En-

right et al., 2003). That is, com-

binatorial control of a single

target by multiple miRNAs may

be an important feature of miRNA

targeting, very similar to the

mode of transcription factor con-

trol of genes (Doench and Sharp,

2004; Hobert, 2004; Xie et al.,

2005), and multiple binding sites

for an miRNA on the 3� UTR can

increase the efficiency of RNA si-

lencing (Doench and Sharp,

2004).

● Du and Zamore (2005) observed

that lack of a strong secondary

structure at the miRNA-binding

site on the target may be an im-

portant feature.

● miRNAs could also target other

miRNAs for silencing (Lai et al.,

2004).

Methods for Animal miRNA

Target Detection

TargetScan and TargetScanS

Lewis et al. (2003) initially devel-

oped TargetScan, a computational

method to predict the targets

of conserved vertebrate miRNAs.

They selected 79 pan-mammalian

miRNAs with homologs in human,

mouse, and puffer fish and identical

sequence in human and mouse (not

necessarily in puffer fish), as well

as 55 pan-vertebrate miRNAs that

had identical sequences in all three

genomes. TargetScan was applied

using these two sets of miRNAs,

and the authors predicted 451 reg-

ulatory target genes by identifying

mRNAs with conserved pairing to

the 5� region of the miRNA and

evaluating the number and quality

of these complementary sites. More

specifically, TargetScan searched

for a strong 7-nt seed, starting from

the second nucleotide from the 5�

end of the miRNA. The algorithm

then used the RNAFold package

(Hofacker, 2003) to calculate the

thermodynamic free energy of the

binding and assigned scores to both

single binding sites and multiple

binding sites. The functions of the

predicted mRNA targets were dis-

tributed over a broad range, with

particular enrichment in transcrip-

tional regulation.

Lewis et al. (2005) further im-

proved TargetScan and proposed

TargetScanS by relaxing some of

the parameters of TargetScan and

incorporating new criteria. A seed

was originally defined to be a 7-nt

match (nucleotide positions 2–8 of

the miRNA) in the region of comple-

mentarity between the miRNA and

its target gene. TargetScanS re-

laxed this condition and used a 6-nt

match (nucleotide positions 2–7) as

a seed. In addition, TargetScanS

did not consider the thermody-

namic stability of pairings and mul-

tiple sites in each target. On the

other hand, TargetScanS scanned

target site sequence conservation

across two more species (chicken

and dog) in addition to the three

genomes (mouse, rat, and human)

examined in TargetScan. This

helped TargetScanS reduce the

number of false positives. More-

over, TargetScanS succeeded in

further increasing sensitivity by

considering the presence of con-

served adenosines surrounding the

seed miRNA sequence. (It was

found that the immediate down-

stream position of the seed match

is highly conserved and is often an

adenosine, which mostly base-

pairs with the U of the first nucleo-

tide of the miRNA.) The algorithm

was estimated to have a 22% false-

positive rate for targets conserved

in mammals.

TargetScanS specifically recov-

ered all known miRNA targets, and

Lewis et al. (2005) predicted that

miRNAs target more than 5300 hu-

man genes, which represented

30% of the gene set used in

the analysis (17,850 orthologous

mammalian genes). This work sug-

gested that a larger number of

mammalian genes than initially

thought are potentially controlled

by miRNAs.

PicTar

PicTar (http://pictar.bio.nyu.edu)

is a computational method for iden-

tifying common targets of miRNAs

in vertebrates, C. elegans, and Dro-

sophila. Krek et al. (2005) initially

presented PicTar, and found that

each vertebrate miRNA targets

roughly 200 transcripts on average.

Using PicTar, Grun et al. (2005) ex-

ploited cross-species comparisons

to predict that each miRNA targets

54 genes on average in Drosophila.

The algorithm used in PicTar can

identify binding sites that are co-

regulated by multiple miRNAs in a

coordinated manner, in addition to

binding sites targeted by a single

miRNA. To filter out false positives,

PicTar used statistical tests based

on genome-wide alignments of
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eight vertebrate genomes, and

considered clustering coexpressed

miRNAs and matching miRNAs with

putative targets that are expressed

in the same context. The algorithm

could specifically recover published

miRNA targets and was estimated

to have an approximately 30%

false-positive rate.

miRanda

To identify miRNA targets in Dro-

sophila and human, Enright et al.

(2003) and John et al. (2004) devel-

oped an algorithm called miRanda

(http://www.microrna.org). For

each miRNA, miRanda selected tar-

get genes on the basis of three prop-

erties: sequence complementarity

using a position-weighted local align-

ment algorithm (to emphasize bind-

ing of the 5�-end segment more than

the 3�-end segment in the miRNA),

free energies of RNA-RNA duplexes,

and conservation of target sites in

related genomes. The algorithm cor-

rectly recovered nine out of 10 pub-

lished miRNA targets and was esti-

mated to have a 24% false-positive

rate. The functions of the predicted

target genes were enriched in de-

velopment, transcription factors,

translational regulation, and cell fate

specification, including the nervous

system.

Using miRanda, Enright et al.

(2003) identified several hundred

target genes potentially regulated

by one or more known miRNAs, and

John et al. (2004) predicted that

miRNA genes (about 1% of human

genes) regulate protein production

for 10% or more of all human

genes.

MovingTargets

MovingTargets is a software pro-

gram that allows a researcher to

predict a set of miRNA targets that

satisfy an adjustable set of biologi-

cal constraints (Burgler and Mac-

donald, 2005). The method con-

sisted of two steps: the creation of

a database of potential targets and

the screening of all possible miR-

NA–target pairs for adherence to

constraints suggested by analysis

of the known miRNA–target interac-

tions. Biological miRNA target con-

straints they suggested include the

number of target sites in the mRNA,

the strength of miRNA–mRNA hy-

bridization, the number of consec-

utive base pairs involving the 5�

part of the miRNA, the total number

of miRNA 5� nucleotides involved in

base pairing to the target, and the

number of nucleotides in the miRNA

5� region involved in G:U base

pairs. Using MovingTargets, the au-

thors identified a high-likelihood

set of 83 miRNA targets in Drosoph-

ila, all of which adhere to strict bio-

logical constraints.

RNAhybrid

Rehmsmeier et al. (2004) pre-

sented RNAhybrid, a program that

predicts multiple potential binding

sites of miRNAs in large target

RNAs (http://bibiserv.techfak.uni-

bielefeld.de/rnahybrid). This pro-

gram used an RNA folding algo-

rithm improved over Mfold

(Mathews et al., 1999; Zuker,

2003) or RNAFold (Hofacker,

2003), and could find the hybrid-

ization sites that were energeti-

cally most favorable. RNAhybrid

predicted Drosophila miRNA tar-

gets by matching a 6-nt seed

starting from the second nucleo-

tide from the 5� end of the miRNA.

DIANA-microT

Kiriakidou et al. (2004) used a com-

bined bioinformatics and experi-

mental approach to predict human

miRNA targets. The authors de-

scribed a computational program

called DIANA-microT that can com-

putationally identify miRNA targets

by focusing on single binding site

targets and by scanning binding

sites with a typical central bulge

and 3� binding. DIANA-microT suc-

cessfully recovered all published C.

elegans miRNA targets.

TargetBoost

Saetrom et al. (2005) proposed a

machine learning algorithm called

TargetBoost that works on a set of

validated miRNA targets in lower

organisms to create weighted se-

quence motifs that capture the

binding characteristics between

miRNAs and their targets (http://

www.interagon.com/demo). The

authors showed that TargetBoost’s

weighted sequence motif approach

is favorable to using both the du-

plex stability and the sequence

complementarity steps.

Binary classification of target

sites

Brennecke et al. (2005) evaluated

the minimal requirements for func-

tional miRNA-target duplexes in

vivo and classified target sites with

different functional properties into

two categories, namely 5� domi-

nant target sites that have high

complementarity to the 5� end of

miRNA, and 3� compensatory sites

that have weak 5� complementarity

and depend on strong base-pairing

to the 3� end of miRNA. The authors

further classified the 5� dominant

target sites into canonical sites and

seed sites depending upon 3� base-

pairing. They found that high

complementarity is sufficient for

the miRNA-mRNA duplex to be

functional, and that certain sites

with as little as seven base-pairings

between the 5� end of miRNA and

the target are sufficient to regulate

the target in vivo. The authors es-

timated that an average miRNA has

approximately 100 target sites, in-

dicating that miRNAs regulate a

large fraction of protein-coding

genes and that miRNA 3� ends are

key determinants of target specific-

ity within miRNA families.

miRNA module prediction

Yoon and De Micheli (2005) pro-

posed an unsupervised machine

learning method to predict miRNA

regulatory modules or groups of

miRNAs and target genes that are

believed to participate coopera-

tively in posttranscriptional gene

regulation. Their method was

based upon the observation that

more than one miRNA typically reg-

ulates one message, and that one

miRNA may have several target

genes (Enright et al., 2003). The

authors represented the interac-
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tions between miRNAs and their

targets by a weighted bipartite

graph, and modeled a miRNA regu-

latory module as a complete sub-

graph (biclique) in the graph (Fig.

4). A total of 431 miRNA regulatory

modules were predicted from the

human genome.

Use of mRNA folding

Robins et al. (2005) incorporated

the folded mRNA structure informa-

tion to target prediction but did not

consider evolutionary conserva-

tion. Their result suggested that

miRNAs have fewer targets than

previously reported, which is con-

tradictory to other recent studies

(Berezikov et al., 2005; Lewis et

al., 2005; Xie et al., 2005).

Other methods

Xie et al. (2005) used a computa-

tional method to identify a large

class of 7-nt conserved regulatory

motifs. Many of these motifs are

likely to be miRNA target sites, ac-

cording to the observation that

these motifs have strong direc-

tional bias with respect to the DNA

strand, and they end with an aden-

osine complementary to the 5�-end

of a binding miRNA. The authors

suggested that miRNAs regulate at

least 20% of human genes.

Smalheiser and Torvik (2004)

presented a computational study to

show that human miRNA–mRNA

target interactions follow different

rules than have been previously

characterized in Drosophila and C.

elegans. The authors performed a

population-wide statistical analysis

of how human miRNAs interact

complementarily with human mR-

NAs, searching for characteristics

that are significantly different

from scrambled control sequences.

These characteristics were used to

identify 71 statistically significant

outlier mRNAs. It was suggested

that many human miRNAs exhib-

ited long exact matches of 10 nt or

more, unlike C. elegans and Dro-

sophila.

Rajewsky and Socci (2004) pro-

posed a target detection program

that incorporated both kinetic and

thermodynamic components of tar-

get recognition and applied the pro-

gram to identifying evolutionary

conserved sequences.

Stark et al. (2003) used a target

prediction algorithm to detect Dro-

sophila miRNA targets by screening

conserved 3� UTR sequences from

the Drosophila genome for poten-

tial miRNA targets. The screening

procedure combines detecting con-

served complementary sequences

of the 5�-end 8-nt seed of the

miRNA and calculating the thermo-

dynamic stability of the binding us-

ing the Mfold package (Mathews et

al., 1999; Zuker, 2003). This ap-

proach revealed striking clusters of

functionally related targets among

the top predictions for specific miR-

NAs (for instance, notch target

genes for miR-7, proapoptotic

genes for the miR-2 family, and en-

zymes from a metabolic pathway

for miR-277). Multiple binding sites

were required in order to achieve

significant predictive power, but

the authors suggested that valid

targets can be identified from se-

quence alone.

miRNA Target Detection

for Plants and Viruses

Similar to plant miRNA gene predic-

tion studies, miRNA target identifi-

cation algorithms have been fo-

cused on two species, A. thaliana

and O. sativa.

Rhoades et al. (2002) predicted

regulatory targets for 14 A. thaliana

miRNAs by identifying mRNAs

with near complementarity. The

PatScan program (Dsouza et al.,

1997) was used to identify 49

unique targets complementary to

the miRNAs. Having four or less

mismatches and zero gaps was

considered as a match, and nonca-

nonical and G:U pairs were called a

mismatch. Many of these 49 plant

miRNA target sites have since been

confirmed experimentally (Llave et

al., 2002; Emery et al., 2003; Kass-

chau et al., 2003; Tang et al.,

2003). Complementary sites within

predicted targets are conserved in

rice, and the target sites were often

found in transcription factors in-

volved in developmental patterning

or stem cell maintenance and iden-

tity (Bengert and Dandekar, 2005).

Jones-Rhoades and Bartel (2004)

developed a comparative genomic

approach to identify both miRNAs

and their targets that are con-

served in A. thaliana and O. sativa.

This method relaxed the criteria

used by Rhoades et al. (2002) and

allowed gaps and more mis-

matches. Their algorithm searched

for sequence conservation between

A. thaliana and O. sativa, just like

animal miRNA prediction methods.

The authors revealed 19 additional

plant miRNA targets.

Li and Zhang (2005) detected 96

candidate Arabidopsis miRNAs by

searching short complementary se-

quences between transcription fac-

tor open-reading frames and inter-

genic region sequences, and

considering RNA secondary struc-

tures and the sequence conversa-

Figure 4. Graphical modeling of miRNA-target interactions (Yoon and De Micheli, 2005).
A: A weighted bipartite graph representation. The vertices in the first row (m0, m1, m2,
m3) represent miRNAs, and the vertices in the second row (t0, t1, t2, t3) correspond to
mRNAs. An edge represents binding of an miRNA to a target and is assigned a weight
according to the binding strength. B: A miRNA regulatory module is defined as a complete
subgraph (with similar weights for the edges incident on target vertices) in the weighted
bipartite graph. The example module shown consists of two miRNAs (m1, m2) and three
targets (t1, t2, t3).
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tion between the genomes of A.

thaliana and O. sativa.

Wang et al. (2004b) used charac-

teristic features of known plant

miRNAs as criteria to search for

miRNAs conserved between A.

thaliana and O. sativa. Extensive

sequence complementarity be-

tween miRNAs and their target mR-

NAs was used to predict miRNA-

regulated transcripts.

The method of Bonnet et al.

(2004) was based upon the conser-

vation of short sequences between

the genomes of A. thaliana and O.

sativa as well as on properties of

the secondary structure of the

miRNA precursor. The authors fine-

tuned their method to consider

plant-specific properties, such as

the variable length of the miRNA

precursor sequences.

Pfeffer et al. (2004) recorded the

small RNA profile of cells infected by

EBV in order to probe for function of

RNA silencing during infection of hu-

man cells by a DNA virus. A compu-

tational approach similar to Enright

et al. (2003) was used to identify po-

tential miRNA targets and predicted

several target genes such as B-cell-

specific chemokines and cytokines,

transcriptional regulators, and genes

involved in signal transduction path-

ways, cell proliferation, and

death. It was suggested that

miRNA silencing may be a mecha-

nism used by EBV to control the

expression of host genes.

SUMMARY AND OUTLOOK

In this review, we summarize cur-

rent research efforts in computa-

tional methods for miRNA research

by classifying them into two cate-

gories (miRNA gene identification

and miRNA target prediction) and

providing principles of computa-

tional algorithms as well as specific

examples in each category. Most al-

gorithms combine sequence, struc-

ture, and/or conservation informa-

tion in order to maximize the

specificity of the algorithm de-

signed, and in silico methods for

miRNA research have already

become an invaluable tool that

can complement biological experi-

ments.

A summary of the online re-

sources mentioned in this review is

listed in Table 1. Alternative re-

views on computational methods in

miRNA research can be found in

Aravin and Tuschl (2005), Bengert

and Dandekar (2005), Bentwich

(2005), Brown and Sanseau

TABLE 1. Online Resources for miRNA Research

Name URL Main feature References

miRNA registry/

miRBase

http://microrna.sanger.ac.uk miRNA sequences,

annotations, and

predicted targets

Griffiths-Jones (2004,

2006)

miRNAMap http://mirnamap.mbc.nctu.edu.tw Genomic maps for

miRNA genes and

targets

Hsu et al. (2006)

MiRscan http://genes.mit.edu/mirscan miRNA gene scan Lim et al. (2003a, b);

Ohler et al. (2004)

RNA regulatory

networks

http://www.mirz.unibas.ch Putative miRNA gene

and target scan

Sewer et al. (2005)

TargetScan/

TargetScanS

http://genes.mit.edu/targetscan Prediction of miRNA

targets

Lewis et al. (2005,

2003)

PicTar http://pictar.bio.nyu.edu miRNA target

prediction for

vertebrates and

flies

Grun et al. (2005);

Krek et al. (2005)

miRanda http://www.microma.org Human, flies, and

zebrafish miRNA

target search

Enright et al. (2003);

John et al. (2004)

DIANA-microT http://www.diana.pcbi.upenn.edu/cgi-bin/micro_

t.cgi

Human, mouse, rat

miRNA target scan

Kiriakidou et al. (2004)

RNAhybrid http://bibiserv.techfak.uni-bielefeld.de/rnahybrid Prediction of miRNA

binding sites

Rehmsmeier et al.

(2004)

Tarbase http://www.diana.pcbi.upenn.edu List of experimentally

supported miRNA

targets

Sethupathy et al.

(2006)

miRU http://bioinfo3.noble.org/miRNA/miRU.htm Plant miRNA target

finder

Zhang (2005)

TargetBoost https://demo1.interagon.com/demo miRNA-target binding

characterization

Saetrom et al. (2005)

Vienna package http://www.tbi.univie.ac.at/�ivo/RNA RNA secondary

structure prediction

and comparison

Hofacker (2003)

Mfold package http://www.bioinfo.rpi.edu/�zukerm/rna RNA folding and

hybridization

prediction

Mathews et al. (1999);

Zuker (2003)
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(2005), Kong and Han (2005), and

Sachidanandam (2005).

Clearly, as the understanding of

in vivo mechanisms of miRNAs

deepens, more advanced in silico

modeling and discovery will be pos-

sible. For example, having more

examples of miRNA-mRNA du-

plexes may allow us to build a gen-

erative model (e.g., hidden Markov

models) (Rabiner, 1989) for miRNA

target transcripts. Furthermore, if

we use “negative” examples (non-

functional or invalid miRNA-mRNA

duplexes) in addition to “positive”

examples (functional or valid

miRNA-mRNA duplexes), we can

use a discriminative model (e.g.,

support vector machines) (Vapnik,

1998) to find novel miRNA targets.

As is often the case with other

biological discoveries, it is critical to

biologically validate any result ob-

tained by in silico methods for

miRNA studies. Conversely, such

biological validation techniques of-

ten rely on computational algo-

rithms (Bentwich et al., 2005).

Hence, iterative integration of com-

putational and experimental meth-

ods is expected to produce an

optimal framework for further deci-

phering biogenesis, functions, and

mechanisms of miRNAs that have

been unappreciated.
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