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1 Introduction

Rare B meson decays, induced by flavor changing neutral current (FCNC) b → s(d) transi-
tion, provide potentially the stringiest testing ground for the Standard Model (SM) at loop
level. These decays are also very suitable looking for new physics beyond the SM. Among all
decays of B mesons, the semileptonic decays receive special attention, since their study offer
one of the most efficient ways in determination of the Cabibbo–Kobayashi–Maskawa (CKM)
matrix elements. From experimental side, there scheduled an impressive program for study
of both inclusive and exclusive B–decays in B factories, BaBar and Belle, as well as LHC–b
machines. CLEO Collaboration [1] has measured the branching ratios of B0 → π−ℓ+ν and
B → ρ−ℓ+ν decays, from which it is obtained that |Vub| = (3.25± 0.14+0.21

−0.29 ± 0.55)× 10−3.
In extraction of |Vub| from B → π(ρ)ℓν decay, main theoretical uncertainties come from
B → π(ρ) transition form factors. For an accurate calculation of the CKM matrix elements,
hadronic form factors need to be determined more reliably.

It should be noted that the decay modes of B → Kℓ+ℓ− (ℓ = e, µ) has recently been
observed with B(B → Kℓ+ℓ−) = (0.75+0.25

−0.21 ± 0.09) × 10−6 [2] and (0.78+0.24+0.11
−0.20−0.18) × 10−6

[3, 4]. At BaBar, an excess of events over background with 2.8σ has been observed for the
B → K∗ℓ+ℓ− decay with B(B → K∗ℓ+ℓ−) = (1.680.68

−0.58 ± 0.28) × 10−6 [4].
In this work we calculate the penguin form factor of the B → ηℓ+ℓ− decay in light cone

QCD sum rules. The form factors induced by the vector current in B → ηℓν decay has
already been calculated in light cone QCD sum rules in [5]. It should be mentioned here
that B → η form factors are related to the B → π form factors through SU(3) symmetry,
which are calculated in light cone QCD sum rules in [6]. A detailed description of the light
cone QCD sum rule and its applications can be found in [7, 8].

Interest to B → ηℓ+ℓ− and B → η′ℓ+ℓ− has its grounds in the fact that they can
give information about η–η′ mixing angle [9, 10]. Soon B factories will provide much more
data and therefore a more reliable determination of the transition form factors and as a
result a more precise determination of |Vub| will be possible. The extraction of |Vub| from
the B → η(η′)ℓ+ℓ− decay would present an efficient and complementary alternative to its
determination from B → π(ρ)ℓ+ℓ− decay.

The present work is organized as follows. In section 2, we calculate the sum rule for
the penguin form factor of the B → ηℓ+ℓ− decay. Section 3 is devoted to the numerical
analysis and the conclusion.

2 Light cone QCD sum rules for the penguin form

factors in B → η transition

The penguin form factor of the Bd → η transition is defined as
〈
η(p)

∣∣∣d̄σµνq
ν(1 + γ5)b

∣∣∣B(pB)
〉

= 2i
[
pµq2 − qµ(pq)

] fT

mB + mη

. (1)

The starting point for the calculation of the form factor fT in Eq. (1) is the following
correlator function:

Πµ(p, q) = i
∫

d4xeiqx
〈
η(p)

∣∣∣T
{
q̄σµνq

ν(1 + γ5)b(x)b̄(0)i(1 − γ5)q
}∣∣∣ 0

〉
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= iΠT [pµq
2 − (pq)qµ] , (2)

which is calculated in an expansion around the light cone x2 = 0. The main reason for
choosing the chiral b̄i(1 − γ5)q current instead of the b̄iγ5q current which has been used
in the calculation of the B → π form factor [8], is because twist–3 wave functions do not
contribute for this choice, which are the main inputs of the light cone QCD sum rules and
which bring about the main uncertainty to the results [11].

Following the general idea QCD sum rules to obtain the penguin form factor is by
matching the representation of the correlator function in hadronic and quark–gluon lan-
guages. Let us first consider the hadronic representation of the correlator function. By
inserting a complete set of states with the same quantum numbers of the B meson between
the currents in the correlator, and singling out the pole term of the lowest pseudoscalar B
meson, we get

Πµ(p, q) =
〈η |q̄σµνq

ν(1 + γ5)|B〉
〈
B
∣∣∣b̄i(1 − γ5)q

∣∣∣ 0
〉

m2
B − (p + q)2

+
∑

h

〈η |q̄σµνq
ν(1 + γ5)| h〉

〈
h
∣∣∣b̄i(1 − γ5)q

∣∣∣ 0
〉

m2
h − (p + q)2

,

= iΠT [pµq2 − (pq)qµ] , (3)

where the sum in Eq. (3) describes the contributions of the higher states and continuum.
For the invariant amplitude ΠT one can write a general dispersion relation in the B meson
momentum squared (p + q)2 as

ΠT
(
q2, (p + q)2

)
=
∫

ds
ρ(s)

s − (p + q)2
. (4)

The spectral density corresponding to (3), is

ρ(s) = 2
f η

T (q2)

mB + mη

m2
BfB

mb
δ(s − m2

B) + ρh(s) , (5)

where we have used the definition

〈
B
∣∣∣b̄iγ5q

∣∣∣ 0
〉

=
m2

BfB

mb
.

The first term in Eq. (5) represents the ground state B meson contribution and ρh(s)
corresponds to the spectral density of the higher resonances and the continuum. The
spectral density ρh(s) can be approximated by invoking the quark–hadron duality ansatz

ρh(s) = ρQCD(s − s0) , (6)

where s0 is the continuum threshold. As a result, the hadronic representation of the invari-
ant amplitude ΠT takes the following form

ΠT = 2
f η

T (q2)m2
BfB

(mB + mη)mb[m
2
B − (p + q)2]

+
∫ ∞

s0

ds
ρQCD(s)

s − (p + q)2
+ subtractions . (7)
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In order to obtain the sum rule for f η
T (q2), we proceed to calculate of the correlator

function from QCD side. This can be done by using the light cone OPE method. For this
purpose, we work in the large space–like momentum regions (p + q)2 − m2

b ≪ 0 for the
bq̄ channel and q2 ≪ m2

b − O(few GeV 2) for the momentum transfer, which correspond
to the small light cone distance x ≈ 0 and are required by the validity of the OPE. After
contracting b quark field, we get

Πµ(p, q) = i
∫

d4xeiqx
〈
η(p)

∣∣∣q̄(x)σµνq
ν(1 + γ5)Sb(x, 0)i(1 − γ5)q

∣∣∣ 0
〉

, (8)

where Sb(x, 0) is the full quark propagator. In presence of the background gluon field, its
explicit expression can be written as

〈
0
∣∣∣T {b(x)b̄(x)}

∣∣∣ 0
〉

= i
∫

d4k

(2π)4
e−ikx 6k + mb

k2 − m2
b

− igs

∫ d4k

(2π)4
e−ikx

∫ 1

0
du

[
1

2

6k + mb

(k2 − m2
b)

2
Gαβ(ux)σαβ − 1

k2 − m2
b

uxαGαβ(ux)γβ

]
, (9)

where the first term on the right hand side corresponds to the free quark propagator, Gαβ is
the gluonic field strength and gs id the strong coupling constant. We see from Eqs. (8) and
(9) that, in order to calculate the theoretical part of the correlator, the matrix elements of
the nonlocal operators between η meson and vacuum states are needed.

Here we would like to remark that in the following calculation η–η′ mixing will be
neglected, since in octet–singlet basis this angle is about θ ≈ 100 [12]. Hence, in the
above–mentioned basis, the interpolating current for η meson is chosen as the SU(3) octet
axial–vector current

Jµ =
1√
6

(
ūγµγ5u + d̄γµγ5d − s̄γµγ5s

)
. (10)

In order to simplify the notation we will use q̄Γq to denote

Jµ =
1√
6

(
ūΓµu + d̄Γµd − s̄Γµs

)
,

and introduce Fη = fη/
√

6. Here, fη is the leptonic decay constant of η meson and is to be
determined from the relation

〈
0 |q̄γµγ5q| η(ρ)

〉
= ifηpµ . (11)

It is easy to see from Eqs. (8) and (9) that the terms containing even number of Dirac
matrices do not give any contribution. Remaining matrix elements can be parametrized in
terms of η meson functions up to twist–4 defined as

〈η(p) |q̄(x)γµγ5q(0)| 0〉 = −ifηpµ

∫ 1

0
dueiupx

[
ϕη(u) +

1

16
m2

ηx
2A(u)

]

− i

2
fηm

2
η

xµ

px

∫ 1

0
dueiupxB(u) , (12)
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〈η(p) |q̄(x)γµγ5gsGαβ(ux)q(0)| 0〉 = fηm
2
η

[
pβ

(
gαµ − xαpµ

px

)
− pα

(
gβµ − xβpµ

px

)]

×
∫
Dαiϕ⊥(αi)e

ipx(α1+uα3) + fηm
2
η

pµ

px
(pαxβ − pβxα)

∫
Dαiϕ‖(αi)e

ipx(α1+uα3) (13)

〈
η(p)

∣∣∣q̄(x)gsG̃αβ(ux)γµq(0)
∣∣∣ 0
〉

= ifηm
2
η

[
pβ

(
gαµ − xαpµ

px

)
− pα

(
gβµ − xβpµ

px

)]

×
∫
Dαiϕ̃⊥(αi)e

ipx(α1+uα3) + ifηm
2
η

pµ

px
(pαxβ − pβxα)

∫
Dαiϕ̃‖(αi)e

ipx(α1+uα3) , (14)

where

G̃µν =
1

2
ǫµναβGαβ , and Dαi = dα1dα2dα3δ(1 − α1 − α2 − α3) .

In Eqs. (12)–(14), the function ϕη(u) is the leading twist–2, A(u), ϕ‖(αi), ϕ⊥(αi), ϕ̃‖(αi),
and ϕ̃⊥(αi) are all twist–4 wave functions. Inserting Eqs. (12)–(14) and Eq. (9) into Eq.
(8) and completing integration over the variables x and k, we get for the invariant structure

ΠT = 2Fη

∫ 1

0

du

m2
b − (q + pu)2

{
ϕη(u) − 1

2
m2

bm
2
η

A(u)

[m2
b − (q + pu)2]2

}

− 4Fηm
2
η

∫ 1

0
duu

∫
Dαi

ϕ‖(αi) − 2ϕ̃⊥(αi)

{m2
b − [q + p(α1 + uα3)]2}2

+ 2Fηm
2
η

∫
du
∫
Dαi

2ϕ⊥(αi) − ϕ‖(αi) + 2ϕ̃⊥(αi) − ϕ̃‖(αi)

{m2
b − [q + p(α1 + uα3)]2}2

. (15)

The next and the last step in obtaining the sum rule for penguin form factor is to carry out
the Borel transformation with respect to the variable (p + q)2 which enhances the ground
state contribution and suppresses contributions of the higher states and the continuum.
Finally, matching this result with the corresponding invariant amplitude that is calculated
in hadronic and quark languages, we get the sum rule. Subtraction of the continuum contri-
bution is performed by using quark–hadron duality (more about subtraction of continuum
and higher state contributions in light cone QCD can be found in [14, 15]). Performing
Borel transformation in Eq. (15), we get for the theoretical part

(
ΠT
)B

= Fη

{
2
∫ 1

δ

du

u
ϕη(u)e−s(u)/M2 − m2

bm
2
η

2

∫ 1

δ

du

u3

A(u)

M4
e−s(u)/M2

− 4m2
η

∫
duu

∫
Dαi

ϕ‖(αi) − 2ϕ̃⊥(αi)

M2k2
θ(k − δ)e−s(k)/M2

+ 2m2
η

∫
du
∫
Dαi

2ϕ⊥(αi) − ϕ‖(αi) + 2ϕ̃⊥(αi) − ϕ̃‖(αi)

M2k2
θ(k − δ)e−s(k)/M2

}
, (16)

where

s(u) =
m2

b − q2ū + m2
ηuū

u
, s(k) = s(u → k) ,

k = α1 + uα3 , ū = 1 − u , k̄ = 1 − k ,

δ =
m2

η + q2 − s0 +
√

(m2
η + q2 − s0)2 + 4m2

η(m
2
b − q2)

2m2
η

.
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In the same manner, performing Borel transformation in Eq. (7) and equating it to Eq.
(16), we finally get the following sum rule for the penguin form factor

f η
T (q2) =

(mB + mη)mb

2m2
BfB

em2

B
/M2

(
ΠT
)B

. (17)

3 Numerical analysis

In this section we present the result of our numerical calculations on penguin form factor
f η

T (q2). It follows from Eqs. (16) and (17) that the main input parameters of the sum rule
(17) are the η meson wave functions. The explicit expressions of the wave functions ϕη(u),
A(u), ϕ‖(αi), ϕ⊥(αi), ϕ̃‖(αi) and ϕ̃⊥(αi) are all given in [13]. The other necessary input
parameter of the sum rule is the leptonic decay constant Fη. As has already been noted,
we will η–η′ mixing. Furthermore, since η meson is an isoscalar, we have

F d
η = F u

η ≡ Fη =
fη√
6

,

where for the leptonic decay constant η meson, we quote the result of a recent analysis
which predicts fη = 159 MeV [16]. Moreover, the leptonic decay constant B meson is
chosen to have the value fB = 160 MeV [14, 17].

Having all these input parameters at hand, we proceed carrying out numerical calcula-
tions. First of all, since M2 is an auxiliary Borel parameter, we must find a region of M2

where a physically measurable quantity be practically independent of it. The lower bound
of M2 is determined by the fact that nonperturbative terms must be subdominant. The
upper limit of M2 is determined by the condition that the higher states and continuum
contributions are less than, for example, 30% of the total result. Our numerical analysis
shows that both conditions are satisfied in the region 8 GeV 2 ≤ M2 ≤ 16 GeV 2. Moreover,
it should be emphasized that light cone QCD sum rule predictions are reliable in the region
of momentum transfer square, i.e., q2 ≤ m2

b − 2mbΛ, where Λ is a typical hadronic scale
having the value Λ ≃ 0.5 GeV , which yields q2 <

∼ 18 GeV 2.
In Fig. (1) we present the dependence of the form factor f η

T (q2) on the Borel parameter
M2 at different values of momentum transfer square, q2 = 0 GeV 2, q2 = 5 GeV 2 and
q2 = 10 GeV 2, at two different choices of the continuum threshold s0 = 35 GeV 2 and
s0 = 40 GeV 2. We observe from this figure that, f η

T seems to be practically independent of
the Borel parameter M2, as M2 varies in the region 8 GeV 2 ≤ M2 ≤ 16 GeV 2.

Having this window for M2, we next study the dependence f η
T (q2) on q2, at three fixed

values of the Borel parameter M2 = 8 GeV 2, M2 = 12 GeV 2 and M2 = 16 GeV 2, picked
obviously from the above–mentioned working region of M2, again at two fixed values of the
continuum threshold, s0 = 35 GeV 2 and s0 = 40 GeV 2, as before. Depicted in Fig. (2) is
the dependence of the form factor on the momentum transfer q2, which clearly demonstrates
that fT

η (0) = 0.16 ± 0.03. As we have noted earlier, the prediction by the light cone QCD
sum rule is not reliable in the region q2 ≥ 18 GeV 2. In order to extend the present result
to whole physical region, we look for some convenient parametrization of the form factor
in such a way that in the region 4m2

ℓ ≤ q2 ≤ 18 GeV 2 this parametrization coincides with
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the light cone QCD sum rule prediction. The best parametrization of f η
T with respect to

q2 can be written in terms of three parameters in the following way

f η
T (q2) =

f η
T (0)

1 − aF
q2

m2
B

+ bF

(
q2

m2
B

)2 . (18)

For the values of these parameters for the penguin form factor we obtain aF = 1.08 and
bF = 0.09, where the quoted errors can be attributed to the variation in s0 and M2. As
has already mentioned earlier, the form factor for the B → η transition can be related to
the corresponding B → π transition form factor through SU(3) symmetry. For example,
the value f η

T (q2 = 0) = 0.17 is obtained using SU(3) symmetry seems to be in quite a
good agreement with our prediction of f η

T (q2 = 0). In conclusion, we have calculated the
penguin form factor for the B → ηℓ+ℓ− decay in light cone QCD sum rule method, including
contributions of wave functions up to twist–4 and mass correction of the η meson.
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Figure captions

Fig. (1) The dependence of the form factor f η
T on the Borel parameter M2 at q2 = 0 GeV 2,

5 GeV 2, and 10 GeV 2, at fixed values of the momentum threshold s0 = 35 GeV 2 and
s0 = 40 GeV 2.

Fig. (2) The dependence of the form factor f η
T on the momentum transfer q2 at M2 =

8 GeV 2, 12 GeV 2, and 16 GeV 2, at fixed values of the momentum threshold s0 = 35 GeV 2

and s0 = 40 GeV 2.
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Figure 2:
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