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Introduction

One of the most famous theorems in elementary number theory is the following, first conjec-
tured by Fermat and then proved by Euler:

An odd prime p can be written as p = x2 + y2 where x, y ∈ Z if and only if p ≡ 1 mod 4.

Euler proved this theorem using infinite descent, and he also considered the similiar prob-
lems p = x2 + 2y2, p = x2 + 3y2 and so on. For each of these cases he had to work out
completely new proofs and it took him years until he realized that in fact quadratic residues
were at the heart of the matter. These problems led Euler finally to the discovery of quadratic
reciprocity.

Unfortunately, the methods Euler used to tackle these problems hardly generalize. What
one needs is a more powerful language to formulate the problem: Consider the number field
K = Q(

√
−n) with ring of integers OK . Furthermore, let O be the order O = Z[

√
−n] and

denote the conductor of the order by f := [OK : O]. Then it can be shown that for odd primes
p not dividing f the following are equivalent:

(i) p = x2 + ny2 for some x, y ∈ Z.

(ii) pOK = pp, where p 6= p are prime ideals of OK and p = αOK for some α ∈ O.

Now consider the case n = 1. Then the equivalence above becomes

p = x2 + y2 ⇔ pOK = pp, p 6= p.

But this just says that p splits completely in K, which in turn is equivalent to the Legen-
dre symbol (1

p
) being equal to 1. Using the law of quadratic reciprocity, we deduce that

p = x2 + y2 ⇔ (1
p
) = 1 ⇔ p−1

2
= 2k ⇔ p = 4k + 1.

Unfortunately, if n > 0 is arbitrary, various problems may arise. For instance, the quadratic
number field Q[

√
−n] may have class number greater than 1 and O needs not to be the equal

to the ring of integers in general. To resolve these difficulties, we will introduce ring class fields.
The ring class field of an order O is defined to be the unique abelian extension L/K satisfying:

(i) All ramified primes of L/K divide fOK .

(ii) Gal(L/K) ∼= C(O), where C(O) is the ideal class group of O.
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The main point then will be to show that for odd primes not dividing n we have

p = x2 + ny2 for some x, y ∈ Z ⇔ p splits completely in L.

This gives already a complete, but rather abstract answer to the problem. However, if we
denote the minimal polynomial of a real primitve element of L over K by fn, one can show that
for any odd prime p neither dividing n nor the discriminant of fn, the follwing are equivalent:

(i) p = x2 + ny2 for some x, y ∈ Z.

(ii) The Legendre symbol (−n
p

) is equal to one and the equation fn(x) ≡ 0 mod p has a
solution in Z.

This in fact is the main theorem of the whole thesis, and we will apply it by exploring which
primes can be written as x2 + 14y2. Furthermore, we will show how the developped tools can
be used to make more general statements about representation of prime numbers by quadratic
forms.

In chapter 1 we will give a short introduction to the basic theory of quadratic forms. Chapter
2 will cover orders in imaginary quadratic number fields and we will show how they relate to
quadratic forms. A brief introduction to class field theory will be given in chapter 3. Hav-
ing developped these necessary tools, we will apply them in chapter 4 to give an abstract but
complete solution to the general problem of which primes can be written as x2 + ny2. Finally,
chapter 5 is dedicated to the proof that a primitive positive definite form always represents
infinitely many primes.

I would like to thank Prof. Richard Pink and Patrik Hubschmid for their assistance.

Zurich, November 15, 2008
Simon Hasenfratz
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Chapter 1

Quadratic forms

1.1 Proper equivalence

In this section we shall give a brief introduction to the theory of (integral) quadratic forms, ie.
functions of the form

f(x, y) = ax2 + bxy + cy2, where a, b, c ∈ Z.

We choose a very classical approach here; all results we need are known since the 19th century.
Nevertheless we will be able to relate them to class field theory, which will allow us to prove
in chapter 5 that a primitive positive definite quadratic form always represents infinitely many
primes. First we need some definitions:

Definition 1.1.1 (Primitive form) A quadratic form f(x, y) = ax2 + bxy + cy2 is primitive
if its coefficients a, b, c are relatively prime.

Note that every quadratic form is an integer multiple of a primitive quadratic form. Following
Gauss, we now introduce an equivalence relation on the set of quadratic forms:

Definition 1.1.2 (Proper equivalence) Two quadratic forms f(x, y) and g(x, y) are said to
be properly equivalent if there exist integers p, q, r, s such that

f(x, y) = g(px + qy, rx + sy) and ps − qr = 1. (1.1)

One can check that this really defines an equivalence relation. Note furthermore that condi-
tion (1.1) can be rewritten as

f

(
x
y

)
= g

(
M

(
x
y

))
and M ∈ SL2(Z).

6



1.1. PROPER EQUIVALENCE 7

Now consider the identity

4af(x, y) = (2ax + by)2 − Dy2,

where D = b2 − 4ac is the discriminant. Since we will be interested in quadratic forms which
only take positive integers values, it is natural to make the following definition:

Definition 1.1.3 (Positive definite form) A quadratic form f(x, y) = ax2 + bxy + cy2 is
called positive definite if one of the following equivalent conditions holds:

(i) f(x, y) takes only positive values for (x, y) 6= (0, 0).

(ii) Its discriminant D = b2 − 4ac is negative and the leading term a is positive.

Before we can formulate our first theorem, we need one last definition:

Definition 1.1.4 (Reduced form) A primitive positive definite form ax2+bxy+cy2 is called
reduced if its coefficients satisfy:

(i) |b| ≤ a ≤ c

(ii) (|b| = a or a = c) ⇒ b ≥ 0.

Note also that a and c are always positive, since the form is positive definite. Now we can state
our first result:

Theorem 1.1.5 Every primitive positive definite form is properly equivalent to a unique re-
duced form.

Proof: Theorem 2.8 in [1]. �

A straightforward calculation shows that properly equivalent forms have the same discriminant.
Therefore Theorem 1.1.5 tells us that the number of equivalence classes of primitive positive
definite forms of a given discriminant D < 0 is equal to the number of reduced forms of
discriminant D. We shall refer to this number as h(D).

Our aim is now to endow the set C(D) of classes of primitive positive definite forms of discrim-
inant D < 0 with the structure of a finite abelian group. While we postpone the construction
of the group structure to the next section, we will now prove the finiteness of h(D):

Lemma 1.1.6 Let D < 0 and h(D) be the number of reduced forms of discriminant D < 0.
Then h(D) is finite.
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Proof: Suppose ax2 + bxy + cy2 is a reduced form of discriminant D < 0. Then it follows by
definition that

−D = 4ac − b2 ≥ 4a2 − a2 = 3a2

and thus
a ≤

√
−D/3.

Hence there are only finitely many choices for a. Since |b| ≤ a and c = b2−D
4a

, the same is true
for b and c. �

1.2 Form class group

To define the Dirichlet composition of two quadratic forms, which will induce the group
structure on C(D) later on, we first need a technical lemma:

Lemma 1.2.1 Suppose f(x, y) = a1x
2 + b1xy + c1y

2 and g(x, y) = a2x
2 + b2xy + c2y

2 are forms
of discriminant D that satisfy gcd(a1, a2) = 1. Then there is a unique integer B modulo 2a1a2

such that

(i) B ≡ b1 mod 2a1

(ii) B ≡ b2 mod 2a2

(iii) B2 ≡ D mod 4a1a2.

Proof: Lemma 3.2 in [1]. �

Now we can make the following definition:

Definition 1.2.2 (Dirichlet composition) Let f(x, y) = a1x
2 + b1xy + c1y

2 and g(x, y) =
a2x

2 + b2xy + c2y
2 be two primite positive definite forms of discriminant D < 0 satisfying

gcd(a1, a2) = 1. Then the Dirichlet composition of f(x, y) and g(x, y) is defined to be the form

F (x, y) = a1a2x
2 + 2Bxy +

B2 − D

4a1a2

y2, (1.2)

where B is the integer determined by Lemma 1.2.1.

One now can show that F is again primitive and positive definite of discriminant D (see [1],
p.49). As the following theorem shows, C(D) becomes a group via [f(x, y)]·[g(x, y)] := [F (x, y)],
called the form class group.

Theorem 1.2.3 Let D < 0 and let C(D) be the set of classes of primitive positive definite
forms of discriminant D. Then Dirichlet composition induces a group structure on C(D),
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which makes C(D) into a finite abelian group of order h(D). In particular, the identity element
of C(D) is the class containing

x2 − D

4
y2 if D ≡ 0 mod 4

x2 + xy +
1 − D

4
y2 if D ≡ 1 mod 4,

whereas the inverse of the class containing ax2 + bxy + cy2 is given by the opposite class, i.e.
the class containing ax2 − bxy + cy2.

Sketch of proof: We only give the main ideas here; a more complete proof can be found in [1],
p.51. So let f(x, y) = a1x

2 + b1xy + c1y
2 and g(x, y) be forms of the given type. Then one

can show that g(x, y) is properly equivalent to a form h(x, y) = a2x
2 + b2xy + c2y

2 satisfying
gcd(a1, a2) = 1, and therefore Dirichlet composition is defined for any pair of classes in C(D).
Now one must check that this operation is indeed well-defined on the level of classes, and that
we get a group structure out of this. This can be done directly by using the definition of
Dirichlet composition, but the argument gets much easier if we use ideal class groups as shown
in Theorem 2.2.3. Finally, to show that the identity and the inverse are of the given form, one
has to note that B = b1 fulfills the conditions of Lemma 1.2.1 and use the formula (1.2). �



Chapter 2

Orders in quadratic number fields

2.1 Definitions and motivation

Definition 2.1.1 (Order) An order O in a number field K is a subset O ⊂ K such that

(i) O is a subring of K.

(ii) O is a finitely generated Z-module.

(iii) O contains a Q-basis of K.

Equivalently, one can define an order to be a subring of K, which is finitely generated as an
abelian group and has maximal rank n = [K : Q]. For instance, the ring of integers OK in
number field K is an order. It is even a free Z-module of rank n = [K : Q].
Recall from the theory of integral ring extensions that any ring R ⊇ Z which is finitely generated
as a Z-module is integral over Z (see [5], p.118 and p.122). Therefore, for any order O we find
that O ⊂ OK , because OK is the integral closure of Z in K. Hence OK is the maximal order
in K.

Having introduced the general notion of an order, one can carry over many things that we know
already about the maximal order OK . As an example, we can generalize the well-known fact
that in a quadratic number field of discriminant dK , the ring of integers can be written as

OK = Z ⊕ Z · wK , where wK =
dK +

√
dK

2
.

For this purpose, let f := [OK : O] be the index of O in OK . Since O and OK are both free
Z-modules of rank 2, f is finite and called the conductor of the order O. It is now easy to
show that O = Z⊕Z · fwK , and hence we have a generalization of the case f = 1 (consult [1],
p.133 for details).

10
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Using this integral basis, we can calculate an important invariant of O: As for the maximal
order OK ⊂ K in a quadratic number field K, the discriminant of any order O ⊂ K of
conductor f is defined to be

D =

(
det

(
1 fwK

1 fwK

))2

=

(
det

(
1 f

2
(dK +

√
dK)

1 f
2
(dK −

√
dK)

))2

= f 2dK .

Therefore, an order in a quadratic number field is uniquely determined by its discriminant.
The most important case for us is the order Z[

√
−n] ⊂ Q[

√
−n], where n ∈ N. Here we can

choose {1,
√
−n} as an integral basis, and therefore its discriminant can be computed to be

D = −4n. Alltogether we get −4n = f 2dK , which shall be useful later on.

Now let O be an arbitrary order. As in the case where O = OK , one can show that O is
noetherian and that all ideals have finite index in O, called the Norm of the ideal. Therefore
prime ideals are maximal. Nevertheless, O is not a Dedekind domain in general, since O is
obviously not integrally closed in K when f > 1.

Our aim for the next section is now to develop a new ideal theory for orders in quadratic
fields. To do this, we will exploit a rather astonishing connection between orders in imaginary
quadratic fields and quadratic forms.

2.2 Orders and quadratic forms

The main idea is to generalize the notion of the ideal class group of OK ⊂ K to arbitrary orders
O ⊂ K in quadratic number fields. As in the case when O is the maximal order, a fractional
ideal of O is defined to be a non-zero subset of K which is a finitely generated O-module. But
to introduce the ideal class group C(O), we first need to restrict ourselves a certain class of
fractional O-ideals:

Definition 2.2.1 (Proper fractional ideal) A fractional O-ideal a is called proper if O =
{β ∈ K | βa ⊂ a}.

Note that “⊂” always holds, but “⊃” does not have to hold if O is not the maximal order:
For example, consider the order O = Z[

√
−3] in K = Q[

√
−3]. Then the O-ideal a generated

by 2 and 1 +
√
−3 satisifies

{β ∈ K | βa ⊂ a} = OK ,

but O 6= OK .

Now we can state the following result:

Lemma 2.2.2 Let O ⊂ K be an order in a quadratic field K, and a ⊂ K be a fractional
O-ideal. Then a is proper if and only if a is invertible, i.e. if there is a fractional ideal b ⊂ K
such that ab = O.
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Proof: Prop. 7.4 in [1]. �

This lemma implies especially that the set of proper fractional O-ideals is a group under multi-
plication, which will be called I(O). If P (O) denotes the subgroup of principal fractional ideals
lying in I(O), one can form the ideal class group

C(O) := I(O)/P (O)

of the order O. Using geometric methods as in the case where O is the maximal order, one can
prove that C(O) is a finite abelian group. But we choose a different approach here, which only
uses basic facts about quadratic forms, and leads to a broader characterization of C(O). Recall
from Chapter 1 that C(D) is the set of (proper) equivalence classes of primitive positive definite
quadratic forms of discriminant D, endowed with a group structure by Dirichlet composition.
Then we can state the following beautiful result:

Theorem 2.2.3 Let O be the order of discriminant D in an imaginary quadratic number field
K.

(i) If f(x, y) = ax2 + bxy + cy2 is a primitive positive definite form of discriminant D, then

spanZ{a, −b+
√

D
2

} is a proper ideal of O.

(ii) The map f(x, y) 7→ spanZ{a, −b+
√

D
2

} induces an isomorphism C(D) ∼= C(O).

(iii) A positive integer m is represented by a primitive positive definite form f(x, y) if and
only if m is the norm N(a) of some ideal a in the corresponding ideal class in C(O).

Proof: Theorem 7.7 in [1] �

Remark: Theorem 2.2.3 does not hold for real quadratic number fields, see [1], p.142 for a
counterexample.

Corollary 2.2.4 Let O be an order in an imaginary quadratic number field, and let n ∈ N be
a positive integer. Then every ideal class in C(O) contains a proper O-ideal whose norm is
relatively prime to n.

Sketch of proof: One can show that for any given primitive positive definite form f(x, y) and
any given n ∈ N, the form f(x, y) represents integers relatively prime to n (see [1], p.35). The
result then follows immediately from Theorem 2.2.3, (iii). �

2.3 From orders to class field theory

Now let a be a non-zero ideal in an order O of conductor f . Then a is said to be prime to f
whenever

a + fO = O
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holds. It is straightforward to show that an O-ideal a is prime to f if and only if its norm
N(a) is prime to f and that O-ideals prime to f are proper. For a proof of these basic results,
consult [1], Lemma 7.18. Note that these two facts together imply that the O-ideals prime to f
lie in I(O) and are closed under multiplication. The subgroup of I(O) they generate is denoted
by I(O, f). Furthermore, we denote by P (O, f) be the subgroup of I(O, f) generated by the
principal ideals prime to f . As the following lemma shows, the quotient of these two groups is
again the ideal class group:

Lemma 2.3.1 There is a natural isomorphism I(O, f)/P (O, f) ∼= I(O)/P (O) = C(O) in-
duced by the inclusion.

Sketch of proof: Consider the natural map I(O, f) → C(O). Its kernel is I(O, f) ∩ P (O),
which can easily be shown to be equal to P (O, f) (see [1], p.144). The proof now reduces to
showing that this map is in fact surjective. But this follows directly from Corollary 2.2.4. �

To make our considerations so far available to class field theory, we need to translate the
developed tools into the language of ideals of the maximal order OK instead of O. For this
purpose, let IK be the group of fractional OK-ideals and let IK(f) denote the subgroup of IK

generated by the OK-ideals prime to f . Then one can prove the following result:

Lemma 2.3.2 Let O be an order of conductor f in an imaginary quadratic number field K.
The mapping a 7→ a∩O is a bijection between the OK-ideals prime to f and the O-ideals prime
to f , and its inverse is given by a 7→ aOK. Furthermore, this bijection preserves the norm of
the ideals. By extension, we get an isomorphism IK(f) ∼= I(O, f).

Sketch of proof: Let a be an OK-ideal prime to f . The canonical projection OK → OK/a
induces an injection ι : O/(a ∩ O) →֒ OK/a, and since N(a) is prime to f , so is N(a ∩ O).
Therefore a∩O is an O-ideal prime to f . Now a is prime to f , and hence multiplication by f is
an automorphism of OK/a. But fOK ⊂ O, so that ι is surjective and N(O/(a∩O)) = N(OK/a)
follows. Similarly, one can show that if a is an O-ideal prime to f , then aOK is an OK-ideal
which is also prime to f and of the same norm.
The next step is to prove that these maps are in fact inverse, ie. that aOK ∩ O = a if a

is an O-ideal prime to f and (a ∩ O)OK = a if a is an OK-ideal prime to f . This tedious
calculations will be omitted here, but the interested reader can find them in [1], Prop.7.20.
To finish the proof we have to show the multiplicativity of this map, for we want to extend it
to an isomorphism IK(f) ∼= I(O, f). But the inverse map a 7→ aOK obviously does respect
multiplication, and therefore we are finished. �

Now recall that I(O, f)/P (O, f) ∼= C(O). The isomorphism from Lemma 2.3.2 tells us now
that there is a subgroup PK,Z(f) ⊂ IK(f) such that

IK(f)/PK,Z(f) ∼= C(O).

The following result tells us explicitly how PK,Z(f) looks like:
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Lemma 2.3.3 PK,Z(f) is the subgroup of IK(f) generated by the principal ideals αOK, where
α ∈ OK satisfies α ≡ a mod fOK for some integer a relatively prime to f .

Sketch of proof: The main point is to show the following equivalence: For α ∈ OK we have

α ≡ a mod fOK for some a ∈ Z satisfying gcd(a, f) = 1 ⇔ α ∈ O, gcd(N(α), f) = 1. (2.1)

The proof of this can be found in [1], Prop 7.22. Now P (O, f) is generated by the ideals αO,
where α ∈ O and gcd(N(α), f) = 1. Using the inverse map of Lemma 2.3.2, we see that
PK,Z(f) is generated by the ideals αOK , where α ∈ OK satisfies the left hand side of (2.1). �

To sum up, we found natural isomorphisms

C(O) ∼= I(O, f)/P (O, f) ∼= IK(f)/PK,Z(f), (2.2)

which will be of heavy use in the next sections.



Chapter 3

Class field theory

3.1 Artin symbol

Lemma 3.1.1 Let L/K be a finite Galois extension, p ⊂ OK a prime which is unramified in
L and P ⊂ OL be a prime lying above p, i.e. satisfying P ∩ OK = p. Then there is a unique
element σ ∈ Gal(L/K) such that

∀α ∈ OL : σ(α) ≡ αN(p) mod P.

Proof: Lemma 5.19 in [1]. �

Definition 3.1.2 (Artin symbol) The unique element from Lemma 3.1.1 is denoted by
(

L/K
P

)

and called the Artin symbol of the extension L/K at P.

We say that a prime p ⊂ OK splits completely in a Galois extension L/K if the ramification
index e(P|p) and the inertial degree f(P|p) both are equal to 1 for all primes P satisfying
P∩OK = p. In this case, there are exactly [L : K] primes lying above p. The following Lemma
relates this property to the Artin symbol just defined:

Lemma 3.1.3 An unramified prime p ∈ OK splits completely in a Galois extension L if and
only if (

L/K

P

)
= Id

for some prime P lying over p.

Proof: To prove this lemma, we first need to review some standard facts about ramification.
The decomposition group of P is defined by

DP := {σ ∈ Gal(L/K) | σ(P) = P}

15
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whereas the inertia group of P is given by

IP := {σ ∈ Gal(L/K) | ∀α ∈ OL : σ(α) ≡ α mod P}.

A first result is that Iβ ⊂ Dβ and that any σ ∈ Dβ induces an automorphism σ of OL/P,
which is given by σ(α + P) = σ(α) + P and therefore is the identity on OK/p. Hence we have

a homomorphism Dβ → G̃ := Gal(OL/P /OK/p). It is easy to show that this homomorphism
is surjective with kernel Iβ, and that |Iβ| is equal to the ramification index of p in P, i.e. we

have |Iβ| = e(P|p). In particular, it follows Dβ/Iβ
∼= G̃. Consult e.g. [2], Chapter I.5 for a

proof of these standard facts.

Now we can proceed with the actual proof. Since p is unramified in L, we have |Iβ| = 1 and

therefore Dβ
∼= G̃. But we know from Galois theory of finite fields that G̃ is a cyclic group

of order [OL/P : OK/p] = f(P|p). Moreover, we know that G̃ is generated by the Frobenius
automorphism x 7→ xN(p), where N(p) = [OK : p].

Lemma 3.1.1 shows that the Artin Symbol maps to the Frobenius element under Dβ → G̃, and
therefore its order is equal to f(P|p). Now p splits completely in L iff e(P|p) = f(P|p) = 1. For

unramified primes p, this reduces to f(P|p) = 1, which in turn is equivalent to ord
(

L/K
P

)
= 1,

i.e.
(

L/K
P

)
= Id. �

Now we want to extend our definition of the Artin symbol to get a dependence on the underlying
prime p. In order to do this, we need the following basic properties:

Lemma 3.1.4 Let p ⊂ OK be a prime of a number field K, and let L/K be a Galois extension.
Then we have:

(i) Gal(L/K) acts transitively on the primes lying above p.

(ii) For any σ ∈ Gal(L/K), one has
(

L/K
σ(P)

)
= σ

(
L/K

P

)
σ−1.

Proof: See [2], p.12 and p.198. �

Lemma 3.1.4 shows that for any prime P lying above p, the corresponding Artin symbols lie
in the same conjugacy class of Gal(L/K). In fact, they form a complete conjugacy class of
Gal(L/K). This leads to the following definition:

Definition 3.1.5 Let L/K be a Galois extension, p be a prime of K and P be any prime of

L lying above p. Then we can define the Artin symbol
(

L/K
p

)
as follows:

(i) If L/K is abelian, then
(

L/K
p

)
:=

(
L/K

P

)
.

(ii) If L/K is non-abelian, then
(

L/K
p

)
:= 〈

(
L/K

P

)
〉, where 〈·〉 denotes the conjugacy class

of an element in Gal(L/K).
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3.2 Existence Theorem

Given a number field K, prime ideals of OK are often called finite primes, whereas infinite
primes are given by the embeddings K →֒ C. More precisely, a real infinite prime is an
embedding σ : K →֒ R, while a complex infinite prime is a pair of complex conjugate
embeddings σ, σ : K →֒ C.

Now we can introduce the notion of a modulus in a number field K:

Definition 3.2.1 (Modulus) A modulus m is a formal product m = m0m∞, where m0 is an
OK-ideal and m∞ is a product of real infinite primes of K.

Remark: If K = Q[
√
−n] for some integer n ∈ N, the notions of moduli and OK-ideals

coincide.

Given a modulus m, we define Ik(m) ⊂ Ik to be the subgroup of Ik generated by the prime
ideals p not dividing m0. In other words, Ik(m) is the group of all fractional OK-ideals relatively
prime to m0.

Furthermore, let PK,1(m) ⊂ Ik(m) be the subgroup of Ik(m) generated by the principal ideals
αOK , where α ∈ OK obeys

α ≡ 1 mod m0 and σ(α) > 0 for all σ dividing m∞.

The subgroups H of Ik(m) containing PK,1(m), i.e. satisfying

PK,1(m) ⊂ H ⊂ Ik(m)

are called congruence subgroups. If H is a congruence subgroup, then the quotient Ik(m)/H
is called a generalized ideal class group for m. It can be shown that this quotient is in fact
a finite abelian group. Moreover, as Theorem 3.2.4 below will show, this group can be realized
as the Galois group of some finite abelian extension L/K.

To justify the name, consider the case m = OK . Then, using PK,1(m) = PK and IK(m) = IK ,
it follows immediately that the ideal class group C(OK) = IK/PK is in fact a generalized ideal
class group.

Now we want to extend the notion of ramification to infinite primes:

Definition 3.2.2 (Ramification for infinite primes) Given an extension L/K, an infinite
prime σ of K ramifies in L if σ is real but has an extension to L which is complex.

It is clear by definition that there are only finitely many infinite primes that ramify in a given
extension L/K. Less obvious is the fact that also only finitely many finite primes of K ramify in
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L. More precisely, the ramified finite primes of L/K are exactly those dividing the discriminant
ideal ∆(OL/OK) (see [3], p.213).

Now let m be a modulus divisible by all (finite or infinite) ramified primes of an abelian extension

L/K. If p ⊂ OK is a prime ideal not dividing m, then p is unramified in L and therefore (L/K
P

)
is defined for p. More generally, if a ∈ Ik is any fractional ideal whose prime factors do not
divide m, say a =

∏k
i=1 pri

i , we can define the Artin symbol of a to be

(
L/K

a

)
:=

k∏

i=1

(
L/K

p

)ri

.

Therefore, we can extend the Artin symbol to give us a group homomorphism

Φm : IK(m) → Gal(L/K)

called the Artin map, which is omnipresent in class field theory. A first characterization is
given by the following theorem:

Theorem 3.2.3 Let m be a modulus divisible by all (finite or infinite) ramified primes of an
abelian extension L/K. Then the Artin map Φm is surjective.

Proof: See [4], p.197. �

To introduce the notion of a ring class field in the next section, we need the famous existence
theorem of class field theory:

Theorem 3.2.4 (Existence Theorem) Let m be a modulus of K and H be a congruence
subgroup for m, i.e. PK,1(m) ⊂ H ⊂ IK(m). Then there is a unique abelian extension L/K
such that

(i) All (finite or infinite) primes of K that ramify in L divide m, i.e. we can define the
Artin map Φm : Ik(m) → Gal(L/K).

(ii) ker(Φm) = H.

Proof: See [4], p.209. �

Remarks:

(i) Theorems 3.2.3 and 3.2.4 together imply, that there is an abelian extension L/K satis-
fying

Ik(m)/H ∼= Gal(L/K).

In particular, every generalized ideal class group is isomorphic to the Galois group of
some abelian extension L/K.



3.3. RING CLASS FIELDS 19

(ii) The converse is also true (this is the so-called Artin reciprocity Theorem, see [4], p.197):
If L/K is an abelian extension, then there is a modulus m divisible by all (finite or
infinite) ramified primes of K such that

PK,1(m) ⊂ ker(Φm) ⊂ IK(m)

and therefore Gal(L/K) ∼= Ik(m)/ ker(Φm) is isomorphic to a generalized ideal class
group for m.

3.3 Ring class fields

Let O ⊂ K be an order of conductor f in an imaginary quadratic number field. In the previous
sections we have seen that

C(O) = I(O, f)/P (O, f) ∼= IK(f)/PK,Z(f).

Until this point, the subgroup PK,Z(f) ⊂ IK(f) seemed like a rather unnatural construction.
Therefore it is nice to have the following lemma:

Lemma 3.3.1 PK,Z(f) is a congruence subgroup for the modulus fOK, i.e. we have

PK,1(fOK) ⊂ PK,Z(f) ⊂ IK(fOK).

Proof: By definition, we find that PK,1(fOK) is generated by the principal ideals

{αOK | α ∈ OK , α ≡ 1 mod fOK}.

Furthermore, Lemma 2.3.3 shows that PK,Z is generated by the principal ideals

{αOK | α ∈ OK , α ≡ a mod fOK for some a ∈ Z satisying gcd (a, f) = 1}.

The first inclusion is therefore obvious.
Again by definition, IK(fOK) is generated by the prime ideals not dividing fOK . Recall from
chapter 2 that IK(f) is the subgroup of IK generated by the OK-ideals prime to f . Since we
know already that PK,Z ⊂ IK(f), it suffices to show that IK(f) ⊂ IK(fOK). Now let a be an
OK-ideal prime to f , i.e. a + fOK = OK . If p is any prime divisor of a, it follows directly that
p does not divide fOK , because otherwise one would have p|OK and hence a contradiction.
Therefore we find a ∈ IK(fOK) and the lemma is proved. �

The first remark after Theorem 3.2.4 tells us now, that there is a unique abelian extension
L/K, all of whose ramified primes divide fOK , such that

C(O) ∼= IK(f)/PK,Z(f) ∼= Gal(L/K). (3.1)

This leads to the following definition:
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Definition 3.3.2 (Ring class field) Let O be an order of conductor f in a number field K.
Then the ring class field of O is defined to be the unique abelian extension L/K satisfying:

(i) All ramified primes of L/K divide fOK.

(ii) Gal(L/K) ∼= C(O), where C(O) is the ideal class group of O.

In the case where K is imaginary quadratic, one can show that L is always galois over Q. What
one has to verify is that L is invariant under complex conjugation (see [1], p.181).
Furthermore, the Galois group Gal(L/Q) relates to Gal(L/K) in the follwing way:

Lemma 3.3.3 Let L be the ring class field of an order in an imaginary quadratic field K.
Then L/Q is galois with Galois group

Gal(L/Q) ∼= Gal(L/K) ⋊ϕ Z/2Z,

where ϕ(1)(σ) = σ−1 for σ ∈ Gal(L/K).

Proof: Lemma 9.3 in [1]. �

3.4 Cebotarev density Theorem

There is one last Theorem that we shall require for our result about primes represented by
quadratic forms in chapter 5. It is the famous Cebotarev density Theorem, which we will state
without proof. But first we need to introduce the notion of Dirichlet density.

Definition 3.4.1 (Dirichlet density) Let K be a number field, and PK denote the set of
prime ideals of OK. For any subset S ⊂ PK we define the Dirichlet density of S to be

δ(S) = lim
s→1+

∑
p∈S N(p)−s

− log(s − 1)
,

provided the limit exists.

The Dirichlet density has many interesting properties and applications. For our purposes we
will need the following

Lemma 3.4.2 The Dirichlet density has the following properties:

(i) If S is finite, then δ(S) = 0.

(ii) If δ(S) exists and T differs from S by finitely many elements, then δ(T ) = δ(S).
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Proof: The proof of (i) can be found in [4], p.160. The implication (i)⇒(ii) is obvoius. �

Now we state the Theorem of Cebotarev, which provides some very useful information about
the Artin map:

Theorem 3.4.3 (Cebotarev density Theorem) Let L/K be galois, and let 〈σ〉 be the con-
jugacy class of an element σ ∈ Gal(L/K). Then the set

S = {p ∈ PK | p is unramified in L and

(
L/K

p

)
= 〈σ〉}

has Dirichlet density

δ(S) =
|〈σ〉|

|Gal(L/K)| =
|〈σ〉|

[L : K]
.

Proof: Theorem 10, Chapter VIII in [2]. �



Chapter 4

Primes of the form x2 + ny2

4.1 A first characterization

After all these preparations, we are finally in the position to give a first characterization of the
primes which can be written as x2 + ny2 for fixed n ∈ N and x, y ∈ Z:

Theorem 4.1.1 Let n > 0 be an integer and L be the ring class field of the order O = Z[
√
−n]

in K = Q[
√
−n]. If p > 2 is a prime not dividing n, then

p = x2 + ny2 for some x, y ∈ Z ⇔ p splits completely in L.

Proof: We will divide the proof into several little lemmas, each of which is easy to prove.
Throughout we will assume that p is an odd prime not dividing n, and O will denote the order
Z[
√
−n] ⊂ Q[

√
−n], whereas OK stands for the full ring of integers in K. As usual, we set the

conductor f equal to f = [OK : O].

Lemma 4.1.2 Let n > 0 be an integer and K = Q[
√
−n]. Then the following are equivalent:

(i) p = x2 + ny2 for some x, y ∈ Z.

(ii) pOK = pp, where p 6= p are prime ideals of OK and p = αOK for some α ∈ O.

Proof: Let us first assume (i). Then we can find x, y ∈ Z such that p = x2 + ny2 = (x +√
−ny)(x−

√
−ny). If we set p = (x +

√
−ny)OK , then it follows that directly that pOK = pp

with p = αOK and α = x +
√
−ny ∈ O. This already has to be the prime factorization of

pOK , since by ramification theory there are at most 2 primes in OK lying above p. It remains
to prove that p 6= p, or in other words, that p is unramified in K. It is a standard fact that
a prime p ∈ Z ramifies in a quadratic number field K if and only if p divides its discriminant
dK (see [1], p.105). Now recall from chapter 2 the relation −4n = f 2dK . Since p does not

22
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divide n and p > 2 by assumption, it follows that p does not divide dK either, and therefore p
is unramified in K.
Now assume that (ii) holds. Then we can find x, y ∈ Z such that pOK = (x +

√
−ny)(x −√

−ny)OK = (x2 + ny2)OK . This in turn implies that p and x2 + ny2 are associated elements
in the ring OK . But the only possible units in OK are {±1,±i,±ω,±ω2}, where ω = exp(2πi

3
).

Therefore it follows that p = x2 + ny2. �

Now we want to reformulate the second condition from Lemma 4.1.2.

Lemma 4.1.3 Let p be a prime ideal in OK lying above p and satisfying p 6= p. Then we have:

p = αOK for some α ∈ O ⇔ p ∈ PK,Z(f).

Proof: Recall from the proof of Lemma 2.3.3 that PK,Z(f) is the subgroup of IK(f) generated
by the principal ideals αOK , where α ∈ O satisfies gcd(N(α), f) = 1. Therefore “⇐” follows
directly be definition.
To see “⇒”, let p = αOK for some α ∈ O. Note first that N(p) | N(pOK). Since p 6= p, this
implies N(p) = p. But we saw already that p does not divide f 2dK , so in particular p does not
divide f . Using N(p) = N(α), we find that gcd(N(α), f) = 1 as desired. �

The next step is to express this result in terms of the ring class field L of O.

Lemma 4.1.4 Let p be a prime ideal in OK and L be the ring class field of O. Then we have:

p ∈ PK,Z(f) ⇔ p splits completely in L.

Proof: By definition of the ring class field, the Artin map Φ induces an isomorphism IK(f)/PK,Z(f) ∼=
Gal(L/K). Therefore p ∈ PK,Z(f) if and only if p ∈ ker Φ, or equivalently, iff

(
L/K

p

)
= Id.

Using Lemma 3.1.3 we get the desired result. �

So far we have shown that the following statements are equivalent:

(i) p = x2 + ny2 for some x, y ∈ Z.

(ii) pOK = pp, where p 6= p are prime ideals and p splits completely in L.

The last step is now to show that this second condition is in fact equivalent to the situation where
p splits completely in L. We already know from Lemma 3.3.3 that L/Q is galois. Therefore it
suffices to state the following general lemma:

Lemma 4.1.5 Let K ⊂ M ⊂ L be number fields, and let L and M be galois over K. Then for
any prime p ⊂ OK, the following are equivalent:

(i) p ⊂ OK splits completely in L.
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(ii) p splits completely in M and some prime of OM above p splits completely in L.

Sketch of proof: This follows directly from the fact that in a Galois extension L/K, all primes
of OL containing p ⊂ OK have the same ramification index and the same inertial degree. �

4.2 Main theorem

In the last section, we found a theoretic answer to the question which primes can be written as
x2 + ny2. The next step is now to translate the criterion given in Theorem 4.1.1 into a more
elementary language.

For this purpose, we need some more information about how the primes P lying above some
prime ideal p ⊂ OK look like. In the case of finite Galois extensions, we can state the following
useful result:

Lemma 4.2.1 Let L/K be a finite Galois extension, where L = K(α) for some α ∈ OL.
Furthermore, let f(x) ∈ OK [X] be the minimal polynomial of α over K, and let p be a prime
in OK such that f(x) is separable mod p. Write f(x) as f(x) ≡ f1(x) · ... · fg(x) mod p, where
the fi’s are distinct and irreducible mod p. Then p is unramified in L and the primes above p

are exactly Pi = pOL + fi(α)OL. Furthermore, all of the fi have the same degree, which is the
inertial degree f .

Proof: Proposition 5.11 in [1]. �

Corollary 4.2.2 Let L/K be a finite Galois extension, where L = K(α) for some α ∈ OL.
Furthermore, let f(x) ∈ OK [X] be the minimal polynomial of α over K, and let p be a prime
in OK such that f(x) is separable mod p. Then we find:

p splits completely in L ⇔ f(x) ≡ 0 mod p has a solution in OK .

Proof: We know already from Lemma 4.2.1 that p is unramified, i.e. the ramification index e
is 1. The lemma tells us also that the inertial degree f is equal to 1 if and only if some fi has
degree 1, i.e. is linear. But this in turn is equivalent to f having a root mod p lying in OK . �

From now on, let L be the ring class field of the order O = Z[
√
−n] in the imaginary quadratic

field K = Q[
√
−n]. Then we can state the following lemma:

Lemma 4.2.3 There is a real algebraic integer α such that L = K(α). Its minimal polynomial
f(x) over K has integer coefficients, i.e. f(x) ∈ Z[X].
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Proof: Proposition 5.29 in [1]. �

The last result we will need is the following lemma, which gives an elementary criterion for
when a prime p ∈ Z splits completely in L.

Lemma 4.2.4 Given α as in Lemma 4.2.3, let f(x) ∈ Z[X] be its minimal polynomial over
K. If p ∈ Z is a prime not dividing the discriminant of f , the following are equivalent:

(i) p splits completely in L.

(ii) The Legendre symbol
(

dK

p

)
is equal to one and the equation f(x) ≡ 0 mod p has a

solution in Z.

Proof: We know from the proof of Theorem 4.2.5 that the following are equivalent:

(i) p splits completely in L

(ii) pOK = pp, where p 6= p are prime ideals and p splits completely in L.

Now pOK = pp, where p 6= p is equivalent to p splitting in K, and this in turn happens only if(
dK

p

)
= 1 (see [1], p.105). So the lemma is proved once we showed that

p splits completely in L ⇔ f(x) ≡ 0 mod p has a solution in Z. (4.1)

Note that both statements in the lemma imply that p splits completely in K. Therefore we
may assume that

Z/pZ ∼= OK/p. (4.2)

Furthermore, since p does divide the discriminant of f , we find that f(x) is separable modulo
p, or in other words, separable over Z/pZ. Using (4.2) we see that f is also separable mod p,
and therefore Corollary 4.2.2 yields

p splits completely in L ⇔ f(x) ≡ 0 mod p has a solution in OK .

Using again (4.2), we get the desired equivalence of (4.1). �

Finally, we can state our main result:

Theorem 4.2.5 (Main Theorem) Let n > 0 be an integer and L be the ring class field of
the order Z[

√
−n] ⊂ K = Q[

√
−n]. Furthermore, let α be a primitive element of L over K

such that its minimal polynomial fn(x) over K lies in Z[X]. Now assume that p is an odd prime
which does neither divide n nor the discriminant of fn(x). Then the following are equivalent:

(i) p = x2 + ny2 for some x, y ∈ Z.
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(ii) The Legendre symbol
(

−n
p

)
is equal to one and the equation fn(x) ≡ 0 mod p has a

solution in Z.

Proof: Using the identity
(

dK

p

)
=

(
−n
p

)
, this follows directly from Lemma 4.2.4 and Theo-

rem 4.1.1. �

Remarks:

(i) By definition of the ring class field, we find that deg fn = [L : K] = |Gal(L/K)| =
|C(O)|.

(ii) Note that the conditions of Theorem 4.2.5 exclude only finitely many primes p. There-
fore, for any fixed n > 0, the Theorem tells us for almost all prime numbers, whether
they can be written as x2 + ny2 or not. Once we have fn, it is easy to calculate the

Legendre symbol
(

−n
p

)
(by using the Gauss reciprocity law) and to check (only finitely

many possibilities) if fn has a root mod p.
So the main problem is how to find fn. If we want to give an explicit answer to the
problem in this section, we therefore have to know how to find primitive elements of ring
class fields. This can be done by using methods of complex conjugation, but unfortu-
nately this is far beyond the reach of this thesis. For a complete treatment of this issue,
consult [1], chapter 3.

(iii) There is a stronger version of Theorem 4.2.5, which can be proved with a little more work
(see [1], p.183). Namely, if fn is a monic integer polynomial of degree |C(O)|, for which
the equivalence of the main theorem holds, then fn has to be the minimal polynomial
of a primitive element of the ring class field L of O. Hence knowing fn is equivalent to
knowing the ring class field of Z[

√
−n].

4.3 An example: n = −14

To give a numerical example of the theory just developed, consider the case n = −14. Since
−14 ≡ 2 mod 4, the order Z[

√
−14] ⊂ Q[

√
−14] is in fact the maximal order. In this case,

the ring class field L of Z[
√
−14] is called the Hilbert class field of Q[

√
−14]. It can be

characterized as follows:

Theorem 4.3.1 Let K be a number field and L be its Hilbert class field, i.e. the ring class
field of the order OK ⊂ K. Then L is the maximal unramified abelian extension of K.

Proof: Theorem 8.10 in [1]. �

Returning to our numerical example, it can be shown by elementary means that the Hilbert

class field of K = Q[
√
−14] is L = K(α), where α =

√
2
√

2 − 1. For this purpose, note that
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the class number of K is 4, and therefore it suffices to show that L/K is an unramified abelian
extension of degree 4. The only tricky part is to show that L/K is indeed unramified; con-
sult [1], p.114 for details.

Note that the minimal polynomial of α equals to f14(x) = (x2 + 1)2 + 8. The discriminant of
f14(x) can be shown to be equal to −7 ·214. Therefore, Theorem 4.2.5 yields us to the following
result:

Corollary 4.3.2 If p 6= 7 is an odd prime, then

p = x2 + ny2 ⇔
(−14

p

)
= 1 and (x2 + 1)2 ≡ 8 mod p has a solution in Z.

Proof: �



Chapter 5

Primitive positive definite forms

5.1 Representation of prime numbers

The aim of this chapter is to show that a primitive positive definite form always represents
infintely many prime numbers. This result was first stated by Dirichlet in 1840, but he was
only able to prove it for a restricted class of discriminants. The first complete proof was given
by Weber in 1882. The proof we will give below uses class field theory and the Cebotarev
density theorem.

Theorem 5.1.1 Let ax2 + bxy + cy2 be a primitive positive definite quadratic form of discrim-
inant D < 0, and let S be the set of primes represented by this form, i.e.

S = {p prime | p = ax2 + bxy + cy2 for some x, y ∈ Z}.

Then the Dirchlet density δ(S) exists and is positive, and hence ax2 + bxy + cy2 represents
infintely many prime numbers.

Proof: Let K = Q(
√

D) and let O ⊂ K be the order of discriminant D. The first step is to
rewrite the set S in a suitable manner, so that we can apply class field theory. Consider the
form class [ax2 + bxy + cy2] ∈ C(D). By Theorem 2.2.3 (ii), this corresponds to an ideal class
[a ] ∈ C(O) for some proper O-ideal a. Then Theorem 2.2.3 (iii) implies that we can rewrite S
as

S = {p prime | p = N(b) for some b ∈ [a ]}. (5.1)

By Corollary 2.2.4, we may assume that a is prime to the conductor f . In addition, equa-
tion (2.2) tells us that b ∈ [a ] ∈ C(O) corresponds to bOK ∈ [aOK ] ∈ IK(f)/PK,Z(f).
From now on we will only consider prime numbers p not dividing f . Furthermore we introduce
the following notation: if S and T are sets, we will write S =′ T whenever S and T differ only
by finitely many elements. Similiarly, we write S ⊆′ T if S ⊆ T ∪ Σ for some finite set Σ.

28



5.1. REPRESENTATION OF PRIME NUMBERS 29

If b is prime to f , then b and bOK have the same norm by Lemma 2.3.2, and therefore we can
rewrite (5.1) as

S =′ {p prime | p ∤ f, p = N(bOK) for some bOK ∈ [aOK ]}.

But the condition p = N(bOK) forces bOK to be prime, so that we finally get

S =′ {p prime | p ∤ f, p = N(p) for some prime ideal p ∈ [aOK ]}. (5.2)

Now let L be the ring class field of O. From (3.1) we know that the Artin map induces an
isomorphism

C(O) ∼= IK(f)/PK,Z(f) ∼= Gal(L/K).

Under this map, the class [aOK ] maps to some σ ∈ Gal(L/K), which we can regard as an
element σ ∈ Gal(L/Q). Let 〈σ〉 denote the conjugacy class of σ in Gal(L/Q) and let T be the
set

T :=

{
p prime | p unramified in L,

(
L/Q

p

)
= 〈σ〉

}
.

Now we claim: S =′ T .

Proof: We first show that T ⊆′ S, i.e. that S contains T except finitely many elements. For
this purpose, let p ∈ T . This implies that (L/Q

p
) = 〈σ〉, and hence (L/Q

P
) = σ for some prime

P of L lying above p. Now set p = P ∩ OK . where p is now a prime of K containing p. Note
that for α ∈ OL we have

σ(α) ≡ αp mod P (5.3)

by definition of the Artin symbol. But σ even lies in Gal(L/K), so for α ∈ OK equation (5.3)
implies that

α ≡ αp mod p.

Therefore we have OK/p ∼= Z/pZ and N(p) = p. So (5.3) implies that σ is the Artin symbol

(L/K
p

). Since the class [aOK ] corresponds to σ under the Artin map, we get σ = (L/K
aOK

). On the

other hand, we just saw that σ = (L/K
p

), and hence p ∈ [aOK ] follows.

By (5.2) we find that T ⊆′ S.

Now let p ∈ S. Note that p = N(p) implies that p ⊂ OK lies above p. It follows directly
by definition of the ring class field that all primes of K that ramify in L must divide fOK .
But we know that p does not divide f , and therefore p is unramified in L. Assume that p does
not divide dK . Then p does not divide the discriminant D = f 2dK either, and therefore p is
unramified in K. All in all we find that p is unramified in L.
Now let P ⊂ OL be a prime above p. By the Artin map we know that σ = (L/K

aOK

) = (L/K
p

).
This means that for all α ∈ OL we have

σ(α) ≡ αN(p) mod P,

which leads to
∀α ∈ Z : σ(α) ≡ αN(p) mod P.
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Hence we find that (L/Q

p
) = 〈σ〉, and S ⊆′ T follows.

Now we can apply the Cebotarev density theorem: Theorem 3.4.3 shows directly that S has
Dirichlet density

δ(S) =
|〈σ〉|

[L : Q]
> 0.

Therefore the set S is infinite by Lemma 3.4.2. �
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