
Opportunistic Data Structures with Applications

Paolo Ferragina∗ Giovanni Manzini†

Abstract

There is an upsurging interest in designing succinct data structures for basic searching problems
(see [23] and references therein). The motivation has to be found in the exponential increase of
electronic data nowadays available which is even surpassing the significant increase in memory and
disk storage capacities of current computers. Space reduction is an attractive issue because it is
also intimately related to performance improvements as noted by several authors (e.g. Knuth [15],
Bentley [5]). In designing these implicit data structures the goal is to reduce as much as possible the
auxiliary information kept together with the input data without introducing a significant slowdown in
the final query performance. Yet input data are represented in their entirety thus taking no advantage
of possible repetitiveness into them. The importance of those issues is well known to programmers
who typically use various tricks to squeeze data as much as possible and still achieve good query
performance. Their approaches, though, boil down to heuristics whose effectiveness is witnessed only
by experimentation.

In this paper, we address the issue of compressing and indexing data by studying it in a theoretical
framework. We devise a novel data structure for indexing and searching whose space occupancy is
a function of the entropy of the underlying data set. The novelty resides in the careful combination
of a compression algorithm, proposed by Burrows and Wheeler [7], with the structural properties of
a well known indexing tool, the Suffix Array [17]. We call the data structure opportunistic since its
space occupancy is decreased when the input is compressible at no significant slowdown in the query
performance. More precisely, its space occupancy is optimal in an information-content sense because
a text T [1, u] is stored using O(Hk(T)) + o(1) bits per input symbol, where Hk(T) is the kth order
entropy of T (the bound holds for any fixed k). Given an arbitrary string P [1, p], the opportunistic data
structure allows to search for the occ occurrences of P in T requiring O(p+occ logǫ u) time complexity
(for any fixed ǫ > 0). If data are uncompressible we achieve the best space bound currently known [11];
on compressible data our solution improves the succinct suffix array of [11] and the classical suffix tree
and suffix array data structures either in space or in query time complexity or both.

It is a belief [27] that some space overhead should be paid to use full-text indices (like suffix trees
or suffix arrays) with respect to word-based indices (like inverted lists). The results in this paper show
that a full-text index may achieve sublinear space overhead on compressible texts. As an application we
devise a variant of the well-known Glimpse tool [18] which achieves sublinear space and sublinear query
time complexity. Conversely, inverted lists achieve only the second goal [27], and classical Glimpse
achieves both goals but under some restrictive conditions [4].

Finally, we investigate the modifiability of our opportunistic data structure by studying how to
choreograph its basic ideas with a dynamic setting thus achieving effective searching and updating
time bounds.

∗Dipartimento di Informatica, Università di Pisa, Italy. E-mail: ferragin@di.unipi.it.
†Dipartimento di Scienze e Tecnologie Avanzate, Università del Piemonte Orientale, Alessandria, Italy and IMC-CNR,

Pisa, Italy. E-mail: manzini@mfn.unipmn.it.

1 Introduction

Data structure is a central concept in algorithmics and computer science in general. In the last decades
it has been investigated from different points of view and its basic ideas enriched by new functionalities
with the aim to cope with the features of the peculiar setting of use: dynamic, persistent, self-adjusting,
implicit, fault-tolerant, just to cite a few. Space reduction in data structural design is an attractive issue,
now more than ever before, because of the exponential increase of electronic data nowadays available,
and because of its intimate relation with algorithmic performance improvements (see e.g. Knuth [15] and
Bentley [5]). This has recently motivated an upsurging interest in the design of implicit data structures
for basic searching problems (see [23] and references therein). The goal in their design is to reduce
as much as possible the auxiliary information kept together with the input data without introducing
any significant slowdown in the final query performance. However, input data are represented in their
entirety thus taking no advantage of possible repetitiveness into them. The importance of those issues is
well known to programmers who typically use various tricks to squeeze data as much as possible and still
achieve good query performance. Their approaches, though, boil down to heuristics whose effectiveness
is witnessed only by experimentation.

In this paper we address the issue of compressing and indexing data by studying it in a theoretical
framework. From the best of our knowledge no other result is known in the literature about the study
of the interplay between compression and indexing of data collections. The exploitation of data com-
pressibility have been already investigated only with respect to its impact on algorithmic performance in
the context of on-line algorithms (e.g. caching and prefetching [16, 14]), string-matching algorithms (see
e.g. [1, 2, 9]), sorting and computational geometry algorithms [8].

The scenario. Most of the research in the design of indexing data structure has been mainly directed
to devise solutions which offer a good trade-off between query and update time versus space usage. The
two main approaches are word-based indices and full-text indices. The former achieve succinct space
occupancy at the cost of being mainly limited to index linguistic texts [27], the latter achieve versatility
and guaranteed performance at the cost of requiring large space occupancy (see e.g. [20, 17, 10]). Some
progress on full-text indices has been recently achieved [23, 11], but an asymptotical linear space seems
unavoidable and this makes word-based indices much more appealing when space occupancy is a primary
concern. In this context compression appears always as an attractive choice, if not mandatory. Processing
speed is currently improving at a faster rate than disk speeds. Since compression decreases the demand of
storage devices at the expenses of processing, it is becoming more economical to store data in a compressed
form rather than uncompressed. Furthermore, compression may introduce some improvements which are
surprisingly not confined to the space occupancy: like transfer time and, even, seek times [15, 5].

Starting from these promising considerations, many authors have recently concentrated on the com-
pressed matching problem, introduced in [1], as the task of performing string matching in a compressed
text without decompressing it. A collection of algorithms is currently known to solve efficiently (possibly
optimally) this problem on text compressed by means of various schemes: e.g. run-length [1], LZ77 [9],
LZ78 [2], Huffman [24]. All of those results, although asymptotically faster than the classical scan-based
methods, they rely on the full scan of the whole compressed text and thus result still unacceptable for
large text collections.

Approaches to combine compression and indexing techniques are nowadays receiving more and more
attention, especially in the context of word-based indices, achieving experimental trade-offs between space
occupancy and query performance (see e.g. [18, 27, 4]). A significant idea towards the direct compression
of the index data structure has been proposed in [12, 13] where the properties of the Lempel-Ziv’s
compression scheme have been exploited to reduce the number of index points, still supporting pattern
searches. As a result, the overall index requires provably sublinear space but at the cost of either limiting
the search to q-grams [12] or worsening significantly the query performance [13].

A natural question arises at this point: Do full-text indices need a space occupancy linear in the
(uncompressed) text size in order to support effective search operations on arbitrary patterns? It is a

1

common belief [27] that some space overhead must be paid to use the full-text indices, but is this actually
a provable need?

Our Results. In this paper we answer the two questions above by providing a novel data structure for
indexing and searching whose space occupancy is a function of the entropy of the underlying data set.
The data structure is called opportunistic in that, although no assumption on a particular distribution
is made, it takes advantage of compressibility of the input data by decreasing the space occupancy at
no significant slowdown in the query performance.1 The data structure is provably space optimal in an
information-content sense because it stores a text T [1, u] using O(Hk(T)) + o(1) bits per input symbol
(for any fixed k ≥ 0), where Hk(T) is the kth order empirical entropy (see Appendix A). Hk expresses
the maximum compression we can achieve using for each character a code which depends only on the k
characters preceding it. We point out that in the case of an uncompressible string T , the space occupancy
is O(n) bits which is actually the best space bound currently known [11]; for a compressible string, our
opportunistic data structure is the first index to achieve sublinear space occupancy. Given an arbitrary
pattern P [1, p], such opportunistic data structure allows to search for the occ occurrences of P in T
requiring O(p+occ logǫ u) time, for any fixed ǫ > 0. The removal of the sublogarithmic term in the query
bound is yet an open problem even in the uncompressed setting [11].

The novelty of our approach resides in the careful combination of the Burrows-Wheeler compression
algorithm [7] with the the Suffix Array data structure [17] to obtain a sort of compressed suffix array.
We indeed show how to augment the information kept by the Burrows-Wheeler algorithm, in order to
support effective random accesses to the compressed data without the need of uncompressing all of them
at querying time. We design two algorithms for operating on our opportunistic data structure. The first
algorithm is a novel effective approach to search for an arbitrary pattern P [1, p] in a compressed suffix
array, taking O(p) time in the worst case (see Section 3.1); the second algorithm exploits compression
to speed up the retrieval of the actual positions of the pattern occurrences, thus incurring only in a
sublogarithmic O(logǫ u) time slowdown (for any fixed ǫ > 0, see Section 3.2).

In some sense, our result can be interpreted as a method to compress the suffix array, and still support
effective searches for arbitrary patterns. In their seminal paper, Manber and Myers [17] introduced the
suffix array data structure showing how to search for a pattern P [1, p] in O(p + log u + occ) time in the
worst case. The data structure used Θ(u log u) bits of storage. Recently, Grossi and Vitter [11] reduced
the space usage of suffix arrays to Θ(u) bits at the cost of requiring O(logǫ u) time to retrieve the i-th
suffix. Hence, searching in this succinct suffix array via the classical Manber-Myers’ procedure takes
O(p + log1+ǫ u + occ logǫ u) time. Our solution therefore improves the succinct suffix array of [11] both
in space and query time complexity. The authors of [11] introduce also other hybrid indices based on the
combination of their succinct suffix array and various known techniques; they achieve O(p

log u +occ logǫ u)

query-time complexity but yet require Ω(u) bits of storage. As far as the problem of counting the pattern
occurrences is concerned, our solution improves the classical suffix tree and suffix array data structures,
because they achieve Ω(p) time complexity and occupy Ω(u log u) bits.

In Section 4, we investigate the modifiability of our opportunistic data structure by studying how to
choreograph its basic ideas with a dynamic setting, and thus achieving efficient searching and updating
time bounds. We show that a dynamic text collection ∆ of size u can be stored in O(Hk(∆)) + o(1) bit
per input symbol (for any fixed k ≥ 0 and not very short texts), support insert operations on individual
texts T [1, t] in O(t log u) amortized time, delete operations on T in O(t log2 u) amortized time, and search
for a pattern P [1, p] in O(p log3 u + occ log u) time in the worst case. We point out that even in the case
of an uncompressible text T , our space bounds are the best known ones since the data structures in [11]
do not support updates (the dynamic case is left as open in their Section 4).

Finally, we investigate applications of our ideas to the development of novel text retrieval systems
based on the concept of block addressing (first introduced in the Glimpse tool [18]). The notable feature

1The concept of opportunistic algorithm has been introduced in [9] to characterize an algorithm which takes advantage
of the compressibility of the text to speed up its (scan based) search operations. In our paper, we turn this concept into the
one of opportunistic data structure.

2

of block addressing is that it can achieve both sublinear space overhead and sublinear query time, whereas
inverted indices achieve only the second goal [4]. Unfortunately, up to now all the known block addressing
indices [18, 4] achieve this goal only under some restrictive conditions on the block size. We show how to
use our opportunistic data structure to devise a novel block addressing scheme, called CGlimpse (standing
for Compressed Glimpse), which always achieves time and space sublinearity.

2 Background

Let T [1, u] be a text drawn from a constant-size alphabet Σ. A central concept in our discussion is
the suffix array data structure [17]. The suffix array A built on T [1, u] is an array containing the
lexicographically ordered sequence of the suffixes of T , represented via pointers to their starting positions
(i.e., integers). For instance, if T = ababc then A = [1, 3, 2, 4, 5]. In practice A occupies 4u bytes,
actually a lot when indexing large text collections. It is a long standing belief that suffix arrays are
uncompressible because of the “apparently random” permutation of the suffix pointers. Recent results
in the data compression field have opened the door to revolutionary ways to compress suffix arrays and
are the basic tools of our solution. In [7], Burrows and Wheeler proposed a transformation (BWT from
now on) consisting of a reversible permutation of the text characters which gives a new string that is
“easier to compress”. The BWT tends to group together characters which occur adjacent to similar text
substrings. This nice property is exploited by locally-adaptive compression algorithms, such as move-to-
front coding [6], in combination with statistical (i.e. Huffman or Arithmetic coders) or structured coding
models. The BWT-based compressors are among the best compressors currently available since they
achieve a very good compression ratio using relatively small resources (time and space).

The reversible BW-transform. We distinguish between a forward transformation, which produces
the string to be compressed, and a backward transformation which gives back the original text from the
transformed one. The forward BWT consists of three basic steps: (1) Append to the end of T a special
character # smaller than any other text character; (2) form a conceptual matrix M whose rows are the
cyclic shifts of the string T# sorted in lexicographic order; (3) construct the transformed text L by taking
the last column of M. Notice that every column of M is a permutation of the last column L, and in
particular the first column of M, call it F , is obtained by lexicographically sorting the characters in L.

There is a strong apparent relation between the matrix M and the suffix array A of the string T#.
When sorting the rows of the matrix M we are essentially sorting the suffixes of T#. Consequently, entry
A[i] points to the suffix of T# occupying (a prefix of) the ith row of M. The cost of performing the
forward BWT is given by the cost of constructing the suffix array A, and this requires O(u) time [20].

The cyclic shift of the rows of M is crucial to define the backward BWT, which is based on two easy
to prove observations [7]:

a. Given the ith row of M, its last character L[i] precedes its first character F [i] in the original text
T , namely T = · · ·L[i]F [i] · · ·.

b. Let L[i] = c and let ri be the rank of the row M[i] among all the rows ending with the character
c. Take the row M[j] as the ri-th row of M starting with c. Then the character corresponding to
L[i] in the first column F is located at F [j] (we call this LF-mapping, where LF [i] = j).

We are therefore ready to describe the backward BWT:

1. Compute the array C[1 . . . |Σ|] storing in C[c] the number of occurrences of characters {#, 1, . . . , c−
1} in the text T . Notice that C[c] + 1 is the position of the first occurrence of c in F (if any).

2. Define the LF-mapping LF [1 . . . u + 1] as follows LF [i] = C[L[i]] + ri, where ri equals the number
of occurrences of character L[i] in the prefix L[1, i] (see observation (b) above).

3. Reconstruct T backward as follows: set s = 1 and T [u] = L[1] (because M[1] = #T); then, for
each i = u − 1, . . . , 1 do s = LF [s] and T [i] = L[s].

3

In [26] it has been shown how to derive the suffix array A from L in linear time; however in the context
of pattern searching this approach is no better than the known scan-based opportunistic algorithms [9].
Nonetheless, the implicit presence of the suffix array A into L stimulates the investigation of the possibility
to take full advantage of the structure of A for fast searching, and of the succinct compression of L for
reducing the overall space occupancy. This is actually the ultimate hope of any indexer: succinct and
fast! In the next section, we show that this result is achievable provided that a sublogarithmic slowdown
is introduced in the cost of listing all pattern occurrences.

In order to describe our results on searching in BWT-compressed texts, we must commit ourselves to
one of several algorithms based on the BWT. Let T bw = bwt(T) denote the last column L, output of the
BW-transform. We compress T bw in three steps (see also [19]2):

1. Use a move-to-front coder, briefly mtf [6], to encode a character c via the count of distinct characters
seen since its previous occurrence. The structural properties of T bw, mentioned above, imply that
the string Tmtf = mtf(T bw) will be dominated by low numbers.

2. Encode each run of zeroes in Tmtf using run length encoding (rle). More precisely, replace the
sequence 0m with the number (m + 1) written in binary, least significant bit first, discarding the
most significant bit. For this encoding we use two new symbols 0 and 1 so that the resulting string
T rl = rle(Tmtf) is over the alphabet {0,1, 1, 2, . . . , |Σ| − 1}.

3. Compress T rl by means of a variable-length prefix code, called PC, which encodes the symbols 0

and 1 using two bits (10 for 0, 11 for 1), and the symbol i using a variable-length prefix code of
1 + 2 ⌊log(i + 1)⌋ bits, where i = 1, 2, . . . , |Σ| − 1.

The resulting algorithm BW RLX = bwt + mtf + rle + PC is sufficiently simple so that in the rest of
the paper we can concentrate on the searching algorithm without being distracted by the details of the
compression. Despite of the simplicity of BW RLX, using the results in [19] it is possible to show that (proof
in the full paper), for any k ≥ 0 there exists a constant gk such that

|BW RLX(T)| ≤ 5 |T | Hk(T) + gk log |T | (1)

where Hk is the kth order empirical entropy. Hk expresses the maximum compression we can achieve
using for each character a code which depends only on the k characters preceding it. The bound (1) tells
us that even for strings with very small entropy BW RLX’s output size is within a constant factor of the
optimum. Note that such a similar bound has not been proven for any LZ-based algorithm [19].

3 Searching in BWT-compressed text

Let T [1, u] denote an arbitrary text over the alphabet Σ, and let Z = BW RLX(T). In this section
we describe an algorithm which, given Z and a pattern P [1, p], reports all occurrences of P in the
uncompressed text T without uncompressing the whole Z. Our algorithm makes use of the relation
between the suffix array A and the matrix M (see above). Recall that the suffix array A posses two
nice structural properties which are usually exploited to support fast pattern searches: (i) all the suffixes
of the text T [1, u] prefixed by a pattern P [1, p] occupy a contiguous portion (subarray) of A; (ii) that
subarray has starting position sp and ending position ep, where sp is actually the lexicographic position
of the string P among the ordered sequence of text suffixes.

3.1 First step: Counting the occurrences

We now describe an algorithm, called BW Search, which identifies the positions sp and ep by accessing
only the compressed string Z and some auxiliary array-based data structures.

2The algorithm considered in this paper corresponds to the procedure A∗ described in [19]

4

Algorithm BW Search(P [1, p])

1. c = P [p], i = p;

2. sp = C[c] + 1, ep = C[c + 1];

3. while ((sp ≤ ep) and (i ≥ 2)) do

4. c = P [i − 1];

5. sp = C[c] + Occ(c, 1, sp − 1) + 1;

6. ep = C[c] + Occ(c, 1, ep);

7. i = i − 1;

8. if (ep < sp) then return “not found” else return “found (ep − sp + 1) occurrences”.

Figure 1: Algorithm for counting the number of occurrences of P [1, p] in T [1, u].

Algorithm BW Search consists of p phases each one preserving the following invariant: At the i-th
phase, the parameter sp points to the first row of M prefixed by P [i, p] and the parameter ep points to
the last row of M prefixed by P [i, p]. The pseudo-code is given in Fig. 1. We start with i = p (step 1), so
that sp and ep can be determined via the array C defined in Section 2 (step 2). If ep < sp then we can
conclude that P [p] does not occur in T and hence P does not too. The subroutine Occ(c, 1, k) used in
Steps 5 and 6 reports the number of occurrences of the character c in T bw[1, k]; hence it is employed to
implement the LF-mapping. After the final phase, sp and ep will delimit the portion of M (and thus of
the suffix array A) containing all text suffixes prefixed by P . The integer (ep−sp+1) will account for the
number of occurrences of P in T . The following lemma proves the correctness of BW Search, assuming
Occ works as claimed (proof in Appendix B).

Lemma 1 For i = p, p − 1, . . . , 2, let us assume that sp (resp. ep) stores the position of the first (resp.
last) row in M prefixed by P [i, p]. If P [i − 1, p] occurs in T , then Step 5 (resp. Step 6) of BW Search

correctly updates the value of sp (resp. ep) thus pointing to the first (resp. last) row prefixed by P [i−1, p].

The running time of BW Search depends on the cost of procedure Occ. We now describe an algorithm
for computing Occ(c, 1, k) in O(1) time, on a RAM with word size Θ(log u) bits.

We logically partition the transformed string T bw into substrings of ℓ characters each (called buckets),
and denote them by BT i = T bw[(i − 1)ℓ + 1, iℓ], for i = 1, . . . , u/ℓ. This partition naturally induces a

partition of Tmtf into u/ℓ buckets BTmtf
1 , . . . , BTmtf

u/ℓ of size ℓ too. We assume that each run of zeroes

in Tmtf is entirely contained in a single bucket and we describe our algorithm for computing Occ(c, 1, k)
under this simplifying assumption. The general case in which a sequence of zeroes may span several
buckets is discussed in Appendix C. Under our assumption, the buckets BTmtf

i ’s induce a partition of

the compressed file Z into u/ℓ compressed buckets BZ1, . . . , BZu/ℓ, defined as BZi = PC(rle(BTmtf
i)).

Let BT i denote the bucket containing the character T bw[k] (i = ⌈k/ℓ⌉). The computation of
Occ(c, 1, k) is based on a hierarchical decomposition of T bw[1, k] in three substrings as follows: (i) the
longest prefix of T bw[1, k] having length a multiple of ℓ2 (i.e. BT 1 · · ·BT ℓi∗ , where i∗ = ⌊k−1

ℓ2
⌋), (ii) the

longest prefix of the remaining suffix having length a multiple of ℓ (i.e. BT ℓi∗+1 · · ·BT i−1), and finally
(iii) the remaining suffix of T bw[1, k] which is indeed a prefix of the bucket BT i. We compute Occ(c, 1, k)
by summing the number of occurrences of c in each of these substrings. This can be done in O(1) time
and sublinear space using the following auxiliary data structures:

• For the calculations on the substring of point (i):

– For i = 1, . . . , u/ℓ2, the array NOi[1, |Σ|] stores in entry NOi[c] the number of occurrences of
character c in BT 1 · · ·BT iℓ.

5

– The array W [1, u/ℓ2] stores in entry W [i] the value
∑iℓ

j=1 |BZj | equals to the sum of the sizes
of the compressed buckets BZ1, . . . , BZiℓ.

• For the calculations on the substring of point (ii):

– For i = 1, . . . , u/ℓ, the array NO′
i[1, |Σ|] stores in entry NO′

i[c] the number of occurrences of
character c in the string BT i∗+1 · · ·BT i−1 (this concatenated string has length less than ℓ2).

– The array W ′[1, u/ℓ] stores in entry W ′[i] the value
∑i−1

j=i∗+1 |BZj | equals to the overall size

of the compressed buckets BZi∗+1, . . . , BZi−1 (bounded above by O(ℓ2)).

• For the calculations on the (compressed) buckets:

– The array MTF [1, u/ℓ] stores in entry MTF [i] a picture of the state of the MTF-list at the
beginning of the encoding of BT i. Each entry takes |Σ| log |Σ| bits (i.e. O(1) bits).

– The table S stores in each entry S[c, h, BZi,MTF [i]] the number of occurrences of the char-
acter c among the first h characters of BT i. The values of BZi and MTF [i] are used to
determine BTi from Z in O(1) time. Table S has O(ℓ2ℓ′) entries each one occupying log ℓ bits.

The computation of Occ(c, 1, k) proceeds as follows. First, the bucket BT i containing the character
c = T bw[k] is determined via i = ⌈k/ℓ⌉, together with the position j = k−(i−1)ℓ of this character in BT i

and the parameter i∗ =
⌊

(k − 1)/ℓ2
⌋

. Then the number of occurrences of c in the prefix BT 1 · · ·BT ℓi∗

(point (i)) is determined via NOi∗ [c], and the number of occurrences of c in the substring BT ℓi∗ , . . . , BT i−1

(point (ii)) is determined via NO′
i[c]. Finally, the compressed bucket BZi is retrieved from Z (notice

that W [i∗] + W ′[i] + 1 is its starting position), and the number of occurrences of c within BT i[1, j] are
accounted using table S. The sum of these three quantities gives Occ(c, 1, k).

By construction any compressed bucket BZi has size at most ℓ′ = (1 + 2 ⌊log Σ⌋)ℓ bits. Now we
set ℓ = Θ(log u) so that ℓ′ = c log u with c < 1. Under this assumption, every step of Occ consists of
arithmetic operations or table lookup operations involving O(log u)-bit operands. Consequently every call
to Occ takes O(1) time on a RAM. As far as the space occupancy is concerned, the arrays NO and W take
O((u/ℓ2) log u) = O(u/ log u) bits. The arrays NO′ and W ′ take O((u/ℓ) log ℓ) = O((u/ log u) log log u)
bits. The array MTF takes O(u/ℓ) = O(u/ log u) bits. Table S consists of O(ℓ2ℓ′) log ℓ-bit entries, and
thus it occupies O(2ℓ′ℓ log ℓ) = O(uc log u log log u) bits, where c < 1. We conclude that the auxiliary
data structures used by Occ occupy O((u/ log u) log log u) bits (in addition to the compressed file Z). We
can now state the first important result of our paper.

Theorem 1 Let Z denote the output of the algorithm BW RLX on input T [1, u]. The number of occurrences
of a pattern P [1, p] in T [1, u] can be computed in O(p) time on a RAM. The space occupancy is |Z| +

O
(

u
log u log log u

)

bits.

3.2 Second step: Determining the occurrences

We now consider the problem of determining the exact position in the text T [1, u] of all the occurrences
of the pattern P [1, p]. This means that for s = sp, sp + 1, . . . , ep, we need to find the position pos(s) in
T of the suffix which prefixes the sth row M[s]. We propose two approaches: the first one is simple but
slow, the second one is faster and relies on the very special properties of the the string T bw and on a
different compression algorithm.

In the first algorithm we logically mark the rows of M which correspond to text positions having
the form 1 + iη, for η = Θ(log2 u) and i = 0, 1, . . . , u/η. We store with these marked rows the starting
positions of the corresponding text suffixes explicitly. This preprocessing is done at compression time.
At query time we find pos(s) as follows. If s is a marked row, then there is nothing to be done and
its position is directly available. Otherwise, we use the LF-mapping to find the row s′ corresponding to

6

the suffix T [pos(s) − 1, u]. We iterate this procedure v times until s′ points to a marked row; then we
compute pos(s) = pos(s′) + v. The crucial point of the algorithm is the logical marking of the rows of
M corresponding to the text suffixes starting at positions 1 + iη, i = 0, . . . , u/η. Our solution consists
in storing the row numbers in a two-level bucketing scheme. We partition the rows of M into buckets
of size Θ(log2 u) each. For each bucket, we take all the marked rows lying into it, and store them into a
Packet B-tree [3] using as a key their distance from the beginning of the bucket. Since a bucket contains
at most O(log2 u) keys, each O(log log u) bits long, membership queries take O(1) time on a RAM. The
overall space required for the logical marking is O((u/η) log log u) bits. In addition, for each marked row
we also keep the starting position of the corresponding suffix in T , which requires additional O(log u)
bits per marked row. Consequently, the overall space occupancy is O((u/η) log u) = O(u/ log u) bits. For
what concerns the time complexity, our algorithm computes pos(s) in at most η = Θ(log2 u) steps, each
taking constant time. Hence the occ occurrences of a pattern P in T can be retrieved in O(occ log2 p)
time, with a space overhead of O(u/ log u) bits. Combining the results of this section with equation (1):

Theorem 2 Given a text T [1, u], we can preprocess it in O(u) time so that all the occ occurrences of a
pattern P [1, p] in T can be listed in O(p + occ log2 u) time on a RAM. The space occupancy is bounded

by 5Hk(T) + O(log log u
log u) bits per input symbol, for any fixed k ≥ 0.

We now refine the above algorithm in order to compute pos(s) in O(logǫ u) time, for any fixed ǫ > 0.
We still use the idea of marking some of the rows in M, however we introduce some shortcuts which
allow to move in T by more that one character at a time, thus reducing the number of steps required
to reach a marked position. The key ingredient of our new approach is a procedure for computing the
LF-mapping over a string T̄ drawn from an alphabet Λ of non-constant size. The procedure is based on
an alternative compression of the output T̄ bw. We make use of the following lemma (proof and details
are given Appendix D):

Lemma 2 Given a string T̄ [1, v] over an arbitrary alphabet Λ, we can compute the LF-mapping over T̄ bw

in O(logǫ v) time using O
(

v(1 + Hk(T̄)) + |Λ|k+1(log |Λ| + log v)
)

bits of storage, for any given ǫ > 0.

We now show how to use Lemma 2 to compute pos(s) in O(log(1/2)+2ǫ u) time; this is an intermediate
result that will be then refined to achieve the final O(logǫ u) time bound.

At compression time we logically mark the rows of M which correspond to text positions of the form
1 + iγ for i = 0, . . . , u/γ and γ = Θ(log(1/2)+ǫ u). Then, we consider the string T0 obtained by grouping
the characters of T into blocks of size γ. Clearly T0 has length u/γ and its characters belong to the
alphabet Σγ . Let M0 denote the cyclic-shift matrix associated to T0. It is easy to see that M0 consists
of the marked rows of M. Now we mark the rows of M0 corresponding to the suffixes of T0 starting at
the positions 1 + iη, for i = 0, . . . , |T0|/η and η = Θ(log(1/2)+ǫ u). For these rows we explicitly keep the
starting position of the corresponding text suffixes. To compute pos(s) we first compute the LF-mapping
in M until we reach a marked row s′. Then we compute pos(s′) by finding its corresponding row in M0

and computing the LF-mapping in M0 (via Lemma 2) until we reach a marked row s′′ in M0 (for which
pos(s′′) is explicitly available by construction). The marking of T and the counting of the number of
marked rows in M that precede a given marked row s′ (this is required in order to determine the position
in M0 of M[s′]) can be done in constant time and O(u

γ log log u) bits of storage using again a Packed B-

tree and a two level bucketing scheme as before. In addition, for Θ(|T0|/η) rows of M0 we keep explicitly
their positions in T0 which take Θ((|T0|/η) log u) = Θ(u/ log2ǫ u) bits of storage. The space occupancy of
the procedure for computing the LF-mapping in T bw

0 is given by Lemma 2. Since Hk(T0) ≤ γ Hkγ(T), a

simple algebraic calculation yields that the overall space occupancy is O
(

Hk(T) + 1
log2ǫ u

)

bits per input

symbol, for any fixed k. The time complexity of the algorithm is O(γ) (for finding a marked row in M)

plus O(η logǫ u) (for finding a marked row in M0), thus O(log(1/2)+2ǫ u) time overall.

7

The final time bound of O(logǫ u) for the computation of pos(s) can be achieved by iterating the
approach above as follows. The main idea is to take γ0 = Θ(logǫ u), and apply the procedure for
computing the LF-mapping in T0 for Θ(logǫ u) steps, thus identifying a row s1 of the matrix M0 such
that3 pos(s1) has the form 1+iγ1 with γ1 = Θ(log2ǫ u). Next, we define the string T1 obtained by grouping
the characters of T into blocks of size γ1 and we consider the corresponding matrix M1. By construction
s1 corresponds to a row in M1 and we can iterate the above scheme. At the jth step we operate on the
matrix Mj−1 until we find a row sj such that pos(sj) has the form 1 + iγj where γj = Θ(log(j+1)ǫ u).

This continues until j reaches the value ⌈1/ǫ⌉. At that point the matrix Mj consists of Θ(u/ log1+δ u)
rows and thus we can store explicitly the starting position of their corresponding text suffixes. Summing
up, the algorithm computes pos(s) in 1/ǫ = Θ(1) iterations, each taking Θ(log2ǫ u) time. Since ǫ is an
arbitrary positive constant, it is clear that we can rewrite the previous time bound as Θ(logǫ u). The
space occupancy is dominated by the one required for the marking of M.

Theorem 3 A text T [1, u] can be indexed so that all the occ occurrences of a pattern P [1, p] in T can

be listed in O(p + occ logǫ u) time on a RAM. The space occupancy is O(Hk(T) + log log u
logǫ u) bits per input

symbol, for any fixed k ≥ 0.

4 Dynamizing our approach

Let ∆ be a dynamic collection of texts {T1, T2, . . . , Tm} having arbitrary lengths and total size u. Col-
lection ∆ may shrink or grow over the time due to insert and delete operations which allow to add or
remove from ∆ an individual text string. Our aim is to store ∆ in succinct space, perform the update
operations efficiently, and support fast searches for the occurrences of an arbitrary pattern P [1, p] into
∆’s texts. This problem can be solved in optimal time complexity and Θ(u log u) bits of storage [20, 10].
In the present section we aim at dynamizing our compressed index in order to keep ∆ in a reduced space
and be able to efficiently support update and search operations. Our result exploits an elegant technique
proposed at the beginning of ’80 in [25, 21], here adapted to manage items (i.e. texts) of variable lengths.

In the following we bound the space occupancy of our data structure in terms of the entropy of the
concatenation of ∆’s texts. A better overall space reduction might be possibly achieved by compressing
separately the texts Ti’s. However, if the texts Ti’s have similar statistics the entropy of the concate-
nated string is a reasonable lower bound to the compressibility of the collection. Furthermore, in the
probabilistic setting where we assume that every text is generated by the same probabilistic source, the
entropy of the concatenated string coincides with the entropy of the single texts and therefore provides
a tight lower bound to the compressibility of the collection.

In the following we focus on the situation in which the length p of the searched pattern is O(u
log2 u

)

because for the other range of p’s values, the search operation can be implemented in a brute-force way
by first decompressing the text collection and then searching for P into it using a scan-based string
matching algorithm thus taking O(p log3 u + occ) time complexity. We partition the texts Ti’s into
η = Θ(log2 u) collections C1, . . . , Cη, each containing texts of overall length O(u

log2 u
). This is always

possible, independently of the lengths of the text strings in ∆, since the upper bound on the length of
the searchable patterns allows us to split very long texts (i.e. texts of lengths Ω(u

log2 u
)) into 2 log2 u

pieces overlapping for Θ(u
log2 u

) characters. This covering of a single long text with many shorter ones

still allows us to find the occurrences of the searched patterns.
Every collection Ch is then partitioned into a series of subsets Sh

i defined as follows: Sh
i contains some

texts of Ch having overall length in the range [2i, 2i+1), where i = O(log u). Each set Sh
i is simultaneously

indexed and compressed using our opportunistic data structure. Searching for an arbitrary pattern P [1, p]
in ∆, with p = O(u

log2 u
) can be performed by searching for P in all the subsets Sh

i via the compressed

index built on each of them, thus requiring overall O(p log3 u + occ logǫ u) time.
3In this paragraph pos always refer to the starting position in the text T of the suffix corresponding to a row.

8

Inserting a new text T [1, t] into ∆ consists of inserting T into one of the sets Ch, the most empty one.
Then, the subset Sh

i is selected, where i = ⌊log t⌋, and T is inserted into it using the following approach. If
Sh

i is empty then the compressed index is built for T and associated to this subset, thus taking O(t) time.
Otherwise the new set Sh

i ∪ {T} is formed and inserted in Sh
i+1. If the latter subset is not empty then

the insertion process is propagated until an empty subset Sh
i+j is found. At this point, the compressed

index is built over the set Sh
i ∪ . . . ∪ Sh

i+j−1 ∪ {T}, by concatenating all the texts contained in this set
to form a unique string, texts are separated by a special symbol (as usual). By noticing that these texts
have overall length Θ(2i+j), we conclude that this propagation process has a complexity proportional to
the overall length of the moved texts. Although each single insertion may be very costly, we can amortize
this cost by charging O(log u) credits per text character (since i, j = O(log u)), thus obtaining an overall
amortized cost of O(t log u) to insert T [1, t] in ∆. Some care must be taken to evaluate the space occupied
during the reconstruction of the set Sh

i . In fact, the construction of our compressed index over the set
Sh

i requires the use of the suffix tree data structure (to compute the BWT) and thus O(2i log 2i) bits of
auxiliary storage. This could be too much, but we ensured that every collection Ch contains texts having
overall length O(u

log2 u
). So that at most O(u

log u) bits suffices to support any reconstruction process.

We now show how to support text deletions from ∆. The main problem here is that from one side
we would like to physically cancel the texts in order to avoid the listing of ghost occurrences belonging
to texts no longer in ∆; but from the other side a physical deletion would be too much time-consuming
to be performed on-the-fly. Amortization can still be used but much care must be taken when answering
a query to properly deal with texts which have been logically deleted from the Sh

i ’s. For the sake of
presentation let T bw be the BWT of the texts stored in some set Sh

i . We store in a balanced search tree
the set Ih

i of interval positions in T bw occupied by deleted text suffixes. If a pattern occurrence is found
in T bw using our compressed index, we can check in O(log u) time if it is a real or a ghost occurrence.
Every time a text T [1, t] must be deleted from Sh

i , we search for all of its suffixes in Sh
i and then update

accordingly Ih
i in O(t log u) time. The additional space required to store the balanced search tree is

O(|Ih
i | log u) = O(u

log u) bits, where we are assuming to physically delete the texts from Sh
i as soon as a

fraction of Θ(1
log2 u

) suffixes is logically marked. Hence, each set Sh
i may undergo O(log2 u) reconstructions

before it shrinks enough to move back to the previous set Sh
i−1. Consequently the amortized cost of delete

is O(t log u + t log2 u) = O(t log2 u), where the first term denotes the cost of Ih
i ’s update and the second

term accounts for the credits to be left in order to pay for the physical deletions.
Finally, to identify a text to be deleted we append to every text in ∆ an identifier of O(log u) bits, and

we keep track of the subset Sh
i containing a text via a table. This introduces an overhead of O(m log u)

bits which is o(u) if we reasonably assume that the texts are not too short, i.e. ω(log u) bits each.

Theorem 4 Let ∆ be a dynamic collection of texts {T1, T2, . . . , Tm} having total length u. All the occ oc-
currences of a pattern P [1, p] in the texts of ∆ can be listed in O(p log3 u+occ log u) time in the worst case.
Operation insert adds a new text T [1, t] in ∆ taking O(t log u) amortized time. Operation delete removes a

text T [1, t] from ∆ taking O(t log2 u) amortized time. The space occupancy is O
(

Hk(∆) + m log u
u

)

+ o(1)

bits per input symbol, for any fixed k ≥ 0.

5 A simple application

Glimpse [18] is an effective tool to index linguistic texts. From a high level point of view, it is a hybrid
between inverted files and scan-based approaches with no index. It relies on the observation that there is
no need to index every word with an exact location (as it occurs in inverted files); but only pointers to an
area where the word occurs (called a block) should be maintained. Glimpse assumes that the text T [1, u]
is logically partitioned into r blocks of size b each, and thus its index consists of two parts: a vocabulary
V containing all the distinct words of the text; and for each word w ∈ V , a list L(w) of blocks where
the word w occurs. This blocking scheme induces two space savings: pointers to word occurrences are

9

shorter, and the occurrences of the same word in a single block are represented only once. Typically the
index is very compact, 2–4% of the original text size [18].

Given this index structure, the search scheme proceeds in two steps: first the queried word w is
searched in V , then all candidate blocks of L(w) are sequentially examined to find all the w’s occurrences.
More complex queries (e.g. approximate or regular expression searches) can be supported by using
Agrep [28] both in the vocabulary and in the block searches. Clearly, the search is efficient if the vocabulary
is small, if the query is enough selective, and if the block size is not too large. The first two requirements
are usually met in practice, so that the main constraint to the effective use of Glimpse remains the
strict relation between block-pointer sizes and text sizes. Theoretical and experimental analysis of such
block-addressing scheme [18, 4] have shown that the Glimpse approach is effective only for medium sized
texts (roughly up to 200Mb). Recent papers tried to overcome this limitation by compressing each text
block individually and then searching it via proper opportunistic string-matching algorithms [18, 24]. The
experimental results showed an improvement of about 30–50% in the final performance, thus implicitly
proving that the second searching step dominates Glimpse’s query performance.

Our opportunistic index naturally fits in this block-addressing framework and allows us to extend its
applicability to larger text databases. The new approach, named Compressed Glimpse (shortly CGlimpse),
consists of using our opportunistic data structure to index each text block individually; this way, each
candidate block is not fully scanned at query time but its index is employed to fasten the detection of
the pattern occurrences. In some sense CGlimpse is a compromise between a full-text index (like a suffix
array) and a word-based index (like an inverted list) over a compressed text.

A theoretical investigation of the performance of CGlimpse is feasible using a model generally accepted
in Information Retrieval [4]. It assumes the Heaps law to model the vocabulary size (i.e. V = O(uβ) with
0 < β < 1), the generalized Zipf’s law to model the frequency of words in the text collection (i.e. the

largest ith frequency of a word is u/(iθH
(θ)
V), where H

(θ)
V is a normalization term and θ is a parameter

larger than 1), and assumes that O(uρ) is the number of matches for a given word with k ≥ 1 errors (where
ρ < 1). Under these hypothesis we can show that CGlimpse achieves both sublinear space overhead and
sublinear query time independent of the block size (proof in the full paper). Conversely, inverted indices
achieve only the second goal [27], and classical Glimpse achieves both goals but under some restrictive
conditions on the block size [4].

6 Conclusions

Various issues remain still to be investigated in various models of computation. In the RAM, it would
be interesting to avoid the o(log u) overhead incurred in the listing of the pattern occurrences. This is
an open problem also in the uncompressed setting [11]. In external memory, it would be interesting to
devise a compressed index which takes advantage of the blocked access to the disk and thus reduces the
I/O-complexity of the listing of the pattern occurrences by a factor Θ(B). As far as the problem of
counting the number of pattern occurrences is concerned, we are investigating the use of the technique
in Lemma 2 to achieve o(p) time bound.

Another interesting issue concerns with the design of word-based indices where the searches are mainly
confined to words or prefixes of words. We are investigating a novel word-based compression scheme which
compresses the pattern before searching it into the opportunistic data structure thus achieving o(p) I/O-
complexity.

References

[1] A. Amir and G. Benson. Efficient two-dimensional compressed matching. Proc. 2nd IEEE Data
Compression Conference, pages 279–288, 1992.

10

[2] A. Amir, G. Benson, and M. Farach. Let sleeping files lie: Pattern matching in Z-compressed files.
J. Comput. Syst. Sci., 52(2):299–307, 1996.

[3] A. Andersson. Sorting and searching revisited. In Rolf G. Karlsson and Andrzej Lingas, editors,
SWAT ’96, 5th Scandinavian Workshop on Algorithm Theory, pages 185–197. Springer-Verlag LNCS
n. 1097, 3–5 July 1996.

[4] R. Baeza-Yates and G. Navarro. Block addressing indices for approximate text retrieval. Journal of
the American Society for Information Science (JASIS), 51(1):69–82, 2000.

[5] J. Bentley. Programming Pearls. Addison-Wesley, USA, 1989.

[6] J. Bentley, D. Sleator, R. Tarjan, and V. Wei. A locally adaptive compression scheme. Communica-
tion of the ACM, 29(4):320–330, 1986.

[7] M. Burrows and D. Wheeler. A block sorting lossless data compression algorithm. Technical Report
124, Digital Equipment Corporation, 1994.

[8] S. Chen and J. Reif. Using difficulty of prediction to decrease computation: Fast sort, priority queue
and convex hull on entropy bounded inputs. In 34th Annual Symposium on Foundations of Computer
Science, pages 104–112, Palo Alto, California, 1993. IEEE.

[9] M. Farach and M. Thorup. String matching in Lempel-Ziv compressed strings. Algorithmica,
20(4):388–404, 1998.

[10] P. Ferragina and R. Grossi. The string B-tree: A new data structure for string search in external
memory and its applications. J. Assoc. Comput. Mach., 46:236–280, 1999.

[11] R. Grossi and J. Vitter. Compressed suffix arrays and suffix trees with applications to text indexing
and string matching. In Proceedings of the 32nd ACM Symposium on Theory of Computing. ACM,
2000.

[12] J. Kärkkäinen and E. Sutinen. Lempel-Zip index for q-grams. In J. Dı́az and M. Serna, editors,
Fourth European Symposium on Algorithms (ESA ’96), pages 378–391, Barcelona, Spain, 1996.
Springer-Verlag LNCS n. 1136.

[13] J. Kärkkäinen and E. Ukkonen. Lempel-Ziv parsing and sublinear-size index structures for string
matching. rishnan In N. Ziviani, R. Baeza-Yates, and K. Guimarães, editors, Proceedings of the
3rd South American Workshop on String Processing, pages 141–155, Recife, Brazil, 1996. Carleton
University Press.

[14] A. Karlin, S. Phillips, and P. Raghavan. Markov paging (extended abstract). In 33rd Annual
Symposium on Foundations of Computer Science, pages 208–217, Pittsburgh, Pennsylvania, 24–27
October 1992. IEEE.

[15] D. E. Knuth. Sorting and Searching, volume 3 of The Art of Computer Programming. Addison-Wes-
ley, Reading, MA, USA, second edition, 1998.

[16] P. K and J. Vitter. Optimal prediction for prefetching in the worst case. SIAM Journal on Computing,
27(6):1617–1636, December 1998.

[17] U. Manber and G. Myers. Suffix arrays: a new method for on-line string searches. SIAM J. Comput.,
22(5):935–948, 1993.

[18] U. Manber and S. Wu. GLIMPSE: A tool to search through entire file systems. In Proceedings of
the USENIX Winter 1994 Technical Conference, pages 23–32, San Francisco, CA, 1994.

11

[19] G. Manzini. An analysis of the Burrows-Wheeler transform. In Proceedings of the Tenth Annual
ACM-SIAM Symposium on Discrete Algorithms, 669–677. Full version in Tech. Rep. B4-99-13,
IMC-CNR, 1999. http://www.imc.pi.cnr.it/~manzini/tr-99-13/.

[20] E. M. McCreight. A space-economical suffix tree construction algorithm. J. ACM, 23(2):262–272,
1976.

[21] K. Mehlhorn and M. H. Overmars. Optimal dynamization of decomposable searching problems.
Information Processing Letters, 12(2):93–98, April 1981.

[22] J. I. Munro. Tables. In Proceeding of the 16th Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS ’96), pages 37–42. Springer-Verlag LNCS n. 1180, 1996.

[23] J. I. Munro. Succinct data structures. In Proceeding of the 19th Conference on Foundations of Soft-
ware Technology and Theoretical Computer Science (FSTTCS ’99). Springer-Verlag LNCS n. 1738,
1999.

[24] G. Navarro, E. de Moura, M. Neubert, N. Ziviani, and R. Baeza-Yates. Adding compression to block
addressing inverted indexes. Information Retrieval Journal. To Appear.

[25] M. H. Overmars and J. van Leeuwen. Worst-case optimal insertion and deletion methods for decom-
posable searching problems. Information Processing Letters, 12(4):168–173, August 1981.

[26] K. Sadakane. A modified Burrows-Wheeler transformation for case-insensitive search with applica-
tion to suffix array compression. In DCC: Data Compression Conference, Snowbird, Utah, 1999.
IEEE Computer Society TCC.

[27] I. H. Witten, A. Moffat, and T. C. Bell. Managing Gigabytes: Compressing and Indexing Documents
and Images. Morgan Kaufmann Publishers, Los Altos, CA 94022, USA, second edition, 1999.

[28] S. Wu and U. Manber. agrep - A fast approximate pattern-matching tool. In Proceedings of the
Usenix Winter 1992 Technical Conference, pages 153–162, Berkeley, CA, USA, January 1991. Usenix
Association.

A The empirical entropy of a string

Let s be a string of length n over the alphabet Σ = {α1, . . . , αh}, and let ni denote the number of
occurrences of the symbol αi inside s. The zeroth order empirical entropy of the string s is defined as

H0(s) = −
h

∑

i=1

ni

n
log

(

ni

n

)

, (2)

where we assume 0 log 0 = 0. The value |s|H0(s), represents the output size of an ideal compressor which
uses − log ni

n bits for coding the symbol αi. It is well known that this is the maximum compression we can
achieve using a uniquely decodable code in which a fixed codeword is assigned to each alphabet symbol.
We can achieve a greater compression if the codeword we use for each symbol depends on the k symbols
preceding it. For any length-k word w ∈ Σk let ws denote the string consisting of the characters following
w inside s. Note that the length of ws is equal to the number of occurrences of w in s, or to that number
minus one if w is a suffix of s. The value

Hk(s) =
1

|s|

∑

w∈Σk

|ws|H0(ws) (3)

12

is called the k-th order empirical entropy of the string s. The value |s|Hk(s) represents a lower bound
to the compression we can achieve using codes which depend on the k most recently seen symbols. Not
surprisingly, for any string s and k ≥ 0, we have Hk+1(s) ≤ Hk(s). Note that the empirical entropy is
defined for any string without any assumption on the input.

B Proof of Lemma 1

For the sake of presentation, let us refer to the matrix M of BWT and concentrate on the computation
of sp. By the inductive hypothesis, sp points to the first row of M prefixed by the string P [i, p].
Let M[s] = cP [i, p]α be the first row in M prefixed by P [i − 1, p] (if any), where α is an arbitrary
string and c = P [i − 1]. Indeed M[s] is the row we are interested in, so that we aim at proving that
s = C[c] + Occ(c, 1, sp − 1) + 1.

We rotate cyclically to the left the row M[s] thus obtaining the row M[s′] = P [i, p]αc, for a proper
value s′. By the hypothesis, sp is the first row of M prefixed by P [i, p] and thus sp ≤ s′. From the
ordering of the rows in M (see Section 2), s′ must be the first row which follows the position sp and ends
with the character c (i.e. L[s′] = c). If this were not the case, then we would have found a row M[t′]
having the form P [i, p]βc with sp ≤ t′ < s′. This way M[t′] would precede lexicographically M[s′] and
hence β would be lexicographically smaller than α. The row cP [i, p]β would exist in M and should occur
before M[s], thus contradicting the definition of s.

From the properties of LF-mapping (see Section 2), we know that s is equal to C[c] plus the rank of
M[s′] among all rows in M ending with the character c. This rank is actually given by Occ(c, 1, sp−1)+1,
since it equals the number of times the character c occurs in the prefix T bw[1, sp− 1], plus one unit. This
proves the correctness of our formula for updating sp. A similar argument can be used to prove the
correctness of the formula for ep, and easily show that the algorithm correctly detects the case in which
P [i − 1, p] is not a prefix of any row in M (and therefore does not appear in T).

C Managing long runs of zeroes

In this appendix we discuss the computation of Occ(c, 1, k) in the general case in which Tmtf contains

one or more runs of zeroes which cross the border of the buckets BTmtf
i ’s. Recall that rle replaces

each (maximal) run of zeroes 0m in Tmtf with the string Bin(m) defined as the binary representation
of (m + 1) in reverse order (least significant bit first) and with the most significant bit discarded. This
encoding is also known as 1/2-encoding since if Bin(m) = b0b1 · · · bk then m =

∑k
j=0(bj + 1)2j . Because

of this property, from Bin(m) we can retrieve 0m by simply replacing each bit bj with a sequence of
(bj + 1)2j zeroes.

Suppose now that a sequence of a + b zeroes is split between two buckets, let say BTmtf
i−1 ends with

a zeroes and BTmtf
i starts with b zeroes (a similar argument can be adopted in the case of a sequence

overlapping an entire bucket). We define the compressed buckets BZi−1 and BZi as follows. We know
that rle transforms this sequence of zeroes into the string σ = Bin(a + b). We interpret every digit of
σ according to the 1/2 decoding scheme mentioned above and we assign to BZi−1 the shortest prefix
of σ whose 1/2 decoding is greater or equal than a. The remaining digits of σ are assigned to BZi. It
should be clear that table S introduced in Section 3.2 can be used to count the number of occurrences
of a character in a prefix of BZi−1 but does not work for BZi. Indeed, BZi−1 is a faithful encoding

of BTmtf
i−1 whereas the leading b zeroes of BTmtf

i are usually not faithfully encoded by the digits of σ
which we assigned to BZi. For this reason we introduce two additional arrays LT [1, u/ℓ] and LZ[1, u/ℓ]

defined in such a way that the portion of BTmtf
i starting from position LT [i] + 1 is faithfully encoded

by the portion of BZi starting from position LZ[i] + 1 (in our example LT [i] = b). Figure 2 shows the
resulting algorithm for the computation of the number of occurrences of c among the first j characters
of a compressed bucket BZi.

13

1. if c is the first character in MTF [i] then

2. if j ≤ LT [i] then return j

3. else return LT [i] + S[c, j − LT [i], Z[si + 1 + LZ[i], si + ℓ′],MTF [i]]

4. else

5. if j ≤ LT [i] then return 0

6. else return S[c, j − LT [i], Z[si + 1 + LZ[i], si + ℓ′],MTF [i]]

Figure 2: Computation of the number of occurrences of c among the first j characters of BZi.

Since the arrays LT and LZ occupy O((u/ℓ) log ℓ) = O((u/ log u) log log u) bits, their introduction
does not change the asymptotic space occupancy of the procedure Occ.

D Proof of Lemma 2

Let T̄ [1, v] denote a string drawn from an alphabet Λ of non-constant size, and let T̄ bw = bwt(T̄). For
each j = 0, 1, . . . , 2/ǫ, we construct the string T̄ bw

j by selecting from T̄ bw one out of logj ǫ v consecutive

occurrences of α, for every character α ∈ Λ. Moreover, we logically mark the characters of T̄ bw
j which

occur in the next string T̄ bw
j+1. Notice that T̄ bw

0 = T̄ bw and that the length of T̄ bw
j is Θ(v

logj ǫ v
).

Now consider a modified move-to-front procedure, called mtf∗, that encodes a character in T̄ bw by the

number of characters seen since its previous occurrence4. For j = 0, 1, . . . , 2/ǫ, let T̄mtf∗

j = mtf∗(T̄ bw
j).

We store the strings T̄mtf∗

0 , T̄mtf∗

1 , . . . , T̄mtf∗

2/ǫ and, for the characters in T̄ bw
2/ǫ, we also keep the explicit

value of their LF-mapping in the original transformed text T̄ bw.

The high-level idea to compute LF [s] for a character α = T̄ bw[s] is to use the arrays T̄mtf∗

j ’s to jump,

in Θ((2/ǫ) logǫ v) = Θ(logǫ v) steps, to an occurrence of α which is also in T̄ bw
2/ǫ. For this occurrence we

have the explicit LF-mapping and we can easily reconstruct LF [s]. More precisely, we start from T̄ bw
0 [s]

and we move to T̄ bw
1 , T̄ bw

2 , T̄ bw
2/ǫ updating a counter v as follows. Let T̄ bw

j [i] be the currently examined

character (initially j = 0, i = s and v = 0); if this character α is marked then we are done and v remains

unchanged; otherwise we move to the previous copy of α in T̄ bw
j using the distance encoded in T̄mtf∗

j [i]

and sum logj ǫ v to the counter v. Note that we are indeed implicitly jumping logj ǫ v occurrences of the
character α in the original T̄ bw, and thus we account for them in v. We have now reached a marked
character α, thus we can move to its corresponding copy in T̄ bw

j+1. After Θ(logǫ v) iterations, we reach a

copy of α in T̄ bw
2/ǫ for which its LF-mapping over T̄ bw is available. Consequently, we sum this value with

v and thus obtain LF [s] in overall Θ(log2ǫ v) time.
Note that in the above scheme we do not need the arrays T̄ bw

j ’s: we only need to access the values

stored in T̄mtf∗

0 , T̄mtf∗

1 , . . . , T̄mtf∗

2/ǫ . This is crucial to achieve a sublinear space bound. Let bin(i) denote

the binary representation of i + 1 (which takes 1 + ⌊log(i + 1)⌋ bits). We construct the following three
arrays for each j = 0, 1, . . . , 2/ǫ:

• Zj is a string succinctly encoding T̄mtf∗

j and consisting of the concatenation

bin(T̄mtf∗

j [1])bin(T̄mtf∗

j [2]) · · · bin(T̄mtf∗

j [v/logj ǫ v]);

4Notice that mtf∗ is different from mtf because in the latter we count the number of distinct characters.

14

• Wj is a binary array of length |Zj | such that Wj [i] = 1 iff Zj [i] is the starting bit-position of the

encoding of a value in T̄mtf∗

j ;

• Nj is a binary array of length |Zj | such that Nj [i] = 1 iff Wj [i] = 1 and the corresponding character
of T̄ bw

j occurs also in T̄ bw
j+1 (and thus it is marked).

Using the procedures rank and select described in [22] and applied on the arrays above, we can
implement each step of the computation of LF [s] described before in O(1) time. Namely, given an

encoding of T̄mtf∗

j starting at bit position i, we can check if this corresponds to a marked character α by

accessing Nj [i]. If this is the case we count the number of characters of T̄ bw
j+1 preceding α (via rank over

Nj [1, i]) and finally find the position of the encoding of α in T̄mtf∗

j+1 (via select on Nj+1). If α is not

marked, then we decode in O(1) time the entry of T̄mtf∗

j starting at the ith bit of Zj and then jump to

the previous occurrence of α in T̄ bw
j via rank and select operations over array Wj . In summary, each

of these operations takes O(1) time, and this proves the time bound of Lemma 2.
To prove the space bound we first observe that the space occupancy induced by the explicit LF-

mapping kept for the characters in T̄ bw
2/ǫ is O(v/ log v) bits (we store O(v/ log2 v) entries of O(log v) bits

each). The arrays Zj ’s, Wj ’s, Nj ’s and the data structures for the rank and select operations take
O(|Z0| + |Z1| + · · · + |Z2/ǫ|) bits of storage, hence O(|Z0|) bits. The lemma follows since from [6, 19] we

can derive the relation |Z0| = O(v(1 + Hk(T̄)) + |Λ|k+1(log |Λ| + log v)).

15

