

���������	
����
�����
��
����

��
����������

��������
�������
��
��� �

����
!�"
���#�
$��%&'��
���"����
&(

���)��*
�
���(���*

+ �����
� �
+

�

�����	�
����������������

������������������	�
���	����	�����������������

���������� ��	!�
�
�

�

Prefazione

La sicurezza dei dati e delle reti in funzione del suo impatto sul sistema Paese, con particolare

riferimento all’economia e alla sicurezza dei cittadini, è oramai diventata un tema centrale nel

contesto della moderna Società dell’Informazione e della Comunicazione. In questo quadro si sono

moltiplicate in tutto il mondo le iniziative mirate a stimolare attività di ricerca, sviluppo e

innovazione nel campo della sicurezza informatica. Gli attori coinvolti in queste iniziative non sono

solo le Accademie e gli istituti di ricerca ma anche soggetti privati e pubbliche amministrazioni

interessate alla realizzazione di dispositivi e applicazioni che oltre ad innovare i processi produttivi

tengano conto dei necessari requisiti di sicurezza.

Anche nel nostro Paese, nel corso degli ultimi anni abbiamo assistito al moltiplicarsi di iniziative,

tra le più disparate, nel settore. Diversi gruppi di ricerca hanno iniziato ad operare su temi specifici

del settore, sono stati avviati Master Universitari sul tema, Corsi di Laurea e numerose realtà

aziendali sono impegnate in progetti di ricerca su tematiche centrali o molto contigue a quelle della

sicurezza informatica.

PRISE 2006 è il primo Workshop Italiano di Privacy and Security. Aperto a ricercatori, esperti dal

mondo della pubblica amministrazione e dell’industria, è patrocinato dal Master in sicurezza dei

sistemi e delle reti dell’Università di Roma “La Sapienza” e dal Clusit: Associazione Italiana per la

Sicurezza Informatica.

Grazie ai numerosi articoli sottomessi, è stato possibile stilare un programma dei lavori che copre le

principali tematiche di ricerca della sicurezza dell’informazione. In particolare, gli argomenti

ricoperti includono:

Analisi di codice maligno e nuove forme di attacco - Analisi di protocolli crittografici -

Autenticazione e autorizzazione - Certificazione della sicurezza di sistemi informativi – Certificati

digitali - Controllo degli accessi - Informatica forense - Intrusion detection systems - Metodi per il

mantenimento dell’anonimato - Privacy-enhancing technology - Sicurezza dei dati e delle reti -

Sicurezza in ambienti mobili - Sviluppo di Software Sicuro

Non possiamo che essere contenti della accoglienza positiva di PRISE 2006 da parte della comunità

italiana, per questo il nostro ringraziamento più sincero va a tutti coloro che vi hanno dedicato

tempo e lavoro prezioso.

Workshop chairs

Prof. Danilo Bruschi - Università di Milano

Prof. Luigi V. Mancini - Università di Roma “La Sapienza”

����������	
����������	����������������������������

�������	�
���������
�������������	�����������

���������������
����������������	�������

�

�
�

��� !�	���"#�$����%��������	���	���$���������	����	&���
� ��	���'��(�����)���	*��������	�	������������	���"�+	�,��(��-������������������	��
�
�.�“�"��/������0�1���((�)�(���	���"��,����!�	#����1���������1	��(�(��	��
�(�����	&�
 ����	��2������(������#�	����(����)�,���3��**���1	�����'��������4�5(������+	�,��(��-����
����6)����%��	*�&�
�
�.�6+	(�%��,�(���)���	�	��1�������(�#����	���(��	���������	&�
� 7��(�%%������**������#�	��8�	����"��5���������	����������	��
�
���69������������	��+(�	��5"�����������	�	�&�
� �����*���1�������,���1,�	*�	�����,����!��������7��	������%����"�!/
"�5��3�7�	�,��
�
���6+���**�����1�,�	����2���	(���2������	�:�	#���������#���	(�&�
� ���#�	��2����%�������!�(����������"�!��(#����+	�,��(��-����'���	��
�
 ��6���,�����	���������	�	�0�����7���;���1%%�����&��
� 2��	��(���'�	�����2�(���7��		��������	�������(�����2��	���3���	��"�� !/
"��3�����(��
�
!��6���(��,�	��<"�	�	�������	�(%����"���%��������(��(��	��������	"=�(���(��,���(�
� !������'����	������������(������"���!>��+	�,��(��-�������	��
�
8. “1�������������2����$��<����1((�((����������������#��	��	#�������	��	#��(��������&
� 2.�'���������.����	��!������3���	�"���%������	�������	#����������+	�,��(��-������(��
�
"��6���<��0���$��������������)�(�((��	(&�
 ��((����'��	�(�����)������.���	��	��������3�((�����"�!/
"�1!���+	�,��(��-�)����%��	*�����
����
� �
�#��6!����	�!�����������������!����#������	��#�!��%�?��6/��$��<�!�	����&��!3����(���(&�
 ������)�(���7����	��3�((�	��"�� 3��(%�*�����1��
����
�
��.6����!���(0���(����*�=��@.A�B�,C������#�����(�#����������(���������#�?�=�������	����	,�	��	��&�
� 7��,�		��!�����������7�(���"�������+	�,��(��-����7�	�,��
�
�
�
�
�
�

extended abstract

Control-flow graph matching in malware

recognition

Danilo Bruschi Lorenzo Martignoni

Mattia Monga

Dip. di Informatica e Comunicazione

Università degli Studi di Milano

Via Comelico 39, 20135 Milano

{bruschi,martign,monga}@dico.unimi.it

Popular malware detectors look for their target by pattern matching. Detectors main-
tain a database of distinctive patterns (signatures) of malicious pieces of code and possi-
bly infected systems are searched for them. This approach is fast and, up to now, quite
effective when it is used to find known viruses.

However, this kind of defence will probably be circumvented by the next generation
malicious code which will intensively make use of metamorphic approaches. Though
this type of malware is not yet appeared in the wild, their feasibility and efficacy has
been shown by some prototypes [6] (see for example METAPHOR [1], ZMIST [5],
EVOL). Moreover, commercial virus scanners can be circumvented by simple mutation
techniques [4, 3]. Detecting malware passed through arbitrary human-driven mutations
is doomed to failure, since it is a problem as hard as program equivalence, an undecidable
problem. However, virus mutations have to be automatic: they normally range ranging
from trivial modifications (e.g. useless instructions insertion, and registers swapping)
to the complete mutation of the payload by cryptography. One of the most advanced
prototype is the ZMIST virus, which uses a metamorphic engine to change the static
structure of the virus payload and inserts itself into an executable code by scattering
its body among benign instructions. Malicious fragments are then connected together
using appropriate control flow transition instructions. Then, the malicious code will be
executed when the normal control flow reaches its first instruction: this technique is
known as Entry Point Obfuscation [2].

Threats such as those represented by the ZMIST virus, poses three serious challenges
to malware detectors:

1

• the ability to recognize self-mutating code;

• the ability to recognize malware which is randomly spread in the original code;

• the ability to recognize code which does not modify neither the behavior nor the
properties of the infected program.

Note also that in order to be effective a malware detector has to be able to solve the
above challenges simultaneously. The only viable way for dealing with such a kind of
threat is the construction of detectors which are able to recognize malware by analyzing
its dynamic behavior rather by scanning its text (e.g. by looking for fixed byte sequences
or anomalies in the executable header). In order to cope with the above problems we
propose we following strategy: given an executable program P we disassemble it in P ′. P ′

is normalized in order to obtain a canonical form PN in which most of the mutations are
undone. We then build the corresponding labelled inter-procedural control flow graph of
PN , i.e. CFGPN

, which will be compared against the control flow graph of a normalized
malware CFGM in order to verify whether CFGPN

contains a subgraph isomorphic to
CFGM . The problem of detecting a malware inside an executable is therefore reduced
to the subgraph isomorphism problem. Our strategy proved to be able to defeat most of
the mutations techniques of polymorphic malware and code scattering. with encouraging
experimental results

References

[1] MetaPHOR. http://securityresponse.symantec.com/avcenter/venc/data/

w32.simile.html.

[2] Computer Associates. Security advisor center glossary. http://www3.ca.com/

securityadvisor/glossary.aspx.

[3] Mihai Christodorescu and Somesh Jha. Static analysis of executables to detect ma-
licious patterns. In Proceedings of USENIX Security Symposium, August 2003.

[4] Mihai Christodorescu and Somesh Jha. Testing malware detectors. In Proceedings of
the 2004 ACM SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA 2004), pages 34–44, Boston, MA, USA, July 2004. ACM Press.

[5] Peter Ferrie and Peter Ször. Zmist opportunities. Virus Bullettin, 2001.

[6] P. Ször and P. Ferrie. Hunting for metamorphic. In Proceedings of Virus Bulletin
Conference, September 2001.

2

�

���������		
	����������
���������������
��	
��
������	�
��
�������

�

����
��������� �!�
�"#
��
����$� �%%$&$�'�����(�
�)�

� �
��*�+���������		
	���������
��������������
��	
��
,-���
�����

�

(.�/0/1�2���� �3����	���)����'����4�
��
�����
5� �!�
��#�����
�
��$6� �%%$67�'�����(�
�)�

� �
��*�+
��	�
�8
�����������������		
	���,-#��	��
$����
�

(�� (.�'/230�(/.�

��9�)���
�#	��������#	���)�����������#��������:�	9�������

��� �����
�
������� ��� ���#	��)����������� �	��� ������
�� �����

������ ��:�� ��� ���� ��
���	�� ��������� ���������
������

���#	��)� �����)� �������� �����	
������ �����
������
���

#���	��
����� ��� �
�
� �
�������
��� ����#���
������� (��
�

���:�	9�����	��������
�)��	�8������
)�
����
	�����#�����

���� ������������)� ��� ��������� ������������ 8)� ���#	��)�

�
��:
)��
��� ��	�:
���� ����	���������� ���	�
�� �����#	��

���:�	9�� ��� ����	�8#���� ���#	�� �)������ ���	�
��� ���

������;��)�� �����)� ������#	
�����
��� �
�����
���� �
�9��

8������ ���	�
�����)��	���� ����		�	����������		�	���
�������

	�������������������#	��)������������	���)��������
��
	��������#���

��� ������� 8���	��
��
��
�9� ��� �#���	���� ��	� ����� 	�
����
�

��	����
����� ��
��� ���#��� 8�� ��	��	���� :���� �����)� ���

��������
���
���	�
�)��������
������	������	
������

�
(��
� ������� ������� ����	�������� ���� ���
�� �����)� �
)�

����#������	
 �������
���
������:��	�������
����
�9����
)�

�
������	����
�����������	����	#����1�	����	���������	�8#�����

	�������#	��� ���#	��)� �
��:
)�������
�����
��� ����	 �������

���
�����:�����������#
�������������������
����
���
���)�

�����	���� �����	��
���
������� ��� ���� �
��� �	
���������	���	���

����
�������	
��	��#�������������
��
����������������)� ���
���

	#��� 	��
������ ��� ���� �
���������� ����	��	� ��� ����	����� ����

��		���� 	#����	��	��8#��
���� ���
��� 	��
������8��:����	#���� ���

�����	���� ������� ��� �	��	� ��� ����	����� ���� �	���	� 	#���

��
������� ��� �����	���	������������ �����#�8�	���� �����	����

	#���� ���	�
����� ���� ������#��)� ���
������
� ��:� 	#��� �	�

�����)����
���;�������������������
���)����	�
����������:�	9�

������ 8
���� ��	� ���� ������������ ���
� ��������� �)����� ��	�

���������)��������������������
���	����#�������
	������	�������

�
�)�������
�������������������	��������

�

<��
��#�����
�����������
	����	�
��)���
����
���	��������

�:��������������	�
���
��#
���������
������
���������������
�

���#	��)� �
��:
)� �
�� 8�� 	��#���� ���
�� �	��	��� ����� ���

�	����
�������������	��0� =����:��	��0����
�����������
�����

���
��
�������<�� 	���	� ��� �	����
���� ������������� ���#	��)�

���������
�� 	#����� ��	� ���#	��)� �
��:
)� ���� ���������� ���
�

�����	����	#������������������������������	�*�

�

>�	������=>�	����=>�	����	�=>������=>������	�=�

�

����
������ ��
�� ��#��� 8�� ��	��	���� ��� ���� �
�9��� ���

���:�����)��	��	�������:��	���	����������)���
�������
�9���

�
�����8���#8��������������(�����
���	�����?������@A��@�:�

����	��������
���
�9����������	�8������
����������1���:�����

���
������:����
���)��������#	��)�����
������0����������
	��

����9��� ��� �
��� �
�9��� ���:���� ��	�#��� ���� ��������

���)���� ��� �;��#�����)� ����
������ 	�B#�	��� 8)� ���� ��	���

�
�������	#����

(�� ����	
��
� ��������� ���#	�� :���� ����	��� �������� ���
�

�����)�
	��
�8��#�#�� �	� ���� ���
	�� (�� ����� �
��	� :�� ���#��

�#	�
������������
#���
�����������������������
���	����#�����

���
������)����������������
�����������#	��)��
��:
)��

�����)� ����������)� �
�� 8���� ���� �#8C���� ���
� ���� ���

����������	�������	���
	�������#���)�������������������
���

����	�8#������ ��� ����� �#8C����
	�� D$EDFEDGED7EDHE�� (�� DHE� ����

#���	�����)�
����������������������	�:
���	#����
	����		��
����

��� �
��� ����	�� :����� ��� D$EDFEDGE�
� ���� ��� ������B#���
���

���	������
	��������������������	�
���������������8��������)�

�����������:����
��
	���#�
	����#������ !�.������)�����	�8���

���D7E��@�:���	������������������#������	�������
�	����#�����

��
����/	����
������	�8#����������#	�:�	9�
	�����������������

���
� ����	
������������)� ��	� �����)� ��������� ��
������
�����

��� ����������
��� �;�����
����� ��� ����� ����������)�
��
�

8
��������������
#���
�������������	����#�����
���	�����������

�#��#�� ��� �#���
���	������ ���
� ��		������ �����)� ����� ��#��

�����8�)� ����8
�9� ��� ���� ���#	��)� �
�
��	� ��� ��;� ���������

������������
���
�����8����������
#���
���
��)��

�

����� :�	9� ��� �	�
������
�� �����:��� (�� �������� ((� :��

8	����)� �	������ �����
�� 	��
���������� 8��:���� 	#����
�� ���

D$ED7E�� (�� �������� (((� :�� �	������ �#	� ��	�
���
����� ���

����	��)� ��
������
����� ��	� ����������� (�� �������� (!�
��

���	����� ��� �������� ��	�
#���
���� ��������� 	����#������ (��

�������� !�� :�� �����
� �#��
)� ��� ���� ����:
	��

���������
������ ���
��)�� ��� �������� !(�� :�� ����� �#	�

�����#������
�����
�����	��#�#	��:�	9��

((�� 1/2��(."�/��'3����'����(/.�

��� 8��
8��� ��� ���	��#��� � !�.� �����)� ���������
�
�)����

���	����#�����������#���#������������
�������	��
��������
���
)�

����
� ��#���� ��� 	#����� ������ 	��
�������
�� �������� ��� D$ED7E��

	�B#�	��
�����
	�����8��:�����������:�	9����������������	����

	#���� ������������)� ��� ���� 	#���
������� ��	��� :�� ��
���

��	�
��)�:�
��
�	#����������#	������;���

� !�.������)*�������������(��	
 2������0��������

�#���
������
�)����
���'����#������

���#	��)� �
��:
)� ���������
�� :����
�� ��	�:
��� ���������

������)�
� �����	���� ���������� 0�
���
��
������ ��� ����

���������� 0�
����
�� ���������� ������ (�� �
�9���� ��
�� ����

��		����������
������
������������
�9��������	�������8
�������

���� �
�#��� ��� ����� ��
��	� ������*� (�� ������
�����
��� ��#	���

��	������ ?���� ���� �	�� ��A�� ������
�����
��� ��#	��� ��	��

�#�8�	��?������	����	����	�A�
�������(����
��	��	��������)���

?�	��A����	��
�������������������	��:����������������)�
��
�#��

�	�
� 	
��������
�#��������
����	����
��� ������� ��� ���������)�

�����:��
�����
���
�	#���'���������
��
����� �#��������������	�

�
	�
8����	
����*�

�

� ����������������������������� 					
 IIII ����� �

�

:��	�� ��	��� � ��	� � ��
;��� � ������	��� � ���	�

� �������������������������������� I�I�I�I�� ��

��.J� 8�����
� 5���K�� �
	�5� ��
�L� �B#��
�����)� :�� ��#���

	���
��� �.J� 8)� ���� ����	�� �����8��� 	
���� ��� ����

��		�����������������	��(�����������:����:��	���	�������������

�������	�:����
�� ������	� �
�#��� �
	�
8��� �� M� $�� N� N� N� �� HL�:��

������������ ����������	�	
����
�����
�������
�������	#���
�8)�

D�E�� <��
���� �������
� ���� ���	
��	�
� � �����	 �� L�
����

��	
 ���
�����
�������������������
��#��	������	�
��#8������	�

�����
���
�������������

<�� �
�� ��:� ��
��� ��	�
��)� ���� 8
���� 	��
������
�����

	#������	��������������
�
�)�����

�

������������*�'#���� �

��� �

	��0��������)�2��C��������

���)� ������ ��� �
 � ��� ����
� �#8�������� ��	�
� �#��	����������	�

�B#
�����������		������������������ �
 ���;
����*�

�
� �	��� �	����� �	����	�� ������� ������	��

�
 � �0�� $%�GG�%�%OF7� $%%G� $%�$�%�%OF7� 6%�

�
 � 32�� $%�7H�%�%OF7� $%%H� $%�F�%�%OF7� 66�

�

������������*�'#���� �
 �
��� �
 �
	���;
���)�1
������� ���

���)���������� �
 �����B#
�����������		������������������� �
 ��

�;
����*�

�
� �	��� �	����� �	����	�� ������� ������	��

�
 � �0�� $%�GG�%�%OF7� $%%G� $%�$�%�%OF7� 6%�

�
 � �0�� $%�GG�%�%OF7� $%%G� $%�$�%�%OF7� 6%�

�

������������*�'#���� �
 �
��� �
 �
	��(���#�����)�1
�������

��� ���)� ��� ���� �;
���)� �
����
��� ���)� ������ ��� �
 � ���
�

�#8���� ��� �	� �B#
�� ��� ���� ��		���������� ������ �� �
 �� �
 � ���

�
����� ���� �#8���� �
����� :����� �
 ��� �
����� ���� �#��	����

�
������;
����*�

�
� �	��� �	����� �	����	�� ������� ������	��

�
 � �0�� $%�GG�%�%O$&� $%%G� $%�$�%�%O$&� 6%�

�
 � �0�� $%�GG�%�%O$&� $%%G� $%�$�F�%OF7� 6%�

������������*�'#���� �
 �
��� �
 �
	���
	��
��)�1
����������

���	�� ���
�� ��
��� ���� ������ ��� �
 � ��
�� ���
� �#8���� ��� �	�
�

�#��	���� ��� �	� �B#
�� ��� ���� ��		���������� ������ ��� �

���

���	�� ���
�� ��
��� ���� ������ ��� �
 � ��
�� ��� ����
� �#8���� ��	�
�

�#��	����� ��	� �B#
�� ��� ���� ��		���������� ������ ��� �
 ��

�;
����*�

�
� �	��� �	����� �	����	�� ������� ������	��

�
 � �0�� $%�GG�%�%O$&� $%%G� $%�$�%�%O$&� 6%�

�
 � �0�� $%�7H�%�%O$&� $%%G� $%�$�F�%OF7� 6%�

�

����������� �*� '#���� �
 �
��� �
 �
	�� 0�		��
���� ��� �����

������� ��� �
 �
	�� �#8����� ��� �	� �B#
�� ��� ���� ��		����������

���������� �

�������	��������������������� �
 �
	���#��	��������

������		������������������� �
 ���;
����*�

�
� �	��� �	����� �	����	�� ������� ������	��

�
 � �0�� $%�GG�F�%OF7� �.J� $%�$�%�%O$&� 6%�

�
 � �0�� $%�GG�%�%O$&� �.J� $%�$�F�%OF7� 6%�

(((�� 0/.��(0���.��J�(��

�����
��:��������	����#��������� !�.������)�����������:��

�
��������
8�	
���
���:���
������
�������������:����������	��

���������� ��
�� ���� ���� �	�������� ��� D$ED7E�� ����� �
�� 8����

�����8)����	��#���������������������������������	��)��

�

������������*����� ����	��)����
� ��������� ��� ��������
�� ����

	
�9� ��� ��		��
����� 8��:���� ���� �	������� ��� ���� ��������� ���

���� �����)�
��� ���� �		����#�� 8��
���#	� ��� ���� 	����������

���������

���������8��
���#	�����������	����		����#��:������������

������		��������������
�������������#	��)��
�
��	���

���#�����
��)��������)�����
���������#	��)��
�
��	�����
��

8���� ������
)� ��� ��	�#�
���
� :�	9���� �)��������� ��� ����

8��
���#	��

�

�������� ����!�������������#	��)��
�
��	�����	���
�	#���

��� ���� �����)� 8��
#��� ��� :
���� ���
���)� ��� ���
�� ��
��� ����

�
�9����

� !�.� ���������
	�� ��	�
������ ����� 	#����
��� 	#����
	��

������� ���
���	��	�������L� ��	��
����
�9��� ���� ����� �����
�����

��� ���� ��	��� �
������� 	#��� ��� ��#��� ?���
�)AL� ����

��		����������
���������
���������������
�9����'#�����#	���	�

��:��������������
	������	�����	���
���
�9�����

<�� ��:� ���	��#��� ���� ��
������
����� ��� ����������

���	������������	��)�������*�

�

"�#���$#��!*��� 	#��� ��� ��� �;
����
����:����
�����	� ����

:���� ���� �:��	#����
	���B#
�� ���
����������	�� ������������)�

��� ���� �
�#��
��#���� ��� ����
������ ������� ������ �:�� 	#����

�
���������
����	
���������:��������:���	�����)�����
������

�������	#���:���������	��	��	��)������	��	������

���� �;
��� 1
���� ��������� ��� ���� ����� ����	�� ������ ��� ���

�������8������#���	��
���:������������	#����';�
���')�����

���#	��)��
�
��	�:
����� ��� 8�� ��	��	���������� ���
��
C�	�

�	�8���� 8���� ��� �
��� ����
������� ��� ���� �:�� 	#����
	��

�����	����
��� ��� �
��� ���)�
	�� ���� �
���� ������ ���� 	#���� ���

8��:���� ����� ������
��� ��� �
�9���� �
������ 8)� ����

�������������	#���� �
 �
��� �
 �������
������
���
9��
��	����
��

�����	��������������
��������	� �
 ��	� �
 ��

�

	!#��%���*� �� 	#��� ��� ��
��:��� :����
� �	����#�� 	#����

:���������	����
��������
������
��� �����
�9���� ��
�� ����� 	#���

�
�����������
��������
��:���	#���:��������	�8��
����
�����

�����9���������������������)�����	��8��
#���������
������)�

��� ���� 	#��� �
 � 	��	�������
� ����
����� ��� ����
��� ��� ����

���#	��)� �
�
��	�� �����B#����)� ��	��	�����
�� �		����#��

8��
���	�����������������;
����*�

�
� �	��� �	����� �	����	�� ������� ������	��
������

�
 � �0�� $%�%�%�%O6� �.J� 6%�%�%�%O6� 6%� 8)�
���

�
 � �0�� $%�F�F�%OF7� �.J� 6%�$�G�7OGF� 6%� �	������

�

&����
��'��#���*� �� 	#��� ��� ��� ����� 	��#��
��)� :����
�

�	����#��	#����:�����
���
��������
������
��������
�9������
��

����� 	#��� �
������ ��� ��
�� ���� 	��#��
��� 	#��� :���� ����	� 8��

����
������;
����*�

�
� �	��� �	����� �	����	�� ������� ������	��
������

�
 � �0�� $PF�%�%�%O6� �.J� $%�$�%�%O$&� 6%� �	������

�
 � �0�� $PF�$&6�F�%OF7� �.J� $%�$�%�%O$&� 6%� �	������

�

����������
�������
	�������
����
���		����#��8��
���#	����

���� ������� ����� ���� ������
	��)� ���#	�� J���� ����� 9���� ���

��������� ��� ����	�� 8��
#��� ���� ��
������)� ��� ���� 	#��� �
 �

	��	�������
� ����
����� ��� ����
��� ��� ���� ���#	��)� �
�
��	��

���	���������#	�:�	9�����)����������

�

(�����#����*� �:�� 	#����
	�� ��		��
���� ��� ���)� �
���

�����	���� �����	����
��������
��� ���� ��	��� 	#��� �
������ ����

�
��� �
�9���� ��
�� ���� ������� 	#����
������
��� ����� ��	�
��

�;
����*�

�
� �	��� �	����� �	����	�� ������� ������	��
������

�
 � �0�� $%�G�F�%OF7� �.J� 6%�$�%�%O$&� 6%� ����
	��

�
 � �0�� $%�%�%�%O6� �.J� 6%�$�G�7OGF� 6%� 8)�
���

�

(�� ����� ���#
�����
� ����
����� ��� ����
��� ��� ���� ���#	��)�

�
�
��	� ����� ���� ���#	� 8��
#��� 8���� ���� 	#����
	��
�������

8#�� ������������8��� ���������� ��� ����8��
���#	���� �����������

��� ���� �	
����� �
������� 8���� 	#���� ��� �		����#�� �	� �����

8��
#���������������������	��
������	��	���������:��	#�����

�

&���
��'��#���*� �� 	#��� ��� ��� �	�� 	��#��
��)� :����
�

�	����#�� 	#��� ��� ������ �
��� ���� �
���
�������
��� ��� ����

������� 	#��� �
�� �
����
��� ���� �
�9���� ��
�� ���� ��	��� 	#���

�
������� ���:���� ���� �:�� 	#���� ���	�� ���#��� ���� 8�� 	#����

��
��
	�����	��
�����:��������	��#��
���	#�����;
����*�

�

�

� �	��� �	����� �	����	�� ������� ������	��
������

�
 � �0�� $%�7�G�%OF7� �.J� 6%�&�&�%OF7� 6%� 8)�
���

�
 � �0�� $%�%�%�%O6� �.J� 6%�&�&�%OF7� 6%� 8)�
���

�

�����9�����������������
��8�������C#���
��
��
���
�)������
�

����	������������8��
#���8����	#����:�����	������������	
������

�

)����#��*#����*� �� 	#��� ���
� ����	
���
����� ���
� �	����#��

	#�������������
��������	����
�������
�����������������	#����
��

�
����
��������
�9������
��������	���	#����
��������;
����*�

�
� �	��� �	����� �	����	�� ������� ������	��
������

�
 � �0�� $%�F�G�FOGF� �.J� 6%�7�7�GOGF� 6%� 8)�
���

�
 � �0�� $%�F�%�%O6� �.J� 6%�7�7�%OF7� 6%� �	������

�

�����9�������������������
������������	��8��
#���8����	#����

:�����	������������	
�������	��	����������	����
�������������

�
����
�����8���
8������
��
���	�
��
�������	
8������#
������

�

���(�������*�<�����:��	#������������
���#���	�
�)��������

�	����#���
����	�������	�����
���
������.������������

�����	��	����������
	�����:���������������	���������	#����

������
)� ��	� ���� ���������� ��� ���������� ���� ��
��� ��
�	
��

�	�������� ��� D$E� �
�� 8���� ��
������ ���� ��������� ��
���

�
�������	
����������
�	
��������:��������#	��$��:���������

���������
�������	���
���	�
������

(!�� 0/.��(0��'��/�3�(/.�

� !�.� �	� �<� �����)� �
�� ��� 8�� ����
	��� ����		���� ���
�

�	��	������� 	#����
�
�)���� ������� �#��
�� ��
��� ���� ��� ����

����	�� ����������
�� �;
��� 1
����� ��
��:����
��� �����

'��#��
��)�� ���	���	�� ��� �
�� 8�� C#����� ��		���� ��� ����

�
�)�����������	�� ��
�� ���������)�����������
���
�)�����	��

������������

�
���������

�

0�������� 	����#����� �
9��� ��
����� ��� � !�.� �����)� ���

��
�����8��������	����	�����������	�������������:����#���������

�)�����������#	��)���	������	�B#�	���8)����#	��)��
�
��	���

�

+���'��,��$#��!�-��������������!.�

����� (���#����� 1
���� /	��	��� ?(1/A�
���	����� ���#	���

��
��� ��	�#��� ���� ������
����� ��� ����� 	#�����
���

�������
������ ��� ���� �	��	��)� �
�#�� ��� ���� 	��
������ 	#�����

���� ����� ���
��� � !�.� �����)� �����	���� ���
� ���
�� ��
���

:����#������	�������������

������8��
�)����� ������������������������� 	#����� �#8�������

���� �� :����� ����#����
��� ���� 	#����� �K�� ��������� �
�� 8��

��#��������������	�����������
����
9����
	�����
�������	#����

��� �;
��� 1
���� 	��
�����
�� ����	�8��� ��� ���� �	����#��

���	�������

��)� �
�	� ��� 	#����
	������
� ����	�� ��������� ����	� ��
��

�;
��� 1
����� ����� ��
��:���� �	� ����� '��#��
��)��
	�� ���

+$� 	��
������ ��� ��
�� ���� ����� ��������� 	#��� �
��
� �����	�

�	��	��)� ��
�� ��������	� 	#������#��� ����	���
	������
�����	�

���������	��������)��������
����
��8��	��#�������
��	�8�������

�
	��
���	��	�����������	#����	��
����8) +$� ��

����	���������	������*����� (1/�
���	����� ��� ���������

�����#	������*�

$A� 2�������;
���1
���� ����������
�9���� ���� #��	� ��� ����

�	������������:
�������
���)� ��������;
�������	
�����

?�	� 8)�
� �����	�
����� ���������)�
#���
���
��)�

������������������	���	�������	#��A��

FA� ��
�� ���� �����)� �����
��� ������
�)� ��#��� ���������

�	 �
(
 � �	� �&-�
(
 � 8)� ������� �
 ������
���)�

8���	�� �
 �:�����:
�������������

GA� '���
�� �����FA�#����� 	�
������ ���� ��
������
8���������

��
��:����
�������'��#��
��)������������

7A� 0���
	�� ���� �#��#�� ��� ���� �	����#�� �:�� ������ :����

���������
�������)������
��������)� �������#	��)��
�
��	�

:�������������8����	����������0�		��
������������������

��
������	����������	#����	��	��������������

�����;�����������
��������� �	�����
���
������������	������

��� ���� 	���
	���
���	�������� ����� ���
�� ��
���:������
� �������

�#�8�	�����������
	��8������	�
��)��	������

(�������
��)�� ���� �
��� �B#
���)���� �����	�����	������������

�� #���	� 8�#��� ��� ���� ����#�
����
�� ������;��)� ��� (1/�

���	�����:���������

�
�
�

��
��

�

�

��
�

F F

$
A$? ��

!�� �/��<�'��(1���1�.���(/.�

��
�)����
��� 	����#����� �������������� �
��� 8����

���������������
�����:
	��������������������0Q�������8C����

�	������� 1��	������ �	��	
������ �
��#
���� ���� ����� ���

�
�������'���

2�������������
����
��8����	�
���������������:��	��:
	��

����	�������1��!��#
����#����F%%H��;�	������������8
����

��������	
��:�	9��.���F�%��

!(�� 0/.0�3�(/.���.2��3�3'��</'R��

/��� ��� ��������� �	����
��
������� ��� ���#	��)� �	�8����� ���

���� �������8����)� ���
��#	
���)� ����9����
� �)����� 	�
��

:�
9�������

(��
�������;�
�������	�8#��������	�������������	�8�������

�	�
��)�
�����#
�����2#	���������	���������������#	
�����
���

���������
����� ��� ���� ���:�	9� ���#	��)� ��������� �		�	�� �
��

���#	�� 	��#������ ��� ������ ��� ���#	��)�
���� �����B#����)��

����	�������� ��������	�� �)����� �#������
���)���������		�	��

	�� ������ ��)� �
	�� ��� ������� 8)� ��	��	�����
� �
�#
�� �	�

���#
����������������	������	�
�����
#���
�����
�
����������

�������
������	�B#�	����

<�� �������
� �	
��:�	9�
���
���	������ ���
�����
��� �����

�	�8������	�
��������� !�.��	���	�:
�����������8)���
������

#���
���� �����)� ��������� ���������
�����
��� 	����#������ (��

�����:
)���������#	��)��
�
��	�����#�������:����
��
#���
����

����� ��
�� �
�� �������� ���
���
��� ������ ���������� ��
�� �
)�

���#	�:������
�� � !�.������)� �������
���� ��� ���� �	����#��

����	
�#	�����������#8C����:���
�����	�
������
���:����������

��
������
�������#����������������	��)����������1�	����	�:��

�
��� �	�������
��
#���
���� 	����#�����
���	������
���

������������������
�����:
	��������/#	��#�#	��	���
	�����
���

����#��� �;�������� ���� �	�������
���
�)� 	����#�����

������B#��� ��� �
����� ����	�8#���� ��	�:
��� ����������
��� ����

����	
������ 8��:���� � !�.� �����)�
��� �<� �����)�� /#	�

��	�
���:���� 8
������
���)���� ������������������������)�

���	#�����8�
�������	���������	#�����������:��
���������������

� ����	�8#���� ����	�������� ���� ���������� ����	��)�

��
������
�����:����8��
������������������	�8#��������	�������

��� ��:� ����������
��� 	����#�����
���	������ �#��� 8��

��������� ���� ���������� ����������)� :���� 8�� ���������

8��
#��� ��� ����
8������ ��� �	��	��)� 	��
����� 8��:���� 	#����

���������������	���������������#�� ���� 	����#�����
���	�����

:��K��8��8
������������������
��������������	��	��)��
�#�����

�����	#�����8#������	�
������	�������
��������	#����
���	�����

���������:���
������
������

'���'�.0���

D$E� ��� ��� ��
�	�
��� @�� @
����� 51��������
���

1
�
������� ��� ��	�:
��� ��������5�� ��� +"""�

�/�#��#������� ��� ���%���� #��� 	��,���� $#�#��.�����

!��#���$ $����	���F%%7��

DFE�� ��� ��� ��
�	�� @�� @
����� '�� ��#�
8
�� 1�� @
�
���

50�������� 0�
������
�����
��� ��
�)���� ��� 2���	�8#����

��	�:
�����������5�� ��� +"""�0�'��#�� ���	�����������#��

���(�..'���#����������FG�����$%��/���8�	�F%%H��

DGE�� ��� ��� ��
�	�
���@�� @
����� 5��	�:
��� �����)� ������	�

��	� ����
�)� 2���������
��� '#��� �������5�� ���

&����������� ��� +"""1+2+&� +�����#���� $#�#��.����

(����������3+$�44�561
	���F%%G7�

D7E� ��� ��� ��
�	�� @�� @
����� <�� 1
		�	�� 41��������
���

!�	����
����� ��� (�����
��� !�.� ���#	��)� ��������5���

&��������������+"""�+(�&8�44���.����8�	�F%%H��

DHE��@��� @
	��� ��� �#	��
��� "�� �
	#�9
	6� 52���������
���

'��������� �
�9��� �����	� 0��������5�� &����������� ���

+"""�+�2-(-$��4446�1
	���F%%%7�

�D&E��1��"�#�
�
���S����#�� 5��	�:
���2�����*�0���������)��

0�������������
��� 0���
������5� &����������� ��� �!��

���!� +"""� +�����#����#�� (���������� ��� ������9'����

(�.�'�����	����.��3+(�(:4�56�1
	���F%%77�

DTE�� ��� (�
�������� ��� R�	��)����� ��� ���������
��� U�� �������

5(������������
�2���	�8#���� ��	�:
��5� &����������� ���

;�!� �($� (���������� ��� (�.�'���� #���

(�..����#������	��'�����3((:4456�.����8�	�F%%%7�

D6E��<��0���:��9�
���������������� 5��	�:
����
��� (���	����

���#	��)5���������<������6�$PPH��

Unsupervised Learning Algorithms for Intrusion

Detection

Giuseppe Serazzi, Stefano Zanero

{serazzi,zanero}@elet.polimi.it

Dip. di Elettronica e Informazione, Politecnico di Milano

1 Introduction

Our research work focuses on the analysis and development of anomaly based
intrusion detection systems based on unsupervised learning algorithms.

Unsupervised learning algorithms are natural candidates for the task of de-
tecting anomalous and intrusive behavior in computer systems and networks,
for a number of reasons:

Outlier detection: unsupervised learning techniques are capable of identify-
ing “strange” observations in a wide range of phenomena; this is a char-
acteristic we definitely need in an anomaly based IDS.

Generalization: unsupervised learning techniques are also quite robust and
therefore can show better resistance to polymorphic attacks.

Unsupervised learning: we wanted to create a model totally orthogonal to
the misuse based model, which is dependent on the input of expert knowl-
edge, so we tried to develop an IDS which needed no a priori knowledge
inputs.

Adaptation: a learning algorithm can be tuned totally to the specific network
or system it operates into, which is also an important feature to reduce
the number of false positives and optimize the detection rate.

2 Original research contributions

Our key original contributions in this area of research (which we have published
in international conferences [1–4], and which have been the core of a doctoral
thesis [5]) can be identified as follows.

Network Intrusion Detection is a particularly difficult field for the applica-
tion of unsupervised learning algorithms. In particular, the varying size of the
payloads of the datagrams, and their heterogeneous nature which defies a com-
pact representation as a single feature, are the hardest problems to solve. Most
existing researches on this topic avoid this problem altogether by discarding the
payload and retaining only the information in the packet header, or by tracking
connection-wide variables instead of analyzing single packets.

This, however, inevitably leads to information loss: most attacks, in fact,
are detectable only by analyzing the payload of a packet, not the headers alone.

1

We proposed instead in [4] a two-tier architecture for a network based anomaly
detection system capable of handling also the content of the payload of network
packets.

In the first tier of the system, a Self Organizing Map (SOM) operates a basic
form of pattern recognition on the payload of the packets, observing one packet
payload at a time and “compressing” it into a byte of information (a “payload
class” value). This classification is then added to a subset of the information
decoded from the packet header and passed on to the second tier algorithm,
which is an anomaly detector (Smart Sifter) capable of detecting outliers in
multivariate time series.

We evaluated different algorithms for both tiers, and reported on our re-
sults [2]. We considered performance issues and proposed improvements and
heuristics to increase the throughput of SOMs by almost three times, with
marginal misclassification rates, to reach a speed which is suitable for online
Intrusion Detection purposes [3].

SmartSifter [6] is an unsupervised algorithm for outlier detection in multi-
variate time series based on discounting learning. It is designed for online usage,
and it uses a “forgetting factor” in order to adapt the model to non-stationary
data sources. The output of SmartSifter is a value expressing the statistical
distance of the new observation from the former ones. In order to automatically
tune the threshold beyond which a data vector is considered an outlier, we mod-
ified SmartSifter by introducing a training phase during which the distribution
of the anomaly scores is approximated, and an estimated quantile of the distri-
bution is also computed. In this way we can directly set the IDS sensitivity as
the percentage of packets we want to consider as outliers.

In order to evaluate how well the proposed system performs, we can compare
it against two comparable state-of-the-art systems. The authors of SmartSifter
claim a 18% detection rate, with a 0.9% false positive rate. Our algorithm
can instead reach a 92% detection rate with a 0.17% false positive rate, thus
demonstrating a highly superior performance.

PAYL [7] is a prototype which uses part of the payload of packets: in fact, it
is the only instance in literature, besides our own work, where such a concept is
applied. The best overall results for PAYL show a detection rate of 58.7%, with
a false positive rate that is between 0.1% and 1%. Our architecture can reach
the same detection rate with a false positive rate below 0.03%, thus an order
of magnitude better than PAYL, or on the other hand it can reach a 88.9%
detection rate with no more than a 1% rate of false positives.

3 Future work perspectives

We are now striving to improve the speed of the network based IDS system to
make it suitable for Gigabit speed detection, as well as working to reduce the
false positive rate as much as possible.

In this direction, we feel that an interesting perspective is the integration of
the network based system with a novel host based systems we designed [5], in
order to use the results of both to automatically filter out false positives and
to improve correlation and alert quality. We are also trying to allow a human
expert to refine the training of the system, with a “semi-supervised” approach.
Additionally, we need to enhance the amount of information a human operator

2

can get from the system, and to make it more user friendly and actionable.
Evaluation of an intrusion detection system is a difficult and open research

topic [8]. It is very difficult to plan tests for the different performance metrics of
an IDS system (such as throughput, detection capabilities, etc.), and it is even
more difficult to combine these tests in a meaningful, overall evaluation. Most
evaluations therefore consist of a simple run of the algorithms over a dataset
containing background activities as well as attacks.

For privacy reasons, it is very difficult to gather the full payload traces of
real networks. In addition, IDS researchers need clearly labeled data where
attacks are described in full details, something which is usually impossible to
achieve with real-world dumps. The only such dataset is the so-called “DARPA
IDS Evaluation dataset”, collected between 1998 and 1999 in order to evaluate
detection rates and false positives rates of IDS.

Other datasets exist, but they are not labeled and do not contain “back-
ground traffic”. Thus, most existing researches on network based IDSs use the
DARPA datasets for evaluation. This is a crucial factor: any bias or error in
the DARPA dataset has influenced, and will influence in the future, the very
basic research on this topic.

Both the background traffic and the attack traffic are artificially generated
specifically for IDS evaluation. In [9] there is a detailed analysis of the short-
comings of the 1999 traffic sample set. In particular, the author notes that no
detail is available on the generation methods, that there is no evidence that the
traffic is actually realistic, and that spurious packets, so common on the Internet
today, are not taken into account. The same can be said for checksum errors,
fragmented packets, and similars. The simulated network is flat, and therefore
unrealistic. In [10] additional strange characteristics of the synthetic packets are
detected, and the authors even propose a simple IDS system based on a single
byte of the IP header (the third byte of the IP address, in particular), which
achieves a 45% Detection Rate with just a bunch of false positives.

In [5] we also make it evident that the host based traces suffer from similar
issues. The first problem is that there are too few execution instances for each
software. The number of system calls used is also extremely limited, making
execution flows very similars. Additionally, most of these executions are similars,
not covering the full range of possible execution paths of the programs (thus
causing overfitting of any anomaly model). The arguments show the same lack
of variability.

Furthermore, since the last dataset in the IDEVAL series was created in 1999,
attacks and programs are hopelessly outdated by now. Since most attacks in
the dataset are buffer overflows, we were able to create a detector which finds
all the attacks in the host based datasets without any false positive.

Therefore we think it is high time to study and create a more sound method-
ology for evaluating and testing intrusion detection systems. We are designing
a toolset for generating synthetic traffic and superimposing attacks, and we will
try to develop a methodology for evaluation which is both scientifically repeat-
able and sound with respect to real world usage requirements.

3

References

[1] Stefano Zanero. Behavioral intrusion detection. In Cevdet Aykanat, Tugrul
Dayar, and Ibrahim Korpeoglu, editors, Proceedings of ISCIS 2004, volume
3280 of Lecture Notes in Computer Science, pages 657–666, Kemer-Antalya,
Turkey, October 2004. Springer.

[2] Stefano Zanero. Analyzing tcp traffic patterns using self organizing maps.
volume 3617 of Lecture Notes in Computer Science, pages 83–90, Cagliari,
Italy, September 2005. Springer.

[3] S. Zanero. Improving self organizing map performance for network intrusion
detection. In SDM 2005 Workshop on “Clustering High Dimensional Data
and its Applications”, 2005.

[4] Stefano Zanero and Sergio M. Savaresi. Unsupervised learning techniques
for an intrusion detection system. In Proc. of the 2004 ACM Symposium
on Applied Computing, pages 412–419. ACM Press, 2004.

[5] Stefano Zanero. Unsupervised Learning for Intrusion Detection. PhD thesis,
Politecnico di Milano, 2006.

[6] K. Yamanishi, J.-I. Takeuchi, G. J. Williams, and P. Milne. Online unsu-
pervised outlier detection using finite mixtures with discounting learning
algorithms. Knowledge Discovery and Data Mining, 8(3):275–300, 2004.

[7] Ke Wang and Salvatore J. Stolfo. Anomalous payload-based network in-
trusion detection. In RAID Symposium, September 2004.

[8] Stefano Zanero. My ids is better than yours... or is it ? In Blackhat Federal
2006 Briefings, 2006.

[9] John McHugh. Testing intrusion detection systems: a critique of the 1998
and 1999 DARPA intrusion detection system evaluations as performed
by lincoln laboratory. ACM Trans. on Information and System Security,
3(4):262–294, 2000.

[10] M. V. Mahoney and P. K. Chan. An analysis of the 1999 DARPA / Lincoln
laboratory evaluation data for network anomaly detection. In Proceedings
of the 6th International Symposium on Recent Advances in Intrusion De-
tection (RAID 2003), pages 220–237, Pittsburgh, PA, USA, September
2003.

4

Research Contributions on IDS

Giuseppe Serazzi, Stefano Zanero

{serazzi,zanero}@elet.polimi.it

Dip. di Elettronica e Informazione, Politecnico di Milano

1 Introduction

Our research work focuses on the analysis and development of anomaly based
intrusion detection systems based on unsupervised learning algorithms.

Unsupervised learning algorithms are natural candidates for the task of de-
tecting anomalous and intrusive behavior in computer systems and networks,
for a number of reasons:

Outlier detection: unsupervised learning techniques are capable of identify-
ing “strange” observations in a wide range of phenomena; this is a char-
acteristic we definitely need in an anomaly based IDS.

Generalization: unsupervised learning techniques are also quite robust and
therefore can show better resistance to polymorphic attacks.

Unsupervised learning: we wanted to create a model totally orthogonal to
the misuse based model, which is dependent on the input of expert knowl-
edge, so we tried to develop an IDS which needed no a priori knowledge
inputs.

Adaptation: a learning algorithm can be tuned totally to the specific network
or system it operates into, which is also an important feature to reduce
the number of false positives and optimize the detection rate.

2 Original research contributions

Our key original contributions in this area of research (which we have published
in international conferences [1–4], and which have been the core of a doctoral
thesis [5]) can be identified as follows.

Network Intrusion Detection is a particularly difficult field for the applica-
tion of unsupervised learning algorithms. In particular, the varying size of the
payloads of the datagrams, and their heterogeneous nature which defies a com-
pact representation as a single feature, are the hardest problems to solve. Most
existing researches on this topic avoid this problem altogether by discarding the
payload and retaining only the information in the packet header, or by tracking
connection-wide variables instead of analyzing single packets.

This, however, inevitably leads to information loss: most attacks, in fact,
are detectable only by analyzing the payload of a packet, not the headers alone.
We proposed instead in [4] a two-tier architecture for a network based anomaly

1

detection system capable of handling also the content of the payload of network
packets.

In the first tier of the system, a Self Organizing Map (SOM) operates a basic
form of pattern recognition on the payload of the packets, observing one packet
payload at a time and “compressing” it into a byte of information (a “payload
class” value). This classification is then added to a subset of the information
decoded from the packet header and passed on to the second tier algorithm,
which is an anomaly detector (Smart Sifter) capable of detecting outliers in
multivariate time series.

We evaluated different algorithms for both tiers, and reported on our re-
sults [2]. We considered performance issues and proposed improvements and
heuristics to increase the throughput of SOMs by almost three times, with
marginal misclassification rates, to reach a speed which is suitable for online
Intrusion Detection purposes [3].

SmartSifter [6] is an unsupervised algorithm for outlier detection in multi-
variate time series based on discounting learning. It is designed for online usage,
and it uses a “forgetting factor” in order to adapt the model to non-stationary
data sources. The output of SmartSifter is a value expressing the statistical
distance of the new observation from the former ones. In order to automatically
tune the threshold beyond which a data vector is considered an outlier, we mod-
ified SmartSifter by introducing a training phase during which the distribution
of the anomaly scores is approximated, and an estimated quantile of the distri-
bution is also computed. In this way we can directly set the IDS sensitivity as
the percentage of packets we want to consider as outliers.

In order to evaluate how well the proposed system performs, we can compare
it against two comparable state-of-the-art systems. The authors of SmartSifter
claim a 18% detection rate, with a 0.9% false positive rate. Our algorithm
can instead reach a 92% detection rate with a 0.17% false positive rate, thus
demonstrating a highly superior performance.

PAYL [7] is a prototype which uses part of the payload of packets: in fact, it
is the only instance in literature, besides our own work, where such a concept is
applied. The best overall results for PAYL show a detection rate of 58.7%, with
a false positive rate that is between 0.1% and 1%. Our architecture can reach
the same detection rate with a false positive rate below 0.03%, thus an order
of magnitude better than PAYL, or on the other hand it can reach a 88.9%
detection rate with no more than a 1% rate of false positives.

3 Future work perspectives

We are now striving to improve the speed of the network based IDS system to
make it suitable for Gigabit speed detection, as well as working to reduce the
false positive rate as much as possible.

In this direction, we feel that an interesting perspective is the integration of
the network based system with a novel host based systems we designed [5], in
order to use the results of both to automatically filter out false positives and
to improve correlation and alert quality. We are also trying to allow a human
expert to refine the training of the system, with a “semi-supervised” approach.
Additionally, we need to enhance the amount of information a human operator
can get from the system, and to make it more user friendly and actionable.

2

Evaluation of an intrusion detection system is a difficult and open research
topic [8]. It is very difficult to plan tests for the different performance metrics of
an IDS system (such as throughput, detection capabilities, etc.), and it is even
more difficult to combine these tests in a meaningful, overall evaluation. Most
evaluations therefore consist of a simple run of the algorithms over a dataset
containing background activities as well as attacks.

For privacy reasons, it is very difficult to gather the full payload traces of
real networks. In addition, IDS researchers need clearly labeled data where
attacks are described in full details, something which is usually impossible to
achieve with real-world dumps. The only such dataset is the so-called “DARPA
IDS Evaluation dataset”, collected between 1998 and 1999 in order to evaluate
detection rates and false positives rates of IDS.

Other datasets exist, but they are not labeled and do not contain “back-
ground traffic”. Thus, most existing researches on network based IDSs use the
DARPA datasets for evaluation. This is a crucial factor: any bias or error in
the DARPA dataset has influenced, and will influence in the future, the very
basic research on this topic.

Both the background traffic and the attack traffic are artificially generated
specifically for IDS evaluation. In [9] there is a detailed analysis of the short-
comings of the 1999 traffic sample set. In particular, the author notes that no
detail is available on the generation methods, that there is no evidence that the
traffic is actually realistic, and that spurious packets, so common on the Internet
today, are not taken into account. The same can be said for checksum errors,
fragmented packets, and similars. The simulated network is flat, and therefore
unrealistic. In [10] additional strange characteristics of the synthetic packets are
detected, and the authors even propose a simple IDS system based on a single
byte of the IP header (the third byte of the IP address, in particular), which
achieves a 45% Detection Rate with just a bunch of false positives.

In [5] we also make it evident that the host based traces suffer from similar
issues. The first problem is that there are too few execution instances for each
software. The number of system calls used is also extremely limited, making
execution flows very similars. Additionally, most of these executions are similars,
not covering the full range of possible execution paths of the programs (thus
causing overfitting of any anomaly model). The arguments show the same lack
of variability.

Furthermore, since the last dataset in the IDEVAL series was created in 1999,
attacks and programs are hopelessly outdated by now. Since most attacks in
the dataset are buffer overflows, we were able to create a detector which finds
all the attacks in the host based datasets without any false positive.

Therefore we think it is high time to study and create a more sound method-
ology for evaluating and testing intrusion detection systems. We are designing
a toolset for generating synthetic traffic and superimposing attacks, and we will
try to develop a methodology for evaluation which is both scientifically repeat-
able and sound with respect to real world usage requirements.

References

[1] Stefano Zanero. Behavioral intrusion detection. In Cevdet Aykanat, Tugrul
Dayar, and Ibrahim Korpeoglu, editors, Proceedings of ISCIS 2004, volume

3

3280 of Lecture Notes in Computer Science, pages 657–666, Kemer-Antalya,
Turkey, October 2004. Springer.

[2] Stefano Zanero. Analyzing tcp traffic patterns using self organizing maps.
volume 3617 of Lecture Notes in Computer Science, pages 83–90, Cagliari,
Italy, September 2005. Springer.

[3] S. Zanero. Improving self organizing map performance for network intrusion
detection. In SDM 2005 Workshop on “Clustering High Dimensional Data
and its Applications”, 2005.

[4] Stefano Zanero and Sergio M. Savaresi. Unsupervised learning techniques
for an intrusion detection system. In Proc. of the 2004 ACM Symposium
on Applied Computing, pages 412–419. ACM Press, 2004.

[5] Stefano Zanero. Unsupervised Learning for Intrusion Detection. PhD thesis,
Politecnico di Milano, 2006.

[6] K. Yamanishi, J.-I. Takeuchi, G. J. Williams, and P. Milne. Online unsu-
pervised outlier detection using finite mixtures with discounting learning
algorithms. Knowledge Discovery and Data Mining, 8(3):275–300, 2004.

[7] Ke Wang and Salvatore J. Stolfo. Anomalous payload-based network in-
trusion detection. In RAID Symposium, September 2004.

[8] Stefano Zanero. My ids is better than yours... or is it ? In Blackhat Federal
2006 Briefings, 2006.

[9] John McHugh. Testing intrusion detection systems: a critique of the 1998
and 1999 DARPA intrusion detection system evaluations as performed
by lincoln laboratory. ACM Trans. on Information and System Security,
3(4):262–294, 2000.

[10] M. V. Mahoney and P. K. Chan. An analysis of the 1999 DARPA / Lincoln
laboratory evaluation data for network anomaly detection. In Proceedings
of the 6th International Symposium on Recent Advances in Intrusion De-
tection (RAID 2003), pages 220–237, Pittsburgh, PA, USA, September
2003.

4

 1

Abstract—We propose a new technique to detect internet

worm. We base our research on the fact that an indirect worm (a

worm spreading by e-mail) needs to spread quickly and so it

sends a lot of e-mail in a short while, producing an anomalous

behaviour. Moreover we found stealthy worms through detecting

traffic anomalies. We worked on a mail-server log of a real

network and the results obtained drove us to detect indirect worm

with different approaches based on various parameters (global e-

mail flow, single host e-mail flow, reject, sender field analysis).

Index Terms— Data Mining, E-mail, , Early Detection, Worm

I. INTRODUCTION

LECTRONIC mail has become, in the recent years, with the

growth of internet one of the most used methods of

communication among people, institutions and companies.

Some recent enhancement to the e-mail technology, like

digital signature, drove to certified e-mail, which will

substitute standard communications like registered letters.

Therefore it is simple to bet that electronic messages will

continue to increase in the near and far future. Due to this

phenomenon, virus and worm creators choose electronic

messages as a preferred way for the diffusion of their

executable codes and, as a result, hosts on the net are

constantly under attack by malicious programs attached to e-

mails.

Worms are divided in two different kind: direct worms,

which don’t need a medium to propagate, because they use

computer networks, exploiting operating systems bugs or

weaknesses; indirect worms, which spread in an “indirect”

way, using deceitful means like peer to peer file sharing or, as

already said, e-mails.

Our experience in network administration leads us to

analyze the e-mail traffic. In the known literature there are two

main approaches to worm detection [1]: misuse detection and

anomaly based. The first one is based upon the signature

concept, it is more accurate but it lacks the ability to identify

the presence of worms that do not fit a pre-defined signature,

resulting not adaptive. The second one tries to create a model

to characterize a user's normal behaviour: the system defines

the expected network behaviour and, if there are significant

deviations from the profile, raises an alarm. It is a more

adaptive system, ready to counterattack new threats, but it has

a lot of false negatives.

We choose the second one combined with an experience

driven statistical method because every day new worms are

created and sometimes the lag time [2] between virus

generation and virus protection is a bit more than little.

Another reason is that to protect hosts from a new worm it is

necessary, according to misuse approach, to wait for the new

signature. What we propose has no need of vendor update, so

we think that this feature should be careful taken into account.

First of all, in our study, we decide to analyze the overall e-

mail flow of the network and in a second time the flow of a

single host on the network. Analyzing the results of this first

step we found that there are other features that permit to

identify infected hosts.

This paper is organized as follows: Section 2 discusses

previous researches on this topic, Section 3 presents our

scenario and our tools, Section 4 describes our analysis and

our results, Section 5 talks about practical implementations

and finally in Section 6 we speak of future and on-going work.

II. RELATED WORK

In recent years, worm detection has become a very active

branch of research also because the high claim from big and

little business company. Both the private and the academic

world have proposed a lot of ideas and solutions. In this

scenario we find EMT [3] which is a data mining system that

computes behaviour models of user e-mail account, based on

clique theory [4], which identify groups of users which have a

frequent e-mail traffic. They used a simulated viral e-mails to

do their studies, approach that can mislead some results. A

misuse system is Honeycomb [5], where attack signatures are

automatically generated per port: they use pattern matching

techniques and honeypots [6]. They rely on signature that can

take time to be created but they work on a real network, a

good thing from our point of view.

Don Towsley, et al. [7] with their MWC propose to search

for worm epidemic pattern using Kalman filters [8] on

illegitimate traffic (e.g. IP scanning). They calculate the traffic

trend of growth and they compare it with an exponential

epidemic model. MWC needs a lot of hosts to be effective (

2^20) and it detects only direct worms (worm spreading not

by e-mail and using system bugs). Moreover if a worm has a

hit list (a list of real hosts to attack, got from Border Gate-way

Protocol (BGP) [9] it is not detected by this approach. In

literature another interesting approach in fighting worms is the

Worm-killing worm or Counter-worm [10]. It doesn't detect

the malware, but using a "patching worm" contrasts the speed

Worm Detection Using E-mail Data Mining

Maurizio Aiello*, David Avanzini*, Davide Chiarella†*, Gianluca Papaleo†*

*National Research Council, Institute IEIIT, Genoa

 †University of Genoa, Department of Computer and Information Sciences, Italy

E

 2

of infection healing the vulnerable hosts: it is clear that WKW

is useful only against direct worm and this technique has a lot

of legal, ethic and technical problems.

III. OUR SCENARIO

Our approach is highly experimental. In fact we work on ten

local area network interconnected by a layer three switch and

directly connected to Internet (no NAT policies, all public IP).

In this network we have five mail-servers and one antivirus

server. Since it is a research institution almost all the hosts are

used by a single person and only few of them are shared

among different people (students, fellow researcher etc.). We

focus our attention on one mail server (Figure 1).

We analyze mail-server log of 500 days length period. To

speed up the process we use LMA (Log Mail Analyzer [11])

to make the log more readable.

Figure 1

LMA [12] is a Perl program, open source, available on

Sourceforge, which makes Postfix [13] and Sendmail [14] log

human readable. It reconstructs every single e-mail transaction

spread across the mail server log and it creates a plain text file

in more simple format like. Every row represents a single

transaction and it has the following fields:

Timestamp It is the moment in which the e-mail has been

sent: it is possible to have this information in

Unix timestamp format or in julian format.

Client It is the hostname of e-mail sender.

IP Client It is the IP of the sender’s host.

From It is the e-mail address of the sender.

To It is the e-mail address of the receiver.

Status It is the server response (e.g. 450, 550 etc.).

With this format is possible to find the moment in which the

e-mail has been sent, the sender client name and IP, the from

and to field of the e-mail and the server response.

Lets make an example: if Paul@myisp.com send an e-mail

on 23 march 2006 to Pamela@myisp.com from X.X.2.235 and

all the e-mail server transactions go successful we will have a

record like this:

23/03/2006 X.X.2.235 Paul@myisp.com

Pamela@myisp.com 550

After ordering the data we begin with the analysis.

IV. ANALYSIS

Our analysis has been made on the e-mail traffic of ten C-

class network in a period of 500 days, from January 2004 to

April 2005.

In the first step of our analysis, we work on the global e-

mail flow in a given time interval. We use a threshold

detection [15], like other software do (e.g. Snort [16]): if the

volume of traffic rises above a given threshold, the system

triggers an alarm. The given threshold is calculated in a

statistical way, where we determine the network normal e-mail

traffic in selected slices of time: for example we take the

activity of a month and we divide the month in five-minutes

slices, calculating how many e-mails are normally sent in five

minutes. After that, we check that the number of e-mails sent

in a day during each interval don’t exceed the threshold. We

call this kind of analysis base-line analysis. Our strategy is to

study the temporal correlation between the present behaviour

(maybe modified by the presence of a worm activity) of a

given entity (pc, entire network) and its past behaviour (normal

activity, no virus or worm presence). Before proceeding,

however, we preprocess the data subtracting the mean to the

values and cutting all the interval with a negative number of e-

mails, because we wanted to obfuscate the no-activity and few

activity periods, not interesting for our purposes. In other

words we trashed all the time slices characterized by a number

of e-mail sent below the month average, with the purpose of

dynamically selecting activity periods (working hours, no

holidays etc). If we didn’t perform this preprocessing we could

have had an average which depended on night time, weekend

or holidays duration. After this we calculate the baseline

activity of working hours according to the following:

Baseline = � + 3�

The mean and the variance are calculated for every month,

modeling the network behaviour, taking into account every

chosen time interval (e.g. we divide February in five-minutes

slices, we count how many e-mails are sent in these periods

and then we calculate the mean of these intervals). We used a

similar approach counting only e-mails rejected by mail-server

(550 and 450 errors). Both Global Flow e-mails and Rejected

e-mails flow analysis were performed on a single host basis

and on the traffic generated by the whole network. In the

following sections we find the different type of analysis, which

differentiate one from another by the kind of traffic considered

or the information processed. In order we have Global Flow

 3

mails sent in May 2004, 5 minutes

0

20

40

60

80

100

120

140

160

1083000000 1083500000 1084000000 1084500000 1085000000 1085500000 1086000000 1086500000

timestamp

#
 e

-m
a
il

s

X.X.5.123

0

5

10

15

20

25

30

35

40

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Days of November

F
ro

m
 u

s
e
d

mails sent in May 2004, 1 hour

0

50

100

150

200

250

1,083E+09 1,084E+09 1,084E+09 1,085E+09 1,085E+09 1,086E+09 1,086E+09 1,087E+09

timestamp

#
 e

-m
a
il

s

analysis, Single IP flow analysis, From analysis, Rejected e-

mails flow analysis and Single IP rejected e-mails flow

analysis.

A. Global Flow Analysis

First kind of analysis has considered the global e-mail flow in

each given period of time. Values have been compared with

the baseline threshold and if found greater than it they have

been marked. Analyzing the first five months with a five

minutes slice we found too many alerts and a lot of them

exceeded the threshold only for few e-mails. So we thought to

correlate the alerts found with a five minutes period with those

found with an hour period, with the hypothesis that a worm

which has infected a host sends a lot of e-mail both in a short

period and in a bit longer period. To clarify the concept lets

take the analysis for a month: may 2004. The five minutes

base-line resulted in 23 e-mails while the one hour base-line is

113.

Figure 2

In five-minutes analysis we found twenty-three alerts,

meanwhile in one-hour analysis only five. Why do we find a so

big gap between the two approaches? In five-minutes analysis

we have a lot of false alarms, due to the presence of e-mails

sent to very large mailing lists while in one-hour analysis we

find very few alarms, but these alarms result more significant

because they represents a continuative violation of the normal

(expected) activity.

Figure 3

Correlating these results, searching the selected five-minutes

periods in the five one-hour alert we detected that a little set of

the five-minute alarms were near in the temporal line: after a

deeper analysis, using our knowledge and experience on real

user’s activity we concluded that it was a worm activity.

B. Single host flow Analysis

Analogously we did with the traffic flow of a single host,

which means all the e-mails with the same IP-Client sent in a

selected period. We do this in order to find worms, which we

call “stealthy” worms: very slow spreading or little activity

worms. In fact the activity of this kind of worms results hidden

in the global flow analysis, because they camouflage in the

normal activity: the noise produced by legitimate e-mails

exceeds signal produced by worm. We found out that there

were two stealthy worm activities and that the remaining alerts

were a subset of those worms found in the global flow.

C. From field Analysis

However, sometimes, peaks catch from flow analysis were e-

mail sent to mailing list which are, as already said, bothersome

hoaxes. This fact produced from analysis, where we analyze

how many different e-mail address every host use: we look

which from field is used by every host. In fact an host, owned

by a single person or few persons, is not likely to use a lot of

different e-mail addresses in a short time and if it does so, it is

highly considerable a suspicious behaviour. So we think that

this analysis could be used to identify true positives, or to

suggest suspect activity. Of course it isn’t so straight that a

worm will change from field continuously, but it could be.

Lets take a look to Figure 4 , it is almost clear that something

wrong is happening in our network.

Figure 4

 4

D. Rejected e-mails analysis

One typical feature of a malware is haste in spreading the

infection. This haste leads indirect worms to send a lot of e-

mail to unknown receivers or nonexistent e-mail address: this

is a mistake that, we think, it is very important. In fact all e-

mails sent to a nonexistent e-mail address are rejected by the

mail-server, and they are tracked in the log.

In this step of our work we analyze rejected e-mail flow: we

work only on e-mails referred by internet server. By this

approach we identified various worm activity.

In all the methodologies where we considered the global traffic

we acted in a similar way with single host traffic and vice

versa.

V. RESULTS

The six approaches do detect various kind of worm (stealthy

worms, lazy worms, hasty worms). The results we obtained are

summarized in the table.

Figure 5

As we can see there isn’t an approach which could detect all

the worms, so we think that it might be a good idea to use all

the approaches in a threshold system. The system can be

implemented like in Figure 6.

 In Figure 6 we can see that at every kind of detection is

assigned a value (Global Email Flow: 1/ Global Email Flow-

Reject: 0,33/ Global Email Flow-From: 0,33/Single IP Email

Flow 0,5/ From 1 and Reject Email Flow 1) of alertness, if the

sum of these values exceeds a given threshold an alert arises.

Future developments include a careful choice of the weight

of each block composing the resolving module.

Another possibility could be to skill the system with an

expert trainer (supervised learning for example) using neural

network or similar methodology to achieve the best results in

detection rate and low occurrences of false positives.

Figure 6

VI. CONCLUSION

In the near future it can be developed a tool that analyzes all

the SMTP traffic directly on the cable, allowing to avoid log

analysis and getting the system mail-server independent.

Moreover we think to build a neural network to identify more

features connected to worms activities.

VII. ACKNOWLEDGMENT

This work was supported by National Research Council of

Italy, University of Genoa and PRAI-FESR Programme,

Innovative Actions of Liguria.

REFERENCES

[1] S. Axelsson, \Intrusion detection systems: A survey and taxonomy,"

Tech. Rep. 99-15, Chalmers Univ., Mar. 2000.

[2] Preemptive Malware Protection through Outbreak Detection,

Commtouch Software.

[3] Wei-Jen Li, Shlomo Hershkop, Salvatore J. Stolfo. 2004. Email Archive

Analysis Through Graphical Visualization. ACM, pp. 4-5.

[4] C. Bron, and J. Kerbosch. 1973. Finding all cliques of an undirected

graph. Comm. ACM 16(9), pp. 575-577.

[5] Christian Kreibich, Jon Crowcroft. Honeycomb. Creating Intrusion

Detection Signatures Using Honeypots, 2003.

[6] David Dagon, Xinzhou Qin, Guofei Gu,Wenke Lee Julian Grizzard,

John Levine,Henry Owen.HoneyStat: LocalWorm Detection Using

Honeypots.

[7] C.C. Zou, L. Gao, W. Gong, and D. Towsley. Monitoring and Early

Warning for Internet Worms. In 10th ACM Symposium on Computer

and Communication Security, Washington DC, 2003.

[8] G. Welch, G. Bishop. 2004. An Introduction to the Kalman Filter.

[9] RFC 1105 - Border Gateway Protocol (BGP).
[10] On the functional validity of the worm-killing worm Hyogon Kim* and

Inhye Kang,University of Seoul.

[11] http://sourceforge.net/projects/lma

[12] Log Mail Analyzer: Architecture and Practical Utilizations, Security on

the Backbone: Detecting and Responding to Attacks, TNC2006.

[13] http://www.postfix.org/

[14] http://www.sendmail.org/

[15] Behaviour-Based Network Security Goes Mainstream, David Geer,

Computer march 2006.

[16] http://www.snort.org/

Utilizzo di Advanced Forensic Format nell’Informatica

forense

Stefano Fratepietro e Cesare Maioli

Cirsfid e Università di Bologna

Informatica forense e strumenti open di analisi

L’informatica forense è la disciplina che concerne le attività di individuazione, conservazione,

protezione, estrazione, documentazione e ogni altra forma di trattamento e interpretazione del dato

memorizzato su supporto informatico, al fine di essere valutato come prova nel processi giudiziari

[1].

L’informatica forense ha strette connessioni con la sicurezza in quanto si ha interesse a raccogliere

reperti digitali una volta che c’è l’ipotesi di un reato o di un comportamento irregolare che

verosimilmente ha superato i meccanismi di controllo predisposti dagli amministratori di sistema

per evitare intrusioni e alterazioni di una componente informatica.

Il prodotto leader del mercato per l’analisi forense è attualmente EnCase della Guidance Software

[2] che consente di reperire, analizzare e presentare dati nell’uso professionale e investigativo da

parte di numerose agenzie e forze dell’ordine in tutto il mondo e che è considerato in linea con gli

standard internazionali per le analisi delle tracce informatiche. Esso utilizza un format proprietario

per le immagine di dati digitali basato su ASR Data's Expert Witness Compression Format.

Il format del file Evidence File [3] contiene un bitstream fisico del disco acquisito - prefisso da un

header che contiene meta informazioni sul caso in esame – intrecciato con i CRC per ciascun blocco

di 64 settori (32 Kb), e seguito da un footer che contiene lo hash MD5 per l’intero bitstream. L'

header contiene data e ora dell’acquisizione, il nome dell’operatore, note sulle acquisizione, una

password opzionale e il proprio CRC. Il formato è comprimibile e su di esso si possono eseguire

operazioni di search. La compressione si basa sui blocchi; tabelle di salto e puntatori sono

mantenuti tra i blocchi e nell' header per migliorare le prestazioni. Le immagini di disco possono

essere suddivise in file multipli (per esempio per memorizzare CD e DVD). I file non possono

superare i due Gigabytes.

EnCase dunque memorizza l’immagine di un disco come una serie di pagine compresse

univocamente individuabili e gestibili: ogni pagina può venire reperita in modo random e

decompressa secondo le esigenze investigative.

EnCase consente inoltre di inserire meta informazioni sulle varie parti dei documenti sotto esame.

Sul primo punto va notato che compressori diffusi come gzip o bzip2 non consentono l’accesso

random all’interno di un file compresso; sul secondo che la prassi corrente e inevitabile di inserire

meta informazioni in un data base separato dal file sotto esame rende possibili smarrimenti,

sovrapposizioni e disordine su informazioni spesso di interesse nei procedimenti giudiziari.

Il software EnCase è proprietario; in questi ultimi anni sono stati progettati con continuità e a forte

ritmo [4] prodotti open source che presentano capacità analoghe a quelle di EnCase per la

memorizzazione di copie di dati grezzi prelevati da hard disk che consentano di evitare la copia di

enormi quantità di dati anche se il file in esame è di dimensioni contenute ovvero di poter accedere

 2

selettivamente a parti di file compressi, oltre a gestire in modo efficiente meta informazioni come

numeri identificativi dei drive in esame, le date, l’identificativo dell’operatore coinvolto in quella

indagine e simili.

L’iniziativa Common Digital Evidence Storage Format

Il rischio che reperti e basi di prove per i procedimenti giudiziari vadano persi o divengano

inammissibili in giudizio è causato dalla presenza di format diversi per le immagini digitali, tipi

diversi di reperti (si va dai log di reti a memorie di dispositivi mobili), caratteristiche e

comportamenti diversi degli strumenti di analisi forense ed è accresciuto dalla assenza di standard

condivisi e tecnicamente robusti che consentano il congelamento della situazione rilevata,

garantiscano la catena di custodia dei reperti, e siano analizzati con strumenti disponibili a tutte le

parti coinvolte in un procedimento giudiziario; quest’ultimo punto suggerisce l’opportunità di

soluzioni open source.

Le perdite di informazioni che si hanno convertendo dati grezzi rappresentati in formati diversi, la

dimensione dei file sequestrati di cui vengono eseguite copie settore per settore, la generale

mancanza di meta dati sono fattori ulteriori che complicano la situazione.

Oltre al citato EnCase sono significativi i seguenti formati di file: ProDiscover, PyFlag, RAID,

SDi32, SMART della famiglia open source e ILook, SafeBack proprietari.

L’iniziativa Common Digital Evidence Storage Format [5] nasce per definire un formato open che

risolva tali problemi basandosi sui format attuali, sulle esigenze dell’utenza e sugli standard

giudiziari. In più la cura della catena di custodia, la cui best practice attuale sembra essere la

trascrizione manuale in quadernetti o verbali delle forze investigative degli hash MD5o SHA-1

delle immagini acquisite dai supporti sotto esame, e la flessibilità per tener conto di più forme di

reperto digitale (traffico in rete, dump di memorie, struttura logica dei file) suggeriscono la

necessità di una evidence bag [6] e associata targhetta digitale in cui raccogliere tutti i reperti e le

informazioni che li riguardano in maniera compatta e standardizzata come si suole in scene criminis

più tradizionali.

L’adozione di un formato standard incoraggia lo sviluppo e la commercializzazione di prodotti più

maturi per le analisi forensi e facilita la cooperazione tra forze investigative nazionali e

internazionali.

Il format Advanced Forensic Format

Advanced Forensic Format (AFF) è una recente implementazione [7] open source ed estensibile

distribuita sotto licenza BSD modificata [8] di un formato che analogamente a quello di EnCase

memorizza l’immagine in maniera compressa e indirizzabile e, a differenza di quello di EnCase,

consente di memorizzare le meta informazioni sia all’interno del file che in un file esterno collegato

a quello di riferimento.

AFF è articolato in due layer per tener conto della compatibilità in avanti e in indietro in riferimento

a un periodo temporale: il data storage layer descrive come una serie di coppie nome e valore sono

memorizzate in uno o più file di disco, in maniera indipendente sia dal sistema operativo che

dell’ordine dei byte; il disk representation layer definisce una serie di coppie nome e valore che

vengono utilizzate per memorizzare le immagini del disco e le meta informazioni associate.

E’ interessante osservare che i progettisti hanno rinunciato all’idea originale di implementazione del

data storage layer tramite una distribuzione open source di b-tree ritenendo che l' articolazione delle

informazioni contenute in un b-tree fosse troppo complessa da spiegare, laddove se ne presentasse

la necessità, nella fase dibattimentale di un procedimento giudiziario; pertanto è stato adottato un

approccio più semplice basato su una struttura detta AFF segment [9], ripetibile e di lunghezza

variabile. Ogni AFF segment consiste di un header, un nome del segmento, un flag di 32 bit, una

area dati di lunghezza variabile, un footer. La lunghezza è memorizzata sia nello header che nel

 3

footer. Un file AFF inizia con un file header e termina con una directory che contiene la lista di tutti

i segmenti del file e il loro offset in byte dall’inizio del file.

Il disk representation layer definisce nomi specifici di segmento per rappresentare informazioni sui

dischi e meta informazioni. Queste possono essere memorizzate nello stesso AFF file

dell’immagine oppure in un file separato; lo schema può essere memorizzato anche in un file XML.

I segmenti di dati hanno tutti la stessa ampiezza che viene determinata al momento della creazione

del file immagine. I segmenti possono essere compressi con lo strumento open source zlib o lasciati

non compressi secondo scelte da compiere al momento dell’esecuzione.

Per rendere più usabile il sistema e sollevare i programmatori dalla comprensione di molti dettagli

implementativi è stata costruita la libreria AFFLIB che fornisce un’astrazione semplice dei file

immagine AFF che appaiono come l’insieme di un data base nomi-valori e di un file standard che

può essere aperto, letto, e acceduto in ricerca con chiamate di libreria.

Il codice AFF è fornito [10] assieme a un insieme di strumenti come un programma per eseguire

l’imaging del disco, un programma di conversione da AFF a XML, un programma per convertire,

nei due versi, file grezzi in file AFF.

Utilizzo di Advanced Forensic Format

Lo scopo che perseguiamo è di partecipare alla progettazione e implementazione di un “open

EnCase” in linea con le iniziative dei paragrafi precedenti e riteniamo AFF uno strumento molto

valido come formato di riferimento.

Per quanto riguarda AFF abbiamo eseguito alcune prove utilizzando:

• AFFlib compilato su Debian GNU/Linux 3.1;

• immagini grezze di reperti relativi ad alcuni casi giudiziari per la conversione da dati grezzi a

AFF;

• storage USB di vario tipo per la creazione di immagini in formato AFF.

Le prove hanno avuto lo scopo di confrontare AFF con altri strumenti utilizzati in attività di

consulenza in casi penali; si è rilevato che rispetto:

• a prodotti simili e a EnCase, AFF mentre esegue l’acquisizione del reperto calcola anche lo hash

SHA1 e MD5 dell’immagine grezza consentendo un sostanzioso risparmio di tempo rispetto alle

procedure a più passi;

• a prodotti simili, AFF consente di creare l’immagine dei dati grezzi compressa permettendo

l’apertura e la lettura del file senza dover decomprimere in un secondo momento l’immagine;

• a prodotti simili, AFF consente una visualizzazione a elevata usabilità di informazioni dettagliate

riguardanti i segment, meta informazioni, dati sullo hash dei singoli file;

• a prodotti simili e a EnCase, AFF produce file compressi più piccoli;

• a EnCase, AFF consente di superare il limite di creazione di immagine di due Gigabytes.

Gli strumenti di AFF che abbiamo sperimentato riguardano:

• aimage per la creazione di nuove immagini in formato AFF;

• aconvert per la conversione di immagini grezze in immagini AFF;

• acompare per confrontare un’immagine grezza con una in formato AFF;

• ainfo per visualizzare a video le informazioni dettagliate riguardanti l’immagine AFF;

• acat per creare un immagine grezza da un immagine AFF.

Attualmente le funzioni di lettura ed apertura delle immagini in formato AFF, la citata libreria

AFFLIB, sono state implementate nella nuova release di Sleuthkit [11], più precisamente:

• af_open() per l’apertura delle immagini in formato AFF;

• af_read() per la lettura dei dati contenuti nell’immagine AFF;

• af_seek() per la ricerca di dati all’interno dell’immagine AFF;

 4

• af_write() per la scrittura all’interno dell’immagine AFF.

Abbiamo eseguito alcuni confronti di prestazioni tra un immagine acquisita in formato AFF e un

immagine acquisita utilizzando dd_rescue [12]; l’acquisizione è stata fatta da un’unità storage da

128 Mb e da un hard disk da 40 Gb cosi da poter valutare i comportamenti dei due programmi su

diverse moli di dati.

Si ricordano due casi.

Nel primo le operazioni sulle immagini create sono state fatte utilizzando Autopsy [13], programma

che permette un interfacciamento delle funzioni di Sleuthkit con un ambiente grafico. La creazione

di un’immagine acquisita con dd_rescue sulla chiavetta da 128 Mb è terminata dopo 19 secondi,

mentre l’immagine creata utilizzando AFF ha richiesto 31 secondi con la differenza che:

• l’immagine AFF è compressa al 51% (66 Mb sui 128 dell’immagine creata con dd_rescue);

• lo hash SHA1 e MD5 sono stati calcolati durante l’acquisizione;

• il file dell’immagine è stato cifrato in SSL.

IL secondo caso fa riferimento all’acquisizione da hard disk da 40 Gb con dd_rescue terminata

dopo 58 minuti, mentre l’immagine creata utilizzando AFF ha richiesto 88 minuti.

Si può dedurre che l’acquisizione di un reperto in formato AFF comporta un netto risparmio di

tempo e memoria migliorando l’organizzazione dei dati garantendone la sicurezza e l’integrità

dell’immagine; si evidenzia che le prestazioni delle funzioni che permettono l’analisi dei dati, come

af_open af_read e af_seek (eseguite entrambe con Autopsy), contenuti nelle immagini in formato

AFF risultato analoghe a quelle di un’analisi fatta su immagini acquisite con dd_rescue.

Referenze
[1] Maioli C., Dar voce alle prove: elementi di Informatica forense, in P. Pozzi (a cura), La sicurezza preventiva

dell'informazione e della comunicazione, FrancoAngeli, 2004

[2] http://www.guidancesoftware.com

[3] http://www.forensicswiki.org/index.php?title=Forensic_file_formats

[4] Panda B. e J. Giordano, D. Kalil, Next-generation cyber forensics: introduction, CACM 49, 2, February 2006

[5] CDESF, Standardizing digital evidence storage, CACM 49, 2, February 2006

[6] Turner P., Unification of digital evidence from disparate sources, 5
th

 Annual Digital Forensic Workshop, New

Orleans, 2005
[7] Garfinkel S.L. et alii, Advanced Forensic Format: an open extensible format for disk imaging, IFIP WG 11.9

International Conference on Digital Forensics, Orlando, January 2006

[8] http://en.wikipedia.org/wiki/BSD_License

[9] Garfinkel S.L., AFF: a new format for storing hard drive images, CACM 49, 2, February 2006

[10] http://www.afflib.org

[11] http://www.sleuthkit.org/

[12] http://www.garloff.de/kurt/linux/ddrescue/

[13] www.sleuthkit.org/autopsy

Cesare Maioli (cesare.maioli@unibo.it) è professore ordinario di Informatica giuridica e Informatica forense

all’Università di Bologna e membro del Cirsfid; Stefano Fratepietro (fratepietro@cirsfid.unibo.it) è sistemista di rete al

Cirsfid dell’Università di Bologna.

Privacy and Data Mining:

the GeoPKDD Approach

Francesco Bonchi1, Fosca Giannotti1, Dino Pedreschi2, and Franco Turini2

1 Pisa KDD Laboratory, ISTI - CNR, Pisa, Italy

e-mail: {maurizio.atzori, francesco.bonchi, fosca.giannotti}@isti.cnr.it
2 Pisa KDD Laboratory, Computer Science Department, University of Pisa, Italy

e-mail: {pedre, turini}@di.unipi.it

Extended Abstract

Privacy is essential for the provision of electronic and knowledge-based services
in modern e-business, e-commerce, e-government, and e-health environments.
Nowadays, service providers can easily track an individual’s actions, behaviors,
and habits. Given large data collections of person-specific information, providers
can mine these data to learn patterns, models, and trends that can be used to
provide advanced and personalized knowledge-based services. Data mining is
a term widely used to indicate a broad range of analysis techniques aimed at
extracting useful and actionable knowledge from large databases. The poten-
tial benefits of data mining are substantial, but it is evident that the collection
and analysis of sensitive personal data arouses concerns about citizens’ privacy,
confidentiality and freedom. Source data of particular importance include, for
instance, biomedical patient data, web usage log data, mobility data from wire-
less and sensor networks: in each case there exist substantial privacy threats, as
well as a potential usefulness of knowledge discovered from these data.

When addressed at a technical level, privacy-awareness fosters the dissemi-
nation and adoption of emerging knowledge-based applications. Obtaining the
potential benefits of data mining with a privacy-aware technology can enable a
wider social acceptance of a multitude of new services and applications based
on the knowledge discovery process. This consideration is at the basis of the
GeoPKDD project – Geographic Privacy-aware Knowledge Discovery and De-
livery, project number 01495 within the Future Emerging Technologies program
of FP6-IST.

The GeoPKDD project

The general goal of the GeoPKDD project is to develop theory, techniques and
systems for knowledge discovery and delivery, based on new automated privacy-
preserving methods for extracting user-consumable forms of knowledge from
large amounts of raw data referenced in space and in time. Particular emphasis
is placed upon:

– Devising methods for representing, storing and managing moving objects,
which change their position in time, and possibly also their shape or other
features, together with their trajectories, with varying levels of accuracy and
certainty;

– devising spatio-temporal knowledge discovery and data mining methods and
algorithms for moving objects and their trajectories;

– devising native techniques to make such methods and algorithms intrinsically
privacy-preserving, as data sources typically contain personal location-aware
sensitive data.

The motivations for undertaking this direction of research are rooted in the
consideration that spatio-temporal, geo-referenced datasets are, and will be,
growing rapidly, due to, in particular, the collection of privacy-sensitive telecom-
munication data from mobile phones and other location-aware devices, as well
as the daily collection of transaction data through database systems, network
traffic controllers, web servers, sensors.

The large availability of these forms of geo-referenced information is expected
to enable novel classes of applications, where the discovery of consumable, con-
cise, and applicable knowledge is the key step. As a distinguishing example, the
presence of a large number of location-aware wirelessly connected mobile devices
presents a growing possibility to access space-time trajectories of these personal
devices and their human companions: trajectories are indeed the traces of moving
objects and individuals. These mobile trajectories contain detailed information
about personal and vehicular mobile behaviour, and therefore offer interesting
practical opportunities to find behavioural patterns, to be used for instance in
traffic and sustainable mobility management, e.g., to study the accessibility to
services.

Clearly, in these applications privacy is a concern. In particular, how can
trajectories of mobile individuals be stored and analysed without infringing per-
sonal privacy rights and expectations? How can, out of privacy-sensitive trajec-
tory data, patterns be extracted that are demonstrably privacy-preserving, i.e.,
patterns that do not disclose individuals’ sensitive information?

Privacy preserving data mining

Privacy preserving data mining, i.e., the study of data mining side-effects on
privacy, has recently captured the attention of many researchers and adminis-
trators across a large number of application domains. This is made evident by
the fact that major companies, including IBM, Microsoft, and Yahoo, are al-
locating significant resources to study this problem. Despite such efforts, and
many important research results in the last years, there are still many open is-
sues that deserve further investigation. One of today’s critical challenges is that,
despite increasing interest in privacy from academia, corporations, and govern-
ment agencies, there remains a lack of technology transfer in privacy preserving
data mining technologies. This problem stems from different facts: firstly, privacy
concerns and data mining endeavors vary across application domains, and it is

not straightforward how to generalize technical solutions from specific applica-
tions to principles; secondly, there exists an evident and obvious communication
gap between scientists that develop theories and technical solutions, and the
lawyers that define the regulations regarding privacy issues in data collection
and analysis.

We believe that real solutions to the challenges posed by the applications, as
those ones studied within GeoPKDD project, can only be achieved through a
combination of technical tools, legal regulations and social norms. On one side, a
regulatory context poses challenges and constraints for novel technical solutions;
in turn, new solutions might provide feedback and opportunities towards better
norms and regulations. To implement this optimistic synergy, it is needed a more
frequent and fruitful cooperation between the scientists and the lawyers: both
sides need to be constantly aware of the progress developed by the opposite side.

The GeoPKDD Privacy Observatory

In the context of the GeoPKDD project, while we investigate the technical ad-
vances needed to embed privacy into the data mining tools, we have activated
a privacy regulation observatory, aiming at involving the representatives of the
national and European privacy authorities, as well as non-governmental privacy-
related associations. The observatory will be aimed at harmonizing the activity
in the project with existing regulations, which may emerge from the privacy-
preserving methods developed within the project.

The first steps in this direction have been the set up of regular relationships
with the Italian Authority for Privacy (Autorità Garante della Privacy). Italy
implemented the main European directive, Directive 95/46, in 1996 by law no.
675/96. The Authority analyses many cases every year, and establishes sanctions
when they find that the rules are violated. The directives, both the European one
and the national implementations, are, as usual for directives, very declarative
and qualitative. Technical definitions, as for example k-anonymity, can be very
useful for the Authority. K-anonymity establishes that privacy is guaranteed at
a certain level if the individual is in a group of at least k individuals and there
is no way to distinguish among them.

As a first technical result in this context, we have shifted the concept of
k-anonymity from databases to patterns extracted by means of data mining
techniques. In fact, it is generally believed that data mining results do not violate
the anonymity of the individuals recorded in the source database. In fact, data
mining models and patterns represent a large number of individuals and thus
conceal individual identities: this is the effect of the minimum support threshold
in association rule mining. In [1] we have shown that this belief is ill-founded.
By shifting the concept of k-anonymity from data to patterns, we have formally
characterized the notion of a threat to anonymity in the context of pattern
discovery, and provided a methodology to efficiently and effectively identify all
possible such threats that might arise from the disclosure of a set of extracted
patterns.

In summary, our aim is to act for the Authorities as technical consultants in
the field of privacy preserving data mining, as much as a mechanical engineer
can help the judge in evaluating the speed of a car involved in an accident.

References

1. M. Atzori, F. Bonchi, F. Giannotti, and D. Pedreschi. k-anonymous patterns. In

Proceedings of 9th European Conference on Principles and Practice of Knowledge
Discovery in Databases (PKDD’05), Porto, Portugal, 2005.

Preserving k-anonymity in spatio-temporal

datasets and location-based services

Claudio Bettini Sergio Mascetti
DICo, University of Milan, Italy

(Extended Abstract)

Modern technologies make it relatively easy and inexpensive to collect a
large amount of personal information. Several organizations are asked, for very
different reasons, to release the personal data they have acquired. While in some
cases it is acceptable to release information in a statistical form, hence easily
avoiding privacy violation, in many others it is really necessary to release specific
data (also called microdata). In recent years, anonymization techniques have
received great attention as a tool to distribute microdata without endangering
users’ privacy. In particular, k-anonymization is a technique introduced in [5,
6] to protect the anonymity of data from so called external linking attacks.
Indeed, it is not sufficient to hide data that explicitly identifies an individual,
but attention should be paid to release values of attributes that could be found in
external sources associated with other data that could lead to the identification.
As an example, it is not sufficient to hide name and address of a person if we
are also releasing her phone number and the number could actually appear in a
public listing. Hence, the technique is based on the generalization of the values
of the attributes that may be used to perform external linking, guaranteeing that
in the released dataset each combination of values of these attributes appears
associated to at least k individuals.

In our research we focus on the privacy issues that arise when spatio-temporal
data is part of the collected information, and needs to be released. Spatio-
temporal data is frequently collected; for example, each time an ATM machine
is used or a payment is performed by a credit card, the time and the location
associated with the transaction are recorded. The collection of spatio-temporal
data will become more frequent in the next years as a consequence of the dif-
fusion of location-based services, i.e., services that, based on the user current
position, can provide location-aware information. Typical examples are map
and navigation services, services that provide information on close-by public re-
sources (e.g., gas stations, pharmacies, ...), services that provide localized news
(e.g., weather forecasts, road constructions, etc.), as well as more personalized
services like proximity marketing or friend-finder.

We aim to extend existing anonymization techniques in order to apply them
to the case where spatio-temporal information is part of the data to be released.

The challenge is to guarantee the anonymity of the released information while
reducing data generalization. Although in theory existing approaches to k-
anonymity can be used to generalize spatio-temporal information, we argue
that a better tradeoff between the degree of anonymity and the significance
of the released microdata can be obtained by adopting specific techniques for
spatio-temporal datasets. Our research follows three main directions.

Preserving k-anonymity in spatio-temporal datasets. Most of the ex-
isting approaches to k-anonymity in databases assume that in the table to be
released there is at most one tuple for each user (e.g., [5, 6, 3, 2]). This as-
sumption is made for the sake of simplicity and, indeed, it can be quite easily
removed. However, when multiple tuples for each user are present, like in the
case of spatio-temporal data, another form of inference can be performed, ex-
posing the released data to respondents identification even if the data is proven
to be k-anonymous according to standard definitions.

Example 1 Consider a location-based service in which users send messages
containing the current user location and some sensitive information. The server
stores, in its local database, a tuple for each request and identifies the users by
pseudonyms. When the database needs to be released, it is necessary to generalize
the spatio-temporal data, because, if used together with external information,
it may lead to personal identification. The following is a possible table to be
released.

Location Time Pseudonym Data

l1 2005-11-22 p1 d1

l2 2005-11-23 p1 d2

l1 2005-11-22 p2 d3

l2 2005-11-23 p3 d4

Assuming Location and Time are the quasi identifiers (i.e., the attributes
that could be used, through external sources, to reduce anonymity), according to
the common definition of k-anonymity, the table is 2-anonymous. Indeed, there
are two tuples for each pair of values Location and Time in the table. The first
two tuples belong to the same user, but this is irrelevant in this case to satisfy
2-anonymity, since each combination of the quasi-identifier is associated with 2
users.

Now, consider an external source of information including the following tu-
ples:

User Location Time

u1 l1 2005-11-22
u1 l2 2005-11-23
u2 l1 2005-11-22
u3 l2 2005-11-23

From this data, we derive that users u1 and u2 are associated with the quasi
identifiers value pair < l1,2005-11-22>, while users u1 and u3 with < l2,2005-
11-23>. However, we also derive that only user u1 can be associated with both

tuples. If the table is released, considering the values of the Pseudonym attribute,
a recipient may observe that the first two tuples belong to the same user and,
using the reasoning from the external source, the recipient can derive that only
u1 can be associated with the first two tuples in the table, hence violating the
intuitive notion of 2-anonymity.

Intuitively, the presence of multiple tuples for each user enables a form of
internal linking that allows an attacker to group tuples associated with the same
(unknown) user.

In order to solve the problem, we propose a stronger notion of k-anonymity
and related generalization algorithms. The new definition supports the anonymiza-
tion of tables with more than one tuple for each respondent, and guarantees that
each tuple cannot be associated to less then k users, even considering attacks
like the one illustrated above.

Spatio-temporal generalization. One of the most common generalization
techniques used in k-anonymization approaches is based on partial string sup-
pression; for example, the two zip codes 12345 and 12349 can be both gener-
alized into 1234*. While this approach can also be used for spatio-temporal
attributes, it may not be an effective solution. For example, considering the
timestamp 2006-06-22, a generalization as the one presented above is neces-
sarily based on a total order of time granularities, and it is usually limited to
the most common ones, as year (2006-*) or month (2006-06-*). Hence, partial
string suppression may sometimes lead to timestamps that are being generalized
too much, possibly making data unusable.

A different approach consists in changing the time attribute in order to
reflect the fact that its values denote granules of an arbitrary time granularity
taken from a possibly large partially ordered set. In the example above, a
generalization in terms of weeks (2006-06-week(3)) could be preferred to a
generalization in terms of months if k-anonymity can be guaranteed with both
of them, even if, formally, the granularity week is not finer than the granularity
month and vice versa. In [4] we proposed a generalization algorithm specific to
temporal attributes. In the future we are planning to develop a similar approach
to spatial attributes and to the combination of spatial and temporal attributes.

Anonymization in location-based services. Some location based services
are currently available through the mobile phone operators and many more will
be offered soon. Since some third party service providers may be untrusted
and the information transmitted to them may be sensitive, it is important to
guarantee the anonymity of the user’s requests. This can be obtained by using
a trusted location server that collects the requests from the users and forward
them to the service providers once properly anonymized.

As in the standard database anonymization problem considered above, we
need to guarantee that the data recipient (the untrusted service provider) is not
able to associate less then k possible users to a service request. We consider two
situations:

• The service provider has no way to link different requests. In this case,

each request should be anonymized considering only the available external
information about the users present in the same area at the same time.

• The service provider has access to the history of requests and is able
to trace different requests performed by the same user. In this case the
anonymization should also consider the information that was forwarded to
the service provider for the previous requests. This case poses a problem
similar to the one described in Example 1. The main difference here is
that we are not dealing with a static database, but with a continuously
growing dataset.

Our main challenge is to develop an efficient and practical solution to the
latter situation explained above. A preliminary investigation appears in [1].

References

[1] Claudio Bettini, Xiaoyang Sean Wang, and Sushil Jajodia. Protecting pri-
vacy against location-based personal identification. In Willem Jonker and
Milan Petkovic, editors, Secure Data Management, volume 3674 of Lecture
Notes in Computer Science, pages 185–199. Springer, 2005.

[2] Roberto J. Bayardo Jr. and Rakesh Agrawal. Data privacy through optimal
k-anonymization. In Proceedings of the 21st International Conference on
Data Engineering, pages 217–228. IEEE Computer Society, 2005.

[3] Kristen LeFevre, David J. DeWitt, and Raghu Ramakrishnan. Incognito:
efficient full-domain k-anonymity. In SIGMOD ’05: Proceedings of the 2005
ACM SIGMOD international conference on Management of data, pages 49–
60. ACM Press, 2005.

[4] Sergio Mascetti, Claudio Bettini, X. Sean Wang, and Sushil Jajodia. k-
anonymity in databases with timestamped data. In Proc. of 13th Interna-
tional Symposium on Temporal Representation and Reasoning. IEEE Com-
puter Society, 2006.

[5] Pierangela Samarati. Protecting respondents’ identities in microdata release.
IEEE Trans. Knowl. Data Eng., 13(6):1010–1027, 2001.

[6] Latanya Sweeney. k-anonymity: a model for protecting privacy. Inter-
national Journal on Uncertainty, Fuzziness and Knowledge-based Systems,
10(5):557–570, 2002.

A Mathematical Framework to Assess the Security

of an Information Infrastructure

F.Baiardi, S.Suin, C.Telmon

Dipartimento di Informatica, Università di Pisa
L.go B.Pontecorvo 3, 56125 - PISA

{f.baiardi, s.suin} @unipi.it, claudio@next-hop.it

1 Introduction

We propose a mathematical framework to assess the security of an information in-
frastructure focused on the analysis of rights acquired by a threat through a sequence
of attacks. The most critical problem to be faced when defining the framework is how
to deduce all the rights acquired by a threat through a successful attack because these
rights depend upon the relation among components of the considered infrastructure.
As an example, a successful attack to control a component also enables the control
of any component that depends upon the attacked one. To describe the relation, we
model components as objects, each defining of a set of methods invoked by either a
user or other components. Under this assumption the relations among components may
be modelled through a labelled hypergraph where an oriented hyperarc denotes a de-
pendency of the destination node from the source ones. Relations that are considered
concern the ability of invoking, controlling or managing a method as well as that of
determining a security attribute of a component. In this way, the framework supports
a modular description of the infrastructure at distinct abstraction levels that makes it
possible to focus the assessment on the most critical components. We show how the
framework may be used to define an optimal ordering to remove vulnerabilities. Some
programming tools have been developed according to the framework. They have been
implemented through a logic programming language and exploit the hypergraph to au-
tomatically deduce information such as the attack sequences that a threat may execute
against the infrastructure or the smallest set of countermeasures to be applied.

2 Infrastructure Hypergraph

The proposed framework describes the infrastructure as a set of related components.
A component consists of some internal state and methods, each an operation the com-
ponent implements. Legal users own the rights to invoke some methods while threats
are interested in gaining some rights according to their goals. In the following, both
legal users and threats will be denoted simply as user. Each user is paired with a set
of rights, each defining a method it can invoke. Some of these rights may have been
achieved through a sequence of attacks. For each infrastructure component, we deter-
mine a set of methods such that anyone that has the rights of invoking all the methods
in the set then can also control some security attribute of the component. A further
relation among the components describes how a security attribute of a component de-
pends upon those of other components. Taking into accounts the rights of a user U, i.e.

the methods U can invoke, and the relations among methods and security attributes
of components we can compute the transitive closure of the rights of U. This closure
includes any attribute of a component that U can control because of its rights. As-
sume, as an example, that a method M of C determines the integrity of a component
C and that the confidentiality of a distinct component D depends upon the integrity
of C. Hence, any user that can invoke M controls the confidentiality of D. In another
case of interest, a method M updates the state of a component ACL used to grants or
revokes the right of invoking F. Obviously, if U can invoke M, then it can also grant or
revoke the right of invoking F. Here, any user that can invoke M manages, i.e. controls
the availability of F. In the most general case, the hypergraph includes three kinds of
nodes that describe, respectively, users, components and methods. Any hyperarc of the
hypergraph has one of the following kinds:

1. right hyperarc: from a user node to a set of method nodes. It is not labelled and it
describes the methods a user can invoke;

2. source hyperarc: from a set of method nodes to a component node. It is labelled
by one attribute of the component and it describes the methods that control the
corresponding attribute of the component;

3. component hyperarc: from a set of component nodes to a component node. It is
labelled by one attribute for each source component and for the destination one. It
describes a dependence of the attribute in the destination component from those
of the source ones;

4. destination hyperarc: from a set of components nodes to a method node. It is la-
belled by one attribute for each source node and for the destination one. It describes
a dependency of a method from a set of components.

To compute a transitive closure, rights are propagated through the hyperarcs.

3 Vulnerability and Attacks

The framework characterizes an attack in terms of the vulnerabilities that enable it,
the resources and the rights it requires and the rights achieved if it is successful. If A
is an attack, V(A) is the set of the component vulnerabilities that enables A and C(A)
is component that is the target of A. A user U can execute A if it can access all the
resources in R(A), i.e. information, tools and know how about A. Furthermore, U can
attempt A only if it satisfies pre(A), the precondition of A. Pre(A) is a set of rights
and U satisfies pre(A) if it owns all the rights in the set. If U owns all the resource in
R(A) and satisfies pre(A), then it can execute A and, if A is successful, it will acquire
the rights in post(A).

To deduce the sequence of attacks U can execute, we consider that initially it
owns the rights in Init(U) and it can execute the sequence A1...An if it owns the
resources for any Ai 1 ≤ i ≤ n and if, after executing the sequence A1 ... Aj, it satisfies
pre(Aj+i). Hence, the transitive closure of Init(U) should include pre(A1) and, after
any Ai, i ∈ 1..n − 1, the transitive closure of Init(U) ∪ post(A1)... ∪ post(Ai) should
include pre(Ai+1). Each sequence satisfying these conditions is feasible for U. For
simplicity sake, we neglect the dependency of feasible sequences of U from Init(U).

Since U is rational, it executes only those feasible sequences that enable it to achieve
one of its goals. Each goals of U is a set of rights and U achieves a goal when and if it

owns all the corresponding rights. A feasible sequence that enables U to achieve one of
its goals is an evolution useful for U. Useful evolutions depend upon:

1. the infrastructure hypergraph,
2. the vulnerabilities in the infrastructure components and the attacks they enable,
3. the attacks U can implement and its goals.

4 Security Evolutions of the Infrastructure

Security evolutions describe how n users in a set SU can achieve n goals, SR1, ..., SRn,
through a sequence of attacks SA = A1 ... Am, where each attack is executed by just
one user. To define evolutions, first of all we define the projection PR(SA, U) of the
sequence SA onto a user U. PR(SA, U) includes the subsequence of SA with the attacks
implemented by U. This subsequence is a useful sequence for U. If PR(SA, U) is empty,
U is not involved in the evolution due to SA. Since each attack in SA is implemented
by a user in SU as a step to reach a goal, there is a set {U1, ..., Uk} ⊆ SU and a
corresponding set of projections {PR(SA,U1), ..., PR(SA,Uk)} where

1. each attack in SA belongs to one projection only
2. distinct projections are disjoint,
3. after the execution of attacks in PR(SA, Ui), Ui achieve its goal SRi.

Hence, each evolution results from the interleaving of useful sequences for the considered
users. Two evolutions are equivalent, if any user in the considered set achieves the
same rights. Since we assume user rights are never revoked, we can model monotonic
evolutions only, where the set of user rights never decreases. Given a set of user, each
with a goal, they can achieve their goals iff there is at least one corresponding evolution.
Evolutions can be computed taking into account the hypergraph and useful sequences.

5 Ranking of Vulnerabilities

The proposed framework may exploit alternative metrics to rank vulnerabilities accord-
ing to the evolutions they enable, the impact of these evolutions and so on. Here we
present a metric based upon the smallest sets of countermeasures to prevent any user
from achieving its goals or, alternatively, to stop all evolutions. A countermeasure for
a vulnerability V is any strategy that removes V, i.e. it makes an attack that exploits
V ineffective. In the simplest case, a patch that removes V is applied. Other counter-
measures may change the dependencies among components so that even if a user owns
a set of rights, it cannot control or manage a component. A set of countermeasures is
complete if after applying its countermeasures, no evolution is possible and no user can
achieve any of its goals. A set of countermeasures is minimal if it is complete and none
of its subsets is complete. Minimal sets define the smallest sets of countermeasures to
be applied to stop all the evolutions

To rank a vulnerability V, we consider the percentage of minimal sets with a coun-
termeasure that removes V. To show that this percentage conveys a useful information
consider that if no minimal set removes V, then evolutions can be stopped even if V
is not removed. On the other hand, if any minimal set includes a countermeasure that
removes V, then the only way to stop evolutions is to remove V.

Till now we have assumed that any two goals of any user are equivalent. Instead,
in several cases, each goal may be paired with a weight proportional to its impact, i.e.
to the corresponding loss for the infrastructure owner. In the same way, we can define
a minimal set in terms of the cost of the countermeasures rather than of their number.

A set of tools has been implemented to support the assessment. They are written
through a logic programming language and apply to the infrastructure hypergraph a
set of analyses that compute:

1. the sets of rights each user may achieve,
2. alternative evolutions due to a set of users,
3. minimal sets of countermeasures,
4. the set of rights a user may achieve after applying a set of countermeasures.

References

1. P.Ammann, D.Wijesekera, S. Kaushik, Scalable, Graph-based Network Vulnerability Analy-
sis, Proc. of the 9th ACM conference on Computer and communications security, November
18-22, 2002, Washington, DC, USA

2. F.Cuppens, A. Mie’ge, Alert Correlation in a Cooperative Intrusion Detection Frame-
work,IEEE Symp. on Security and Privacy, p.202, May 12-15, 2002

3. J. Dawkins, C. Campbell, J. Hale, Modeling Network Attacks: Extending the Attack Tree
Paradigm, Workshop on Statistical and Machine Learning in Computer Intrusion Detection,
Johns Hopkins University, June 2002.

4. R. P. Goldman, W. Heimerdinger, and S. A. Harp. Information Modeling for Intrusion
Report Aggregation,DARPA Information Survivability Conference and Exposition (DIS-
CEXII), June 2001.

5. S. Jajodia, S. Noel, B. O’Berry, Topological Analysis of Network Attack Vulnerability, in
Managing Cyber Threats: Issues, Approaches and Challenges, V. Kumar, J. Srivastava, A.
Lazarevic (eds.), Kluwer Academic Publisher, 2003.

6. R. A. Martin, Managing vulnerabilities in networked system, IEEE Computer, November
2001. p. 32 - 38.

7. P. Moore, R. J. Ellison, R. C. Linger,Attack modelling for information security and surviv-
ability, CMU/SEI- 2001-TN001.

8. P. Ning , P.Cui , D. S. Reeves, Constructing attack scenarios through correlation of intru-
sion alerts, 9th ACM Conference on Computer and Communications security, Nov. 2002,
Washington, DC, USA.

9. S. Jha, O. Sheyner , J. Wing, Two Formal Analysis of Attack Graphs, 15th IEEE Computer
Security Foundations Workshop , p.49, June 2002.

10. C. Phillips, L. Painton Swiler, A graph-based system for network-vulnerability analy-
sis,Workshop on New Security Paradigms, p.71-79, Sept.1998.

11. R. Ritchey, B. O’Berry, S. Noel, Representing TCP/IP Connectivity For Topological
Analysis of Network Security, Proc. of the 18th Annual Computer Security Applications
Conference, p.25, Dec. 2002.

12. O. Sheyner, J. Haines, S. Jha , R. Lippmann, J. M. Wing, Automated Generation and
Analysis of Attack Graphs, Proc. of the 2002 IEEE Symposium on Security and Privacy,
May 12-15, 2002 .

13. O. M. Sheyner, Scenario Graphs and Attack Graphs, CMU-CS-04-122,2004.
14. L.P. Swiler, C. Phillips, D. Ellis, S. Chakerian, Computer-Attack Graph Generation Tool.

Proc. of the DARPA Information Survivability Conference, June 2001.
15. V.Swarup, S.Jajodia, J.Pamula, Rule-Based Topological Vulnerability Analysis, Proc. of

MMM-ACNS 2005, Sept. 2005.

SockMi: how to migrate SSL sessions

Massimo Bernaschi

Istituto Applicazioni del

Calcolo, CNR

V.le del Policlinico, 137,

00161 Rome, Italy

<massimo@iac.rm.cnr.it>

Luigi V. Mancini

Università degli Studi di

Roma La Sapienza

P.le Aldo Moro 5, 00185

Rome, Italy

<lv.mancini@di.uniroma1.it>

Paolo Tassotti

Università degli Studi di

Roma La Sapienza

P.le Aldo Moro 5, 00185

Rome, Italy

<tassotti@di.uniroma1.it>

Abstract

Migrating a network connection means to re-
place one of the peers with another process that
can be on the same or on a different machine.
There are a number of situations in which the
migration of connections can be useful. For in-
stance, when there are requirements of load bal-
ancing, quality of service, fault tolerance or se-
curity (e.g. honeypotting).

We present a connection migration system
for Linux systems called SockMi, a general-
purpose solution that can be easily adopted for
a wide range of applications. The main idea be-
hind SockMi is quite simple: as connection state
is stored in a bunch of well-known data struc-
tures residing inside the kernel, it is feasible to
achieve migration merely by copying and tran-
ferring this data on another host.

As a consequence of this approach the mech-
anism is perfectly symmetric. That is, both
server-side and client-side migration are sup-
ported. Another interesting feature is the un-
awareness of non-migrating peer, descending
from the fact that we do not require any fur-
ther protocol to be implemented.

Subsequently we describe how to extend
SockMi in order to handle the application layer.
In particular we show how to migrate an end-
point of an encrypted protocol such as SSL. The
tecnique used is fairly similar to the copy &

transfer approach mentioned before.

1 SockMi architecture

The main idea behind SockMi’s connection
migration system is quite simple: as connec-
tion state is stored in a set of well-known data
structures residing inside the kernel, it is feasible
to achieve transport layer migration merely by
copying and tranferring these data on another

host.

We used the same approach also for the ap-
plication layer. In that case, information needed
to migrate a SSL session (e.g. session key) is
stored inside OpenSSL internal data structures
as we will describe in section 1.4.

As a consequence of our approach the mech-
anism is perfectly symmetric. That is, both
server-side and client-side migration are sup-
ported. However, in this paper we restrict our
survey only to server-side migration. In section
3 we discuss how a client-side migration could
be implemented.

In the following, we denote with “export

phase” the act of reading session information on
the original host and “import phase” the act of
storing these data on the foreign host.

SockMi architecture is made of three main
components: a loadable kernel module (LKM),
a daemon process and a packet redirection sys-
tem. In the next sections we’ll describe them in
details and then illustrate how they cooperate
in order to achieve session migration.

1.1 SockMi module

The SockMi loadable kernel module is in
charge of reading/writing socket state during
the export/import phase. So, the first step is
exactly define what “socket state” (or “connec-
tion state”) means and what data structures are
involved.

The state of a connection is defined by the
Transmission Control Block (TCB), as stated
in TCP protocol specification [1]. TCB in-
cludes addresses, ports, sequenċe/acknowledge-
ment numbers, sliding/congestion window pa-
rameters and so on. In Linux implementa-
tion TCB data are stored in sock and tcp opt

structures[9].

Moreover we have to consider so-called “in-

1

flight data”. These falls into two different cate-
gories:

• Packets received by the host but not yet
read by the application (receive queue);

• Packets to be sent, or packet already sent
but not yet acked (transmit queue);

In Linux implementation both of these
queues are a linked list of sk buff structures
that contain packet payload, network headers
(MAC, IP and TCP) and some additional in-
formation about the packet itself (e.g. length,
checksum, etc.).

Handling transmit queue requires some addi-
tional care. In fact, when there are some unsent
packets on the trasmit queue, we have to enable
the TCP retrasmission timer on the import side,
otherwise these packets won’t be sent until the
corresponding application sends another packet.

Note that since migration procedure intro-
duces a delay, original retransmission timer
value doesn’t make sense on the import side1.
The simplest solution is to set the timer to a
default value. This obviously breaks congestion
avoidance policies.

SockMi module provides an interface to the
user-space via sysctl() system call. This al-
lows a process to export one of its sockets in
very simple manner.

1.2 SockMid daemon

The SockMid daemon works in combination
with the SockMi module to support the socket
migration mechanism. The daemon carries out
different tasks depending on the situation. Dur-
ing the export phase, it reads the state of ex-
porting socket from the SockMi module inter-
nal buffers. During the negotiation phase, it
communicates with other SockMi daemons run-
ning on other hosts in order to choose where to
migrate the socket. Finally, during the import
phase, it writes the state of importing socket to
the SockMi module internal buffers.

Since the module lives in the kernel address
space whereas the daemon is a normal user pro-
cess, it is not possible to resort to standard Inter
Process Communication (IPC) mechanisms to
pass data between them. To overcome this dif-
ficulty we implemented a buffer sharing system
via the mmap() primitive.

1Timer values are CPU clock dependant, so it

wouldn’t make sense in any case.

We also used some other standard tecniques
for coordinating module and daemon. During
the export phase we used a signal USR1 from
the module to the daemon in order to “wake up”

the latter and start the migration procedure.
During the import phase we used an ioctl()

to notify the module that the socket data had
been succesfully transferred.

1.3 Packet redirection system

SockMi includes a packet redirection sys-
tem providing network layer migration. When
a socket migrates to a different host it is nec-
essary to redirect the packets coming from the
peer towards the host that imports the socket.
Moreover the packets sent to the peer must have
the same IP source address of the original host
(otherwise the peer replies with a RST packet).

To deal with this problem we resort to a spe-
cial combination of Network Address Transla-
tion (NAT) operations. In particular, we employ
a Destination NAT (DNAT) on the exporting
host and a Source NAT on the importing host.

Moreover, we had to prevent any unexpected
connection termination during and after the mi-
gration. Two possible cases exist:

• When the exporting host receives packets
that it should redirect to the importing
host, the TCP layer automatically sends
RST packets because the connection is
considered closed;

• When the process that exported the socket
terminates, the TCP layer sends the FIN
sequence that causes the shutdown of the
connection.

We solved both these cases by defining a fil-
ter that drops all RST and FIN packets sent by
the exporting host to the peer after the migra-
tion.

Both packet redirection system and unex-
pected connection termination avoidance was
implemented with Netfilter[10].

1.4 SSL session migration

We now make a short digression on how a
SSL session is established and which data struc-
tures are involved in OpenSSL implementation.

The preliminary task in order to establish
a SSL session is to create a “SSL Context”.
The SSL context (struct SSL CTX) contains the

2

following information (we annotate associated
data structures in OpenSSL implementation):

• Supported ciphers (EVP CIPHER CTX);

• Compression Algoritms (COMP CTX);

• Digest algoriths (EVP MD;

• Certificates (X509);

• Public/private keys (EVP PKEY);

After context creation a new SSL session as-
sociated with that context can be established2;
this phase is called “SSL Handshake”. The in-
formation related to a SSL session (struct SSL)
are:

• Ciphers state (EVP CIPHER CTX);

• Compression Algoritms state (COMP CTX);

• Digest algoriths state (EVP MD);

• Session data:

– Session Key (EVP PKEY);

– Peer Certificate (X509);

We point out that not all data structures
listed before are strictly needed in order to mi-
grate a session. In fact, certificates and pub-
lic/private keys can be ignored as they are re-
quired only in the handshake phase.

However, migrating all information can be
useful as well. Copying certificates and pub-
lic/private keys enables the import side to open
new SSL sessions with the same SSL context
making migration mechanism much more pow-
erful.

As we mentioned before, the same “copy &
transfer” approach employed for TCP/IP layers
has been used for application layer handling. In
fact, all the information needed in order to mi-
grate a SSL session, including context, can easily
retrieved having a pointer to a SSL struct.

2 Application programming

interface

SockMi provides a simple Application Pro-
gramming Interface (API) in order to allow ap-
plications to activate the socket migration mech-
anism. The API consists of two functions:

2A context may have multiple sessions associated.

• import socket();

• export socket();

These functions hide the implementation de-
tails of the migration mechanism and provide
applications with an easy-to-use method for im-
porting and exporting sockets.

To import one or more sockets, an applica-
tion calls the import socket() library function.
This function is designed to poll the availability
of exported sockets matching the import crite-
ria specified by the application. If one or more
matching sockets are available, then the func-
tion replaces the local sockets referenced by the
input descriptors with the exported ones. Oth-
erwise, if no matching socket is available, the
function waits until either a timeout occurs or
one or more exported sockets become available
for import. The import criteria let the appli-
cation define the properties of the socket to be
imported. Such criteria are the set of allowed
socket states (bound, listening or connected),
the local and remote IP addresses, and the local
and remote TCP ports.

We design in a similar manner the API for
SSL session migration:

• import ssl();

• export ssl();

The export ssl function takes as an ar-
gument a pointer to SSL struct from which it
is possible to retrieve all needed information
about SSL session. The import ssl() applies
the scheme used for import socket() function.
with timeout and import criteria specification.
Multiple session import is also supported.

3 Future work

In these section we’ll outline some future
perspective.

First we’ll make a short digression on possi-
ble extensions of SockMi, particularly regarding
to other cryptographic protocols similar to SSL
such as SSH and S-FTP. Then we survey the
feasibility of porting SockMi to Windows OS.

Another important issue we’re looking for is
the extension of our migration mechanism to
other similar protocols such as SSH[7], partic-
ularly regarding to OpenSSH[8] its open-source

implementation. In order to correctly migrate a

3

SSH session we have to deal with some typical
features of remote terminals such as flow con-
trol, signals, environment variables, and so on.
However, since OpenSSH relies upon OpenSSL
for many of its cryptographic features, extend-
ing our mechanism should be a reasonable effort.

Up to this point we’ve been dealing only with
open-source software and Linux OS. Neverthe-
less it is possible to apply the same scheme also
in Windows environments. Since OpenSSL is
available also for Windows, the main problem is
to see whether is feasible to port the connection
migration mechanism. However, REMUS[11]
and WHIPS[12] projects, two IDSs developed at
Università degli Studi di Roma “La Sapienza”,
have shown that the same kernel-based tech-
niques can be applied either to Linux or Win-
dows systems. Due to the lack of documenta-
tion and source code, hacking with Windows
kernel is certainly much more challenging, but
not impossible. From our experience we can
state that connection migration technique can
be fairly easily ported to Windows systems.

Acknowledgements

We would like to thank Samuele Ruco and
Francesco Casadei for their major contribution
during master thesis work.

References

[1] J. Postel, “Transmission Control Protocol”,
STD 7, RFC 793, September 1981.

[2] A. Frier, P. Karlton, P. Kocher, “The SSL
Protocol, Version3.0”, Transport Layer
Security Working Group Internet Draft,
November 1996.

[3] T. Dierks, C. Allen, “RFC 2246: The TLS
Protocol Version 1.0”, Internet Engineering
Task Force, January 1999.

[4] OpenSSL Project:
http://www.openssl.org

[5] L. Stein, D. McEachern, “Writing Apache
Modules with Perl and C”, First Edition,
April 1999

[6] Network Security Services (NSS):
http://www.mozilla.org/projects/se-

curity/pki/nss/

[7] C. Lonvick, “RFC 4251: The Secure Shell
(SSH) Protocol Architecture”, Internet En-
gineering Task Force, January 2006.

[8] OpenSSH Project:
http://www.openssh.com

[9] Linux Kernel Archives:
http://www.kernel.org/

[10] Nefilter Project:
http://www.netfilter.org

[11] M. Bernaschi, E. Gabrielli and L.V.
Mancini, “A Patch to Linux for Making
Buffer Overflow Harmless”, Proceedings of
the SANS Workshop on Securing Linux,
San Francisco, December 1999.

[12] R. Battistoni, E. Gabrielli, L.V. Mancini,
“A Host Intrusion Prevention System for
Windows Operating Systems”, ESORICS
2004, 9th European Symposium On Re-
search in Computer Security Sophia An-
tipolis, French Riviera, France - September
13-15, 2004.

4

 1

Common Criteria Security Certification of Complex, “Network Centric” ICT Systems

 M. Lisi, G. Tassone
 Telespazio SpA, via Tiburtina 965, 00156 Roma (Italy)

E-mail: marco_lisi@telespazio.it; gaetano_tassone@telespazio.it

Abstract

Today’s world and its knowledge-based economy need the development of network-centric “welfare”
systems, that is systems or “systems of systems” able to convey data seamlessly throughout a number of
different possible media and to deliver useful information after a data fusion process.
In February 1995, in the “Annual Report to the President and the Congress", it was first established by the
USA the strategy of the “information superiority”, that is the capability to maintain control over all the
sensitive areas of the world through a continuous flow of information in a system integrating Command,
Control, Communications, Computers and Intelligence (C4I) (figure 1).

Figure 1: C4I Tactical Scenario

This strategy, together with the parallel development of new technologies (Intelligent Weapons, Unmanned
Aerial Vehicles and Unmanned Combat Air Vehicles), led to a sudden increase in bandwidth capability and
to the concept of “Dual Use Technology”, mainly in the field of satellite communications and Earth
observation.
In the recent years, the architectures of systems conceived mainly for “warfare” applications and those of
systems for “welfare” applications (e.g. Earth monitoring, disaster recovery, surveillance, security) have been
converging to a common “system of systems” approach, integrating management and control capabilities
and a wide range of air, land, naval and space platforms within a global network-centric infrastructure (figure
2).

Figure 2: Convergence of Network Centric Warfare and “Welfare” Systems

 2

In a “system of systems”, communications and information technologies (ICT’s) play a vital role, not only
guaranteeing a rapid exchange of data, but also providing the required information after a process of “data
fusion”.
The ICT structure must rely upon a solid telecommunications backbone, in which all cells are connected
using the best suited media among strategic network, wide, local and mobile subsystems; comparable
services are offered to all users, regardless of the media selected.
Satellites are key elements of the global infrastructure, both as sensors and as components of the
telecommunications backbone; in the satellite ground segment the actual convergence of different media is
implemented and the integration of data is performed.
One example of network centric space infrastructure is given by the European GMES system.
GMES (Global Monitoring for Environmental and Security) is a space and in-situ based Earth observation
system, which will be the European contribution to the international Global Earth Observation System of
Systems (GEOSS), established at the Third Earth Observation Summit held in Brussels in February 2005.
The overall GMES architecture comprises four major elements: services, space observations, in-situ
observations, and data integration and information management.
Despite the importance of space-based technologies (satellites playing a double role as sensors and key
elements of the communications infrastructure), GMES is not a “space-centric”, but rather a “network-centric”
system.
Another example of network centric architecture is that of the GALILEO satellite radio navigation system, the
joint initiative by the European Union and the European Space Agency.
The GALILEO system is based on a constellation of 30 satellites and on a number of Control Centers,
implemented on European ground, to provide for the control of the constellation, to perform the navigation
mission management and to monitor the system performances (figure 3).

Figure 3: GALILEO System Architecture

GALILEO will provide information concerning the positioning of users, allowing the deployment of value
added services in many sectors, such as transport (vehicle location, route searching, speed control,
guidance systems, etc.), social services (e.g. aid for the disabled or elderly), the justice system and customs
services (location of suspects, border controls), public works (geographical information systems), search and
rescue systems, or leisure (direction-finding at sea or in the mountains, etc.).
A third example of network-centric satellite infrastructure and of “dual-use” system is the Italian COSMO-
Skymed Earth observation system.
COSMO-SkyMed (COnstellation of Small Satellites for Mediterranean basin Observation) is an Earth
observation program of the Italian Space Agency (ASI), co-funded by the Italian Defense Administration and
developed by an industrial team of national companies, led by Alcatel Alenia Space (an
Alcatel/Finmeccanica company). Telespazio, a Finmeccanica/Alcatel company, will be responsible for the
development of the ground segment, the management of all operations, for the provision and distribution of
products and value-added applications (figure 4).

 3

CGS

CPCM

Fucino
Space
Center

C-UGS

Matera

D-UGS

Pratica

di Mare

CMAP
(mobile)

DMAP

Polar
Station
Kiruna

Polar
Station
Cordoba

CGS

CPCM

Fucino
Space
Center

CGS

CPCM

Fucino
Space
Center

C-UGS

Matera

C-UGS

Matera

D-UGS

Pratica

di Mare
D-UGS

Pratica

di Mare

CMAP
(mobile)

CMAP
(mobile)

DMAPDMAP

Polar
Station
Kiruna

Polar
Station
Kiruna

Polar
Station
Cordoba

Polar
Station
Cordoba

�

Figure 4: COSMO-Skymed Ground Segment Architecture

One last example of “network-centric” topology about satellite communications and services, is the VSAT
(Very Small Aperture Terminal) broadband satellite solution provided to the global market in order to satisfy
the increasing demand for bandwidth and Internet access and offering a variety of high-speed multimedia
service solutions (figure 5). It is worth noting the strategic role of satelites in the communications
infrastructure and the high degree of integration with other communications media (terrestrial backbone, Wi-
Fi, mobile cellular, etc.).

Figure 5: VSAT Broadband Satellite Network Architecture

Our society is nowadays heavily depending on Information and Communication Technology (ICT).
Information and Communication Technology has pervaded in all traditional infrastructures, rendering them
more intelligent but more vulnerable at the same time.
As all critical infrastructures of our society rely on ICT systems, their confidentiality, availability, integrity,
continuity and quality of service have to be guaranteed and protected against intentional and non-intentional
attacks. Information security is no longer a “nice to have”, but rather a “must have” option.
This is not only true for “dual use” systems, where military and civilian applications coexist, but in general for
all those systems devoted to emergency services, disaster recovery, crisis management, homeland security,
environment monitoring and control.
Complex ICT systems are inherently “network centric”: broadband networks, both dedicated (Intranets,
VPN’s) and public (ISDN, Internet), are the backbone of their architectures.
Inside a complex ICT system classified and non-classified networks most often coexist and need to operate
together. This is particularly true when the system needs to have access to Internet or aims at offering
services on the Web.

 4

The security certification of a complex ICT system according to an international standard, such as the so
called Common Criteria (standard ISO/IEC IS 15408), implies a number of problems and technical
constraints. They can be summarized in the following main categories:

• Long time required for the execution of the evaluation/certification process;

• High cost of the evaluation/certification process. Careful definition of what really needs to be
 evaluated and certified and against what (figure 6);

• Coexistence of classified and non-classified domains. Need for “air-gap” technologies at the
 classified/unclassified boundaries;

• Availability of jointly certified hardware and software platforms;

• Severe limitations in the use of commercial off-the-shelf (COTS) software products, because they
 seldom fulfil the certification requirements (traceability, documentation, source code availability).
 This creates interesting opportunities for open source operating systems (e.g. Linux) and software
 products;

• Limitations in the use of commonly adopted communications protocols (e.g. TCP/IP);

• Loss of certification in case of even minor modifications of the certified configuration. Need to cope
 with the rapid obsolescence of both hardware and software;

• Adoption of “encapsulation” techniques for the utilization of non-certified components (databases,
 libraries or even applications);

• Encryption of data over non-certified broadband networks.

Figure 6: Common Criteria Evaluation/Accreditation Boundaries

In the perspective of a Common Criteria certification, a satellite network system presents the following
features:

• outroute data traffic is encrypted in hardware using unique keys for each terminal and each type of
traffic;

• a multilevel encryption scheme is employed that utilizes both hardware and software keys to prevent
unauthorized system access;

• a Conditional Access System is used to control the data traffic that the terminal can receive.

• Each terminal has a hardware cryptofacility that decrypts the received traffic in real time using the
keys received from the Network Operations Center (NOC);

• terminals are sent their own unique keys to ensure that they can only receive data on the satellite
link that they are authorized to receive.

Data encryption is achieved by using “keys” to encrypt and decrypt messages. These keys are used with an
algorithm designed to convert text or other data into digital gibberish and then restore it to its original form.
Modern satellite systems utilize the Data Encryption Standard (DES) with a 56-bit key length as the bulk data
encryption algorithm. The triple-DES algorithm, which in effect takes the input data and encrypts them three
times, is used for additional security to protect the transmission of the satellite data encryption keys to the
remote terminals. Two 56-bit keys are used by the triple DES algorithm for key distribution. A tamper-proof
Application-Specific Integrated Circuit (ASIC) is adopted, which implements both encryption and Conditional
Access (CA) control.

StemCerts: customizable X.509 v3 certificates for higher

security, flexibility, and convenience

Giovanni Chiola and Paolo Gasti

DISI, University of Genoa

via Dodecaneso 35, 16146 Genoa, Italy

April 28, 2006

Extended Abstract

Despite the high degree of security that can be offered and the wide availability of high quality
open source software implementations for the creation, the management, and the use of X.509
certificates, Public Key Infrastructures (PKIs) have not enjoyed the widespread diffusion that
security experts had envisioned after the introduction of public key cryptography. We believe
that there are many reasons for this lack of practical success, including a relatively high cost for
obtaining high security grade certificates from external Certification Authorities (CAs), a complete
inflexibility of the certificates with respect to changing/evolving user needs, and the practical need
for on-line verification of revocation lists for higher security applications.

In order to address such weak points we introduce the notion of StemCerts that — in anal-
ogy with Stem Cells in Biology — offer many attractive features for certain important classes of
applications. A particular X.509 certificate — the StemCert — signed by the CA, lets the user
derive other certificates on his own, not requiring any further interaction with the Authority. These
certificates can differ from the StemCert only in some parts, defined by the CA. So, every time
a user needs to edit some fields of a certificate, he does not need to require a new one, if she
derives it from a StemCert. For instance, the certificate owner might be allowed to generate new
certificates with a customizable “name” field, and/or “expiration date” field, and/or “public key”
field deriving them from the original StemCert, while keeping the validity of the CA’s signature.

From the technical point of view the result is achieved by adopting Chameleon Hash functions
instead of the usual cryptographic hash functions. By allowing the owner to change the “name”
field, the CA grants the user the possibility of using pseudonyms instead of her real identity,
thus ensuring anonymity in transactions involving public key cryptography such as payments in
E-commerce applications. Allowing the owner to change her “public key” field in a certificate
improves flexibility and security while reducing cost, by encouraging the user to change her key
pair whenever needed, without recontacting (and paying) the CA. Allowing the owner to off-line
change the “expiration date” may greatly improve the security of the mechanism and reduce the
need for consulting revocation lists.

The X.509 certificate standard requires the use of revocation list when verifying a certificate,
due to their relatively long lifetime. This is an expensive task and is often not implemented, thus
both violating the standard and reducing the overall level of security. Our proposed solution allows
the owner to keep her certificate almost always “elapsed,” and to “renew it” for a very small interval
of time just before its use. With this customization the certificate can virtually become a “one
time certificate,” which virtually eliminates the need for consulting revocation lists (as long as the
Chameleon trapdoor that allows the owner the exclusive modification right is not compromised, of
course).

In order to demonstrate the viability of StemCerts we implemented a proof-of-concept prototype
that allows the creation, the successive customization, and the use of certificates in the context of
a client-server web connection.

1

X.509 Certificates

Public key certificates adopt a digital signature to bind together a public key with an identity.
They are generally used to verify that a public key belongs to an individual. X.509 [1] is as ITU-T
standard for public key infrastructure. It specifies, among other things, standard formats for public
key certificates and a certification path validation algorithm. In the X.509 system, a Certification
Authority issues a certificate binding a public key to a particular Distinguished Name or to an
Alternative Name [2] such as an e-mail address. An organization’s trusted root certificates can be
distributed to all employees so that they can use the company PKI system.

An X.509 certificate must contain some information which identifies the CA which released it,
the period in which the certificate can be used, the algorithms used to calculate the signature, the
version of the certificate, and a serial number, which uniquely identifies the certificate released by
that particular authority.

The third version of X.509 certificates introduced a field called Extensions, which provide meth-
ods for associating additional attributes with users or public keys and for managing a certification
hierarchy. In this way communities are allowed to define private extensions to carry information
unique to those communities.

Chameleon Hash Functions

A Chameleon Hash function is associated with a pair of public and private keys (the latter generally
called a trapdoor). Indeed, a Chameleon Hash function [3] is a trapdoor collision-resistant hash
function: without knowledge of the trapdoor information, a Chameleon Hash function has the
same characteristics of any cryptographic Hash function, such as pre-image and collision-resistance.
However, collisions and second pre-images can be easily computed once the trapdoor is known.

A simple construction of a chameleon signature, presented in [3], employed as Hash function
the Chaum-Pedersen trapdoor commitment. More precisely, a potential recipient chooses and
publishes a regular discrete logarithm-based public key y = gx, where g is the generator of a cyclic
group G and x is the secret key. Then, a user who wishes to sign message m can compute the
Chameleon hash value h = ymgr, where r is an auxiliary integer chosen uniformly at random by
the signer. The message m must be a short binary message that has value smaller than the order of
the group G when interpreted as the binary expansion of a non-negative integer. However, in order
to extend the scheme to arbitrary length messages it is sufficient to first hash the long message
using a regular, cryptographic hash function. Notice that if the recipient forges the signature, and
two pairs (m, r) and (m′, r′) become known to the signer (during a dispute), the signer can recover

the secret key x of the recipient from h = gmyr = gm′

yr′

, giving x = m−m′

r′
−r

.
This is a highly undesirable outcome, so we adopted the Chameleon Hash function presented

in [4] instead. In [4] Ateniese and De Medeiros propose several schemes which provide better
performance than the one presented in [3]. In particular, they adopted a scheme related to a twin
Nyberg-Rueppel signature (signature introduced in [5]).

Customizable X.509 Certificates

Our scheme allows the user to modify some of the fields of the certificate in a limited and controlled
fashion, without any further interaction with the CA after the certificate has been signed. The
user can change only a subset of the fields contained in an X.509 v3 certificate, chosen by the CA.
Only the legitimate owner can modify the information contained in the certificate, as long as she
is the only one that knows the trapdoor associated with the Chameleon Hash used to generate the
signature over the changeable fields.

The CA can choose which fields are editable, following a predefined policy: for example, if it
signs a certificate which lets the user modify her Distinguished Name or her Alternative Name, it
offers her the possibility to use the certificate anonymously.

In our prototype implementation we decided to let the owner change a field called “username”,
which is a free text field. It should contain the information needed to identify a user, such as her
name, e-mail address, DNS name, and so on. We also allow the user the opportunity to edit the

2

“validity period” field. In this way, the certificate is considered not valid until the user decides to
“enable” it.

The scheme used for the Chameleon Hash can be summarized as follows.
Key generation: choose a safe prime p of bit length k, and a generator g of the subgroup of
quadratic residues Qp of Z∗

p . The owner of the certificate chooses as secret key x at random in
[1, q − 1], and his public key is computed as (g, y = gx).
Hashing scheme: To commit a value m, it is sufficient to choose random values (r, s) ∈ Zq ×Zq,
and compute

e = H(m, r); and Hash(m, r, s) = r − (yegs mod p) mod q.

where H is a collision-resistant hash function, mapping arbitrary-length bit strings to strings of
fixed length l.
Collision finding: Let C denote the output of the Chameleon Hash on input the triple (m, r, s).
A collision (m′, r′, s′) for a random m′ can be found by computing r′ and s′ such that:

e′ = H(m′, r′); and C = r′ − (ye′

gs′

mod p) mod q.

The owner of the certificate chooses a random value m′, a random value k′
∈ [1, q − 1], and

computes

r′ = C + (gk′

mod q, e′ = H(m′, r′), and s′ = k′
− e′x mod q.

For further details about collision resistance, semantic security and absence of key exposure, please
refer to [4]

The main goal of our prototype implementation is to keep the StemCert structure as similar
as possible to the original X.509 v3 structure. This should provide a smooth transition between
the current X.509 certificates and our proposed StemCerts. Therefore we decided to keep the
standard X.509 v3 structure unchanged. To achieve this result, we added three new extensions:
CHAM KEY, which contains the public part of the private key; USERNAME, which specifies the
user’s identity; and VALIDITY, which defines a period in which the certificate can be used.

CHAM KEY is composed by four fields: p, q, g, and y. They represent the values which defines
the public part of the Chameleon key as previously described. These values are chosen by the user
when she generates the certificate request, together with the value of x (also needed to calculate
y) which must be known only to the user. Once the certificate is signed by the CA, nobody can
modify the values contained in this extension.

USERNAME is utilized by the user to define his identity, independently from the certification
authority. It consists of five fields: id, which is a random value (its use will be described later),
name, which is an arbitrary string used to define user’s identity, r and s, two random values used
to calculate the Chameleon Hash as described in the previous section, and hash, the value of the
Chameleon Hash calculated on id, name, r, and s. In other words, hash = Hash(f(id, name), r, s)
where f is a bijective function of the form f : string × string → string.

The structure of the VALIDITY extension is very similar to that of USERNAME. It contains
five fields, four of which — id, r, s, and hash — have the same semantics of those in USERNAME,
while the other one — validity — represents a period in which the certificate can be considered
valid. This period is freely changeable by the owner.

The generation of a certificate request for a StemCert is quite similar to that for a standard
X.509 certification request. The user needs to generate a Chameleon key of appropriate length, and
then include it in the appropriate extension. After that, she can choose which of the changeable
fields are to be included. The id and username (or validity) values contained in the USERNAME
(resp. VALIDITY) extension included in the certification request must be set to a predefined value,
in order to clarify that the certificate obtained just after signing the request should not be used.
The value of the hash field of the two extensions must be set to a non-standard value, namely the
hash value computed over the respective fields as described above.

Once the CA receives the certification request it examines it. Of course the CA is free to remove
any of the changeable fields that possibly violate its predefined policy before signing the StemCert.
The last check is done by the CA over the id value. If it is the predefined value, the StemCert can
be signed.

3

The CA substitutes the values contained in the fields id, r, s, and username (or validity)
for the USERNAME (VALIDITY) extension with standard values, and computes the signature
value of the obtained request as for a standard X.509 v3 signature. In this way the structure of
the certificate (the editable extensions contained), the value of the public Chameleon key and the
values of the hash over the editable fields are signed and cannot be modified by anyone.

If the owner can change the username value, she can choose which string to include in the
StemCert just before using it. She can use it in an anonymous way, hiding her identity, or in
a privacy-aware way, publishing only the personal information that are strictly needed for the
particular transaction that implies the use of the certificate. In either ways, she simply puts a new
value in the username field, then calculates r and s such that the Chameleon hash function output
is equal to the (immutable) hash value contained in the extension.

If the certificate contains two (or more) editable extensions, the id field of each of them must
have the same value. Otherwise, an attacker who knew the values of two editable certificates
released from the same user, could build a third certificate containing one extension from the
first and one from the second. The id is a random number of adequate length (in our prototype
implementation it is a 128 bit value).

If another user wants to verify such a certificate, he has to substitute the values contained in
the editable extensions as done by the CA during the signing operation. Then he can calculate a
standard signature value over the obtained certificate. If it is valid, he has still to verify that the
Chameleon Hash value corresponds to the one calculated over the changeable fields, and whether
the id value of all the extensions is the same.

When using a StemCert the level of security available to who verifies is very high. Even if the
certificate is used anonymously, the CA can still know the identity of the owner of the StemCert,
because the serial number on it is immutable. In case of dispute, a subject that received a StemCert
can show it in Court to a judge who has the power to force the CA to reveal the true identity of
the owner. In this way, whoever receives a StemCert can trust the user who sent it even if she uses
a pseudonym.

Implementation and experimental measurements

Our prototype implementation incorporates OpenSSL 0.9.8a library routines for cryptographic
functions and X.509 certificate handling. We added the appropriate extensions to OpenSSL code
and modified the routines that generate and verify certificates according to what is described in
the previous sections.

All tests were run under Linux on an Athlon XP 1600+ laptop. The key length for Chameleon
signature and for signing the certificate is 1024 bit. The performance of the implemented algorithm
were good, generally adding a negligible delay over the one for handling standard X.509 certificates,
apart for the key generation for a key length of 1024 bit. Being a probabilistic algorithm, the
measured key generation times where quite different for repeated measurements, ranging from two
to about ten seconds on the test machine. Considering that this operation must be done only once
for each certificate, it should not be a concern.

References

[1] Request For Comments 3280 - Internet X.509 Public Key Infrastructure Certificate and CRL
Profile (http://www.ietf.org/rfc/rfc3280.txt)

[2] ITU-T Recommendation X.500 (1993) — ISO/IEC 9594-1:1994, Information Technology -
Open Systems Interconnection - The Directory: Overview of concepts, models and services

[3] Krawczyk, H.., Rabin, T.: Chameleon signatures. In: Proceedings of NDSS 2000. (2000)
143-154

[4] Ateniese, G., de Medeiros, B., On the Key Exposure Problem in Chameleon Hashes

[5] Naccache, D., Pointcheval, D., and Stern, J.: Twin signatures: an alternative to the hash-
and-sign paradigm.

4

