
Using Method Engineering for the Construction of

Agent-Oriented Methodologies

Giancarlo Fortino, Alfredo Garro, and Wilma Russo

D.E.I.S.

Università della Calabria

Via P. Bucci, 87030 Rende (CS), Italy

Email: {fortino, garro, russow}@deis.unical.it

Abstract— Great emphasis has been recently given to agent-
oriented methodologies for the construction of complex software
systems. In this paper two approaches for the construction of
agent-oriented methodologies and based on methods integration
are presented: meta-model-driven and development process-driven.
The former is based on the MAS meta-model adopted by
designers for the development of a MAS for a specific problem
in a specific application domain. The latter is based on the
instantiation of a software development process in which each
phase is carried out using appropriate method fragments and by
the mutual adaptation of the work products coming out from
each phase.

I. INTRODUCTION

In analysing and building complex software systems, a

number of fundamental techniques for helping to manage

complexity have been devised [3]:

• Decomposition: the basic technique for tackling large

problems by dividing them into smaller, more manageable

chunks, each of which can then be approached in relative

isolation. It helps tackling complexity because it limits

the designer’s scope.

• Abstraction: the process of defining a simplified model

of the system that emphasizes some details or properties,

while suppressing others. It is useful because it limits the

designer’s scope of interest at a given time.

• Organization: the process of defining and managing the

interrelationships between the various system’s compo-

nents. The ability to specify organizational relationships

helps tackling complexity by enabling a number of basic

components to be grouped together and treated as a

higher-level unit of analysis, and by providing a means

of describing the high-level relationships between the

various units.

Recently the agent-oriented approach [13] has been widely

recognized as very suitable for the development of complex

software systems since it fully exploits the techniques listed

above. In particular in the context of complex software sys-

tems:

• the agent-oriented decompositions are an effective way

of partitioning the problem space;

• the key abstractions of the agent-oriented mindset (agents,

interactions, and organizations) are a natural means of

modelling;

• the agent-oriented philosophy for modelling and manag-

ing organizational relationships is appropriate for dealing

with the existing dependencies and interactions.

The development of complex software systems by using the

agent-oriented approach requires suitable agent-oriented mod-

elling techniques and methodologies which provide explicit

support for the key abstractions of the agent paradigm.

Several methodologies supporting analysis, design and imple-

mentation of Multi-Agent Systems (MAS) have been to date

proposed in the context of Agent Oriented Software Engineer-

ing (AOSE) [14]. Some of the emerging methodologies are

Gaia [16], MaSE [7], Prometheus [15], Tropos [4], Message

[5], Passi [6], and Adelfe [2]. Although such methodologies

have different advantages when applied to specific problems

it seems to be widely accepted that an unique methodology

cannot be general enough to be useful to everyone without

some level of customization. In fact, agent designers, for solv-

ing specific problems in a specific application context, often

prefer to define their own methodology specifically tailored

for their needs instead of reusing an existing one. Thus, an

approach that combines the designer’s need of defining his

own method-ology with the advantages and the experiences

coming from the existing and documented methodologies is

highly required.

A possible solution to this problem is to adopt the method

engineering paradigm so enabling designers of MAS to use

phases or models or elements coming from different method-

ologies in order to build up a customized approach for their

own problems [12].

In particular, the development methodology is constructed

by assembling pieces of methodologies (method fragments)

from a repository of methods (method base). The method base

is built up by taking method fragments coming from existing

agent-oriented methodologies (such as Adelfe, Gaia, Message,

Passi, Tropos, etc.) or ad hoc defined methods. Currently

this approach is adopted by the FIPA Methodology Technical

Committee (TC) [20].

It is therefore crucial to define guidelines for methods inte-

gration in order to both construct the methodology (retrieving

the method fragments from the method base and integrating

them) and apply it in the actual development life cycle.

In this direction, the paper proposes two approaches for



the construction of agent-oriented methodologies by using

methods integration: (i) meta-model-driven, which is based

on the MAS meta-model adopted by the designer for the

development of a MAS for a specific problem in a specific

application domain; (ii) development process-driven, which is

based on the instantiation of a software development process

in which each phase is carried out using appropriate method

fragments.

The remainder of this paper is organized as follows. In section

II and III the meta-model-driven and the development process-

driven approaches are respectively described. In section IV,

conclusions are drawn and on-going research activities delin-

eated.

II. THE MAS META-MODEL-DRIVEN APPROACH

A method fragment [18] is a portion of methodology which

is composed of the following parts:

1) A process specification, defined with a SPEM diagram

[21], which defines the procedural aspect of the frag-

ment;

2) One or more deliverables such as AUML/UML diagrams

and text documents [1];

3) Some preconditions which represent a kind of constraint

since it is not possible to start the process specified in

the fragment without the required input data or without

verifying the required guard conditions;

4) A list of elements (which is a part of the MAS meta-

model subsumed by the methodology from which it was

extracted) to be defined or refined through the specified

process;

5) Application guidelines that illustrate how to apply the

fragment and related best practices;

6) A glossary of terms used in the fragment in order to

avoid misunderstandings if the fragment is reused in a

context that is different from the original one;

7) Composition guidelines which describe the con-

text/problem that is behind the methodology from which

the specific fragment is extracted;

8) Aspects of fragment which are textual descriptions of

specific issues such as platform to be used, application

area, etc;

9) Dependency relationships useful to assemble fragments.

It should be noted that not all of these elements are mandatory;

some of them (for instance notation or guidelines) could be

not applicable or not necessary for some specific fragment.

To build his own methodology by exploiting the meta-

model-driven approach, the designer must:

• choose or define a MAS meta-model suitable for the

specific problem and/or the specific application domain;

• identify the elements that compose the meta-model of the

MAS under development;

• choose the method fragments that are able to produce the

identified meta-model elements;

• defining a development process characterized by a method

fragments execution order on the basis of the relationship

existing among the meta-model elements produced by

each fragment.

Hence, the obtained methodology is able to completely cover

the MAS meta-model for a given problem in a specific

application domain.

*

1

*

Purpose

1 1

Protocol

Input

Protocol

Output

Processing

11

*

1

Protocol

Pre-condition

1

1

*

*

Service Input
1

*

Service Output
1

*

Post-condition

Service

Agent
1 1..*

1

Has in charge

Perception

*

1

*

*

Initiator/Responder

Role

SkillAptitude

11

*1..*

- knowledge: Ontology

Predicate

ActionConcept

Ontology

Fig. 1. An example MAS meta-model

An example MAS meta model is reported in Figure 1.

Referring to the MAS meta-model of Adelfe, Gaia and Passi

a set of methods fragments that are able to produce a piece of

the MAS meta-model can be chosen. To completely cover the

MAS meta-model selected fragments can be combined and,

if necessary, new fragments can be defined (see Figure 2).

Using this approach, the integration among the fragments is

based on the relationships existing among the elements of the

MAS meta-model. Thus, in order to obtain a completely and

well-defined ad-hoc methodology, a proper method fragments

execution order is to be defined.

*

1

*

Purpose

1 1

Protocol

Input

Protocol

Output

Processing

11

*

1

Protocol

Pre-condition

1

1

*

*

Service Input
1

*

Service Output
1

*

Post-condition

Service

Agent
1 1..*

1

Has in charge

Perception

*

1

*

*

Initiator/Responder

Role

SkillAptitude

11

*1..*

- knowledge: Ontology

Predicate

ActionConcept

Ontology

Produced by an

ad hoc defined

fragment

Produced by the "Agents

Identification"

fragment of PASSI

Produced by the

"Ontology definition"

fragment of PASSI

Produced by the "Identify

and document

the interaction protocols"

fragment of Gaia

Produced by the

"Individuate agent's

aptitudes and skills"

fragment of ADELFE

Produced by the "Develop a

Services Model"

fragment of Gaia

Fig. 2. An example of meta-model-driven methods integration



On the basis of the relationships shown in figure 2) the

method fragments execution order is the following:

1) the Agents Identification fragment of Passi [19];

2) the concurrent execution of the ad-hoc defined fragment

and the Individuate agent’s aptitudes and skills fragment

of Adelfe [17];

3) the concurrent execution of the Develop a Services

Model fragment of Gaia and the Identify and document

the interaction protocols fragment of Gaia [11];

4) the Ontology definition fragment of Passi [19].

III. THE DEVELOPMENT PROCESS-DRIVEN APPROACH

The development process-driven approach focuses on the in-

stantiation of a software development process that completely

covers the development of MAS (see Figure 3).

Requirements

Capture
Analysis Design

Analysis

Work products

Design

Work Products
Requirements

Statement

Detailed

Design
Implementation

Detailed Design

Work Products

Simulation

Deployment

Implementation

Work Products

Simulation

Work Products

Deployment

Work Products

Fig. 3. An example of software development process

To build his own methodology by exploiting the develop-

ment process-driven approach, the designer must:

• choose or define a software development process suitable

for the specific problem and for the specific application

domain;

• instantiate the development process by selecting, for each

phase, suitable method fragments, chosen from agent-

oriented methodologies proposed in the literature or ad-

hoc defined.

An example software development process [8] is reported

in Figure 3. Referring to the development phases specified by

Tropos, Gaia, Passi and by a Statecharts-based methodology

[10], a set of methods fragments that are able to carry out

each phase of the development process are to be chosen.

To completely cover the development process the selected

fragments can be combined and, if necessary, new fragments

can be defined (see Figure 4). Using this approach, the

integration between the fragments is achieved by individuating

and/or defining dependencies among work products produced

by the fragments of the instantiated process. Notice that the

work products produced in a given fragment might constitute

the input for the next fragment provided that they contain all

the in-formation required to its initialization (see Figure 5).

IV. CONCLUSIONS

This paper has proposed two approaches to the integration

of methods fragments: meta-model-driven and development

process-driven. These approaches are not mutually exclusive;

rather, hybrid approaches containing features of both of them

might be defined as well.

Requirements

Capture
Analysis Design

Analysis

Work products

Design

Work Products
Requirements

Statement

Detailed

Design
Implementation

Detailed Design

Work Products

Simulation

Deployment

Implementation

Work Products

Simulation

Work Products

Deployment

Work Products

Performed by using

method fragments

from TROPOS

Performed by using

method fragments

from Gaia

Performed by using

method fragments

from PASSI Performed by using method fragments

from a Statecharts-based methodology

Fig. 4. Development process-driven methods integration

Acquaintance

Model

Roles

Model

Interactions

Model

Requirements

Statement

Prototypical

Roles Model

Services

Model

Agent

Model

Agent

Interactions

Model

Agent Behaviors

Model

Agent

Classes

Requirements

Capture Analisys Design
Detailed

design
Implementation

Fig. 5. Dependencies among work products of the instantiated process

The meta-model-driven approach provides the following ad-

vantage: flexibility for the definition of methodologies and

meta-models of the MAS to be developed. Conversely, it has

some drawbacks: (i) difficulty of integration of different frag-

ments due to different semantics of the meta-model concepts;

(ii) selection and/or definition of the meta-model to adopt for

the specific problem and/or application domain.

The development process-driven approach is characterized by

the following advantages: flexibility for the construction of

methodologies by means of the instantiation of each stage of

the development process. On the other hand, the disadvantages

are the following: (i) process rigidity; (ii) low flexibility of

the system meta-model since the meta-model of the adopted

methodology must be used; (iii) adaptation among the work

products which is sometimes difficult to achieve; (iv) choice

and definition of the process to instantiate for the specific

problem and/or application context. On going research activity

is being focused on:

1) definition of adaptation techniques among work products

produced by different methods and/or method fragments;

2) extraction from and definition of method fragments of

already existing methodologies and the mutual adapta-

tion among the defined method fragments. This activity

is being carried out in the context of the FIPA Method-

ology TC;

3) the experimentation of the two presented approaches for

the e-Commerce application domain [9].

REFERENCES

[1] B. Bauer, J.P. Muller, and J. Odell. Agent UML: A Formalism for
Specifying Multiagent Interaction. In Paolo Ciancarini and Michael
Wooldridge, editors, Agent-Oriented Software Engineering, pages 91–
103. Springer-Verlag, Berlin, 2001.

[2] C. Bernon., M.P. Gleizes, G. Picard, and P. Glize. The Adelfe Methodol-
ogy For an Intranet System Design. In Proc. of the Fourth International

Bi-Conference Workshop on Agent-Oriented Information Systems (AOIS),
Toronto, Canada, 2002.



[3] G. Booch. Object-Oriented Analysis and Design with Applications.
Addison Wesley, 1994.

[4] P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, and A. Perini.
TROPOS: An Agent-Oriented Software Development Methodology, Jour-

nal of Autonomous Agents and Multi-Agent Systems, 8(3):203–236, 2004.
[5] G. Caire, F. Leal, P. Chainho, R. Evans, F. Garijo, J. Gomez, J. Pavon,

P. Kearney, J. Stark, and P. Massonet. Agent Oriented Analysis using
MESSAGE/UML. In Proc. of the 2nd In-ternational Workshop on Agent-

Oriented Software Engineering (AOSE), LNCS 2222. Springer-Verlag,
Berlin, 2002.

[6] M. Cossentino, P. Burrafato, S. Lombardo, and L. Sabatucci. Introducing
Pattern Reuse in the Design of Multi-Agent Systems. In Ryszard Kowal-
czyk, Jorg P. Muller, Huaglory Tianfield, Rainer Unland, editors, Agent

Technologies, Infrastructures, Tools, and Applications for E-Services ,
Lecture Notes in Artificial Intelligence (LNAI) volume 2592, pages 107–
120, Springer-Verlag, Berlin Heidelberg, Germany, 2003.

[7] S. A. DeLoach, M. Wood, and C. Sparkman. Multiagent system engi-
neering. International Journal of Software Engineering and Knowledge

Engineering, 11(3):231–258, April 2001.
[8] G. Fortino, A. Garro, and W. Russo. From Modeling to Simulation

of Multi-Agent Systems: an integrated approach and a case study. In
Gabriela Lindemann, Jorg Denzinger, Ingo J. Timm, Rainer Unland,
editors, Multiagent System Technologies, Lecture Notes in Artificial In-
telligence (LNAI) volume 3187, pages 213–227, Springer-Verlag, Berlin
Heidelberg, Germany, 2004.

[9] G. Fortino, A. Garro, and W. Russo. Modelling and Analysis of Agent-
Based Electronic Marketplaces. IPSI Transactions on Advanced Research,
2004, to appear.

[10] G. Fortino, W. Russo, and E. Zimeo. A Statecharts-based Software
Development Process for Mobile Agents. Information and Software

Technology, 46(13):907–921, 2004.
[11] A. Garro, P. Turci, and M.P. Huget. Expressing Gaia Methodology

using Spem. FIPA Methodology TC, working draft v. 1.0/04-03-15,

[http://fipa.org/activities/methodology.html].
[12] B. Henderson-Sellers. Method Engineering for OO Systems Develop-

ment. Communications of the ACM, 46(10), 2003.
[13] N. R. Jennings. An Agent-Based Approach for Building Complex

Software Systems. Communications of the ACM, 44(4), 2001.
[14] J. Lind. Issues in Agent-Oriented Software Engineering. In Proc. of the

First International Workshop on Agent-Oriented Software Engineering

(AOSE), LNCS 1957, pages 45–58. Springer-Verlag, Berlin, 2001.
[15] L. Padgham and M. Winikoff. Prometheus: A methodology for devel-

oping intelligent agents. In Proc. of the Third International Workshop

on Agent-Oriented Software Engineering (AOSE), LNCS 2585, Springer-
Verlag, Berlin, 2003.

[16] M. Wooldridge, N. R. Jennings, and D. Kinny. The Gaia methodology
for agent-oriented analysis and design. Journal of Autonomous Agents

and Multi-Agent Systems, 3(3):285–312, 2000.
[17] M. P. Gleizes et al. Adelfe fragments, rel.0, March 2004.

[http://www.pa.icar.cnr.it/ cossentino/FIPAmeth/docs/adelfe fragments v0.pdf]

[18] Method Fragment Definition. FIPA Methodology TC, working draft,

Nov. 2003, [http://fipa.org/activities/methodology.html].
[19] M. Cossentino. PASSI fragments: All

fragments, draft. rel 0.1, Feb. 2004.
[http://www.pa.icar.cnr.it/ cossentino/FIPAmeth/docs/passi fragments 0 1.zip]

[20] Foundation for Intelligent Physical Agents (FIPA) Specifications.
[http://www.fipa.org].

[21] Software Process Engineering Metamodel Specification, Version 1.0,
formal/02-11-14. Object Management Group Inc. , November 2002.


