
Documenting Pattern Use in Java Programs

Marco Torchiano

Department of Computer and Information Science (IDI)

Norwegian University of Science and Technology (NTNU)

Norway

Marco.Torchiano@idi.ntnu.no

Abstract

Design patterns are widely recognized as important

software development methods. Their use as software

understanding tools, though generally acknowledged has

been scarcely explored. Patterns are most useful in

understanding software when they are well documented.

Sometimes they are described separately from code as

design comments. Nevertheless they hold a strong

relationship to the source code and thus they should be

documented at the source level too. Unfortunately there is

no agreement on how to document pattern use. This paper

describes a structured approach to document pattern use

in the Java language. Our solution is based on the

standard Javadoc tool and it is able to generate HTML

documentation. The approach has been implemented and

tested with software that uses patterns.

1. Introduction

Since their first appearance in [1], design patterns have

increased their popularity among software developers. In

short a pattern is a reusable solution to a recurring

problem.

In literature there is a distinction between generative

and non-generative patterns. The former are used to build

systems, while the latter are found in systems and used to

explain them [2].

We are interested in investigating how an intentional

and documented use of design patterns can help to

understand a software system.

In particular we will focus on the documentation of

patterns at the source code level. Our work addresses the

use of patterns in the Java programming language.

However the proposed approach can be adapted to other

programming languages, such as C++, using a suitable

code documentation system.

We developed a proof of concept implementation that

is based on the standard Javadoc [3] tool, which generates

HTML documentation starting from the source code and

specially marked comments.

Few works propose a tool supported structured

approach to pattern usage documentation; [4] addresses

the tracing problem of enhancing the patterns visibility in

the code.

The usefulness of patterns for software understanding

purposes has been scarcely investigated. There is only one

empirical study conducted by Prechelt and colleagues [5].

Their work suggests that there is empirical evidence of

such usefulness; it has the merit of stressing two important

aspects of design patterns. First they can be used as a

means to understand or to explain a system. Second the

mere presence of patterns is not enough; they should be

documented to be effectively useful in understanding.

What lacks in their work is an analysis of how patterns

are used in software systems and how they can be

documented.

This paper addresses these drawbacks by providing

four main contributions:

• an analysis of the use of pattern,

• a proposal of how to document the use of pattern,

• a proof of concept implementation by means of a

standard code documentation system,

• an empirical validation of the approach.

The rest of this paper is organized as follows. Section 2

provides a discussion of the use of design patterns and the

identification of the main features that should be

documented. Section 3 describe the implementation of the

pattern documentation using the Javadoc tool. Section 4

summarized the empirical validation of the approach.

Finally section 5 draws some conclusions and describes

future work.

2. Pattern use

The relationship between a general description of a

pattern and its use is not as simple as it could appear.

Design patterns usually describe an idea at a high level of

abstraction. Although sample reference implementations

are usually provided, there are several possible variations

in a pattern implementation.

In addition, often patterns must be modified and

Apperared in Proc. IEEE Int. Conf. on Software Maintenance (ICSM 2002), Montreal, Canada, October 3-6, 2002, pp. 230-233

adapted to serve the needs of the software system where

they are used.

Often a design pattern is described by means of a class

diagram. For instance Figure 1 shows the composite

design pattern described in [1]. This pattern is used to

represent part-whole hierarchies while minimizing the

difference between composite and leaf objects.

Leaf Composite

Component

operation ()

composition

Figure 1: Composite pattern and its roles.

Design patterns are made up of several elements; we

call them roles. The roles interact with each other to solve

the specific problem addressed by the pattern.

During the development of a system design patterns are

brought into use when problems are encountered, which

are solved by a known pattern.

We call this use an instance of the pattern. While a

design pattern is described in terms abstract classes
1
, the

instance consists of actual classes.

The pattern instance solves a system specific problem;

we call task the purpose served by the instance, i.e. the

reason why the pattern is used in the system.

Figure 2 shows an example of instance of the

composite pattern. The task of this instance is to represent

an arithmetic expression as a tree that makes it easy to

evaluate its value.

An important relationship between the pattern and its

instance is how the abstract roles defined in the former are

mapped onto elements of the latter. For instance we can

observe that class Expression in Figure 2 plays the

Component role defined in Figure 1.

Since the instance of a pattern in part of a more

complex system, it is used by the other elements. For

instance there is a client that invoke the evaluate() method

of class Expression to evaluate an expression.

So far we have analysed how a pattern is used. From

this analysis we devise the main feature of an instance that

should be documented.

For each element of a software system that is part of a

pattern instance we wish to document: the pattern that is

instantiated, the role that is played by the element, the task

1 Although patterns can be used within different paradigms

and languages, here we assume object-oriented patterns, which

are the most common form.

of the pattern. In addition the use of a patterns should be

documented.

Given a pattern instance, the knowledge of the base

pattern provides understanding of the overall structure and

behaviour. When maintenance is concerned this

information make it easier to locate the spots where to

apply changes.

The role that is played by each element of the pattern

instance gives information on the specific behaviour and

on the interactions with the other elements/roles.

The link between the abstract goal of a pattern and the

concrete purpose in the actual system can be understood

looking at the task of the pattern instance.

Recognizing that a part of a system is a client of a

pattern instance let us understand its rationale. It is of

paramount importance when such a part has to be

maintained.

Constant

evaluate()

Variable

evaluate ()

Expression

evaluate ()

Sum

evaluate ()

2

+ operands

2

Role: leaf Role:
composite

Role:
component Role:

composition
relationship

Role:

operation

Figure 2: Instance of composite pattern.

3. Java Documentation

We focus now on the problem of documenting Java

programs. The standard documentation of all the class

libraries in the Java environment conforms to the Javadoc

format. Thus we investigate this tool and its customization

capabilities.

3.1. Javadoc

Javadoc[3] is a tool that parses the declarations and

documentation comments in a set of source files and

produces a group of cross linked HTML pages describing

the classes, inner classes, interfaces, constructors,

methods, and fields.

This documentation constitutes a layer over the source

code. It can be used both as stand-alone and as a map to

navigate more effectively through the code.

It is possible to include documentation comments in

the source code, ahead of declarations for any entity

(classes, interfaces, methods, constructors, or fields).

These are also known as Javadoc comments. A doc

comment consists of the characters between the characters

“/**” that begin the comment and the characters “*/”

that end it. The text can continue onto multiple lines.

The documentation produced by Javadoc can be

customized using tags. A tag is a special keyword within a

doc comment that Javadoc can process. Javadoc has

standard tags, which appear as @tag, and in-line tags,

which appear within braces, as {@tag}.

Standard tags produce a dedicated section in the

documentation. While in-line tags result into

documentation elements that are embedded in the context

where they are found.

The default output of Javadoc is a set of HTML pages

linked to each other. There is an overview page for each

package and a page for each class.

As of version 1.4, the Javadoc tool can be customized

in two ways: using doclets or using taglets.

It is possible to use doclets to customize Javadoc

output. A doclet is a program written with the doclet API

that specifies the content and format of the output to be

generated by the Javadoc tool. Doclets allow to define the

overall structure and format of the documentation, for

instance they can be used to produce documentation is

other formats than HTML.

Taglets can be used to provide finer grained

customizations. A taglet define a new tag, together with its

meaning and appearance in the output documentation.

We decide to use the standard structure of Java

documentation and add specific sections to document the

use of patterns.

Since pattern documentation is an add-on to the

standard documentation, taglets are used to customize the

Javadoc tool.

3.2. Pattern taglets

Pattern in Java code are documented by means of

additional tags. The programmer can use these new tags in

addition to the standard ones.

The tags we propose to document the use of patterns

are the following:

@pat.name: the name of the pattern. This is a standard

tag that applies to an element of a pattern instance.

For the time being only the patterns described in

the GoF book [1] are valid. The name will be

represented in the documentation as a link to on-

line description of the pattern.

@pat.role: pattern role. This is an in-line tag that

describes the role played by the element of the

pattern instance; it must be nested inside a

@pat.name tag.

@pat.task: pattern task. This is a standard tag that is used

to describe the task performed by and instance of a

pattern of by one of its parts.

@pat.use: pattern use. This is a standard tag that is used

to describe the use of a pattern instance by one of

its clients.

The first three pattern specific tags can be used to

describe whole classes, methods, and fields. The last one

typically is used to describe methods that use pattern

instances. These tags are fairly generic, thus allowing to

document both structural and behavioral patterns.

The following code is an example of documentation of

a class that plays the role of Leaf in the Composite pattern.

/**
* This class purpose is…
* @pat.name Composite {@pat.role Leaf}
* @pat.task it represents a variable,
* {@link #evaluate()} gives the value
*/
class Variable { }

The above fragment of comment, when processed by

the Javadoc tool enhanced with the proposed pattern

specific tags produces the following documentation:

The class purpose is…

Pattern:

Composite, role: Leaf

Pattern task:

It represents a variable, evaluate() gives the

value.

The first sentence in the documentation is used as the

generic class description. Then the pattern specific tags

generate their output. The Composite link brings to a on-

line description of the composite pattern. The evaluate()

link, obtained through the default in-line tag link, brings

to the documentation of the method evaluate within the

current class.

4. Empirical validation

To validate the proposed approach we decided to

replicate the experiment presented in [5], which is

described in detail in [6]. Since a replication package is

available
2
 together with the collected data it will be used

as a reference.

The experiment consists of two maintenance tasks

performed on two different Java programs. The

hypotheses can be summarized as:

H1. the presence of pattern documentation makes the

task completion quicker;

2 http://www.ipd.uka.de/~prechelt/packages/patdoc_package.zip

H2. the presence of pattern documentation reduces

the number of errors committed.

We tried to keep all the details as close as possible to

the original experiment. The only variations were:

• the use of the HTML documentation, produced by

Javadoc, instead of paper code listings;

• the introduction of pattern specific tags, instead of

unstructured pattern documentation;

• the adoption of a web-based interface for the

questionnaire.

We used the same programs, but we adapted the

original documentation to both of the Javadoc style and

the pattern specific tags.

The subjects of the experiment were 28 students at the

fourth year in computer science degree at Norwegian

University of Science and Technology (NTNU).

One third of the students wrote less than 300 lines of

code in their career and none of them ever wrote more

than 3000 lines of code.

The students had no previous experience with design

patterns; they were given a two hours lesson on the topic

by the author.

We ran the Mann-Whitney test on the collected data,

the results are shown in Table 1 and compared against the

results obtained running the same test on the reference

data.

 H1 H2

Our p = 0.0835 p=0.0376
Task 1

Reference opposite p=0.0944

Our p = 0.3225 p=0.4253
Task 2

Reference p = 0.0799 p=0.3728

Table 1: Significance of tests.

The results we obtained running our tests on the

reference data are very close to those reported in [6].

The only strong support we obtained is for hypothesis

H2 on task 1, but it is completely unsupported for task 2.

Both our results and the reference ones do not fully

support H1; actually the reference data for task 1 indicate

the opposite of the hypothesis.

Compared to the reference experiment the main

difference is the improvement in time obtained with the

web-based exercise compared to the paper based.

In task 1 the average time reduced from 55 to 47

minutes, while in task 2 it went from 55 to 54; the average

reduction in time is 8%.

The post questionnaire revealed that the students

judged it positively and liked the online modality.

5. Conclusions

This paper proposes a structured approach to document

pattern use in the Java programs. The approach extends

the Javadoc tool with pattern specific tags.

Our proposal is based on a simple extension of a

widely used standard; therefore it can be easily adopted.

The overhead required to document pattern is very low: a

few lines in addition to the usual documentation.

The resulting documentation is well structured and is

linked to pattern description, thus making it easy to

understand the program.

The web-based context emulated more closely a real

professional development environment such as an IDE.

Thus the results deriving from our approach are more

likely to be applicable to real system development. From

the empirical validation we can conclude that:

• both our experiment and the reference one seem to

indicate that patterns are useful in some

maintenance tasks,

• since our subjects were less expert and trained

than the reference, our support is stronger,

• the enhanced documentation provided by Javadoc

improves efficiency of maintenance.

The preliminary results are positive, but there is a lot

of future work, in particular:

• further experiments should be performed with

both students and professionals,

• the analysis of the use of pattern should be

refined based on the feedback from the

experiments,

• more detailed experiments should be designed to

validate the pattern specific tags.

We believe the proposed approach is both useful and

easy to adopt. Given the ever-increasing pattern

importance the proposed tags can become part of the

standard set of Javadoc.

6. References

[1] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design

Patterns: Elements of Reusable Object-Oriented Software.

Reading, MA: Addison-Wesley, 1995.

[2] J. Coplien, "Software Design Patterns: Common Questions

and Answers," in The Patterns Handbook: Techniques,

Strategies, and Applications, L. Rising, Ed. New York:

Cambridge University Press, 1998.

[3] "Javadoc Tool Home Page": Sun Microsystem, 2002,

available at http://java.sun.com/j2se/javadoc/.

[4] A. Cornils and G. Hedin, "Statically checked documentation

with design patterns," in Proc. of 33rd International

Conference on Technology of Object-Oriented Languages

(TOOLS 33), Mont-Saint-Michel, France, 2000.

[5] L. Prechelt, B. Unger, M. Philippsen, and W. F. Tichy,

"Two Controlled Experiments Assessing the Usefulness of

Design Pattern Documentation in Program Maintenance,"

IEEE Transactions on Software Engineering, vol. 28 (6),

pp. 595-606,June 2002.

[6] L. Prechelt, "An experiment on the usefulness of design

patterns: Detailed description and evaluation," Faculty of

Informatics, University of Karlsruhe 9/1997, June 1997.

