Configuration management

Outline

= Motivation
= Versioning

= Configuration items, configurations,
baselines

= Change control
= Build
» Configuration management plan

» Configuration management tools
SOftEng

Motivation

nnnnnnnnnnnnnnnnnnnnnnn

Main Phases

Development

o

eployment

Operation

retirement

Maintenance

SOftEng

Requirements

Development

definition

\

Requirement
document

Req. inspection

n

c
O e

N 9 3
. v e

Design by +

= s

- i £

Design | —|Q N &

Q

document Implgmen —.@—»m
tation £

w

o

o

-

Project management
Configuration management

-+

v

Development

Requirements Requirement ; Requirement
engineering —* document | VV requirements * document
Design /
9 Design V_/ Design
) document design document
Implement VV unit
unit Unit Unit
Implement Unit’ VV unit Unit’
unit
lnteqrate System VV system System
units

Project management
Configuration management
Quality management

SOftEng

Time and space dimensions

= Space

+ System made of many parts (documents,
code)

* System (and parts) adapted for many
situations

= Time
+ Parts, and system, change over time

http://softeng.polito.it

Software - space

= Made of many parts
- Documents
- Programs
= With different instantiations
¢ Customers, platforms

* Thousands of separate documents are
generated for a large software system

SOftEng

Time - Change is inevitable

= A software system changes

+ Different instantiations of software for different customers
+ Same software changes over time

“No matter where you are in the system life cycle, the system
will change, and the desire to change it will persist
throughout the life cycle.” [Bersoff et al., 1980]

........................

Issues

= What is history of document?
¢ versioning

= What is the correct set of documents
for a specific need?

+ configuration

= Who can access and change what?
+ Change control

» How the system is obtained?
+ build

SOftEng

Goals of CM

» |dentify and manage parts of software
= Control access and changes to parts

= Allow to rebuild previous version of
software

nnnnnnnnnnnnnnnnnnnnnn

Versioning

SOftEng

Terms

Configuration item (ClI)

Configuration Management aggregate
Configuration

Version

Baseline

xxxxxxxxxxxxxxxxxxxxxxx

Versioning

. N O h Isto ry) ProjectUniNettuno
¥ Requirement document.doc

= Different names

__JProjectUniNettuno

L!‘Z‘JR:’;‘quirement document 1 1 2009.doc
@Requirement document 11 12 2008.doc
W fRrequirement document 1 10 2008.doc |

= Tool capable of keeping track of versions
+ Same name
+ Different version name (ex 1.0 2.0 2.1 or 1,2,3,)
+ User decides when to change version (commit)
+ Always possible to recover a past version

SOftEng

Versioning - Ci

» Cl, configuration item

» Element (file) under configuration
control
+ Has a name and a version number
+ All its version numbers are kept

+ User decides to change version number
with specific operation (commit)

¢+ |t is possible to retrieve any version

http://softeng.polito.it

Configuration Item

= Unit for the CM system

a work product or piece of software that is treated as a single
entity for the purpose of configuration management.

+ May correspond to one/more
document(s), one/more programs
- Simple example of Cls
- Requirement document

- Design document
- Source code module

SOftEng

Version

» [nstance of ClI

+ Ex Req document 1.0
¢+ Reqg document 1.1

........................

Version identification

= Procedures for version identification
should define an unambiguous way of
identifying component versions

= basic techniques for component
identification

+ Version numbering
+ Attribute-based identification

SOftEng

Version numbering

Simple naming scheme uses a linear
derivation
e.g. V1, V1.1, V1.2, V2.1, V2.2 etc.

Actual derivation structure is a tree or
a network rather than a sequence

Names are not meaningful.

Hierarchical naming scheme may be
better

xxxxxxxxxxxxxxxxxxxxxxx

Links between Cls

Data model

‘(Design specification]

data design
architectural design
module design
interface design

S o

Vi ™
Component N
/ p

interface description
algorithm description
PDL

Y

-
Test specification

test plan
test procedure
test cases

SOftEng l I

EX.

+ System 1.0 (configuration 1.0)

- File2.c 1.0 + Filel.c 1.0 + Readme 1.0
+ System 1.1 (configuration 1.1)

- File2.c 1.0 + Filel.c 1.1 + Readme 1.0

.

Prodotto1 N

Subsys1 Subsys2 \

AN

GUI Doc GUI BO Doc

I ’ IIj o\
SOftEng File2c-1.0 _ Filel.c- 1.0 Readme - 1.0

File2.c - 2.0 ’ - Filet.c-11
Filel.c - 1.2

Configuration

= Set of Cls, each in a specific version

config 2

config 1
SOftEng I

* Choices of CM system

* What parts of software system become
Cls

* (not all documents may become Cls)

= Changes to Cl are subject to
procedures defined by CM system

+ Typically, change must be approved and
recorded

* New version of Cl must be generated

........................

Configuration

= Snapshot of software at certain time

+ Various Cls, each in a certain version

+ Same Cl may appear in different
configurations

* Also configuration has version

SOftEng

Baseline

= configuration in stable, frozen form

* Not all configurations are baselines

* Any further change / development will
produce new version(s) of CI(s), will not
modify baseline

» Types of baselines

* Development - for internal use
* Product - for delivery

SOftEng

Derivation history

= Record of changes applied to a document
or code component

= Should record, in outline, the change
made, the rationale for the change, who
made the change and when it was
implemented

= May be included as a comment in code. If a
standard prologue style is used for the
derivation history, tools can process this
automatically

SOftEng

Component header info

/ PROTEUS project (ESPRIT 6087)

I/

/| PCL-TOOLS/EDIT/FORMS/DISPLAY/AST-INTERFACE

Il

/| Object: PCL-Tool-Desc

// Author: G. Dean

/I Creation date: 10th November 1998

Il

/| © Lancaster University 1998

/l

/I Modification history

// Version Modifier Date Change Reason
//1.0 J.Jones 1/12/1998 Add header Submitted to CM
//1.1 G.Dean 9/4/1999 New field Change req. R07/99

nnnnnnnnnnnnnnnnnnnnnnn

| From: 3t-0ct-07 v | To: 13-Mar-09 « lf;
Revision Actions Author Date Message AN
3555 &) mmz 3:38:36 PM, Monday, March 09, 2009 addedref to trac.ppt
| 355¢ &) mmz 3:13:58 PM, Monday, March 09, 2009
1504 &) mmz 4:58:12 PM, Thursday, April 03, 2008
1040 &) mmz 7:21:45 PM, Wednesday, March 12, 2008
836 &) mmz 11:45:34 AM, Thursday, March 06, 2008 changed change control part
768 &) mmz 7:34:05 PM, Monday, March 03, 2008
63 -+ vetro 1:05:21 PM, Wednesday, October 31, 2007 repository resurrection 3
added trac slides
Action Path Cop
Modified /didatticafCORSO INGEGNERIA DEL SOFTWARE[0S Configuration ManagementTheory/0S CfgMngmnt.ppt
< 2l

Showing 9 revision(s), from revision 63 to revision 3581 - 1 revision(s) selected.

Hide unrelated changed paths Statistics

D Stop on copy/rename
[1nclude merged revisions

_1 [Show all '] [Next 100] [W-]

.........................

Svn - version identification

» |n subversion a version is called 2
= Each configuration has a new number

revision

= Each element changes revision, even if has not

been changed

revision# 1 3 4 5
A A’ A’
B B’ B’
SOftEng
Branches

SOftEng

Merge

brandh

SOftEng

Change control

SOftEng

Typical situation

= Team develops software

= Many people need to access parts of
software

* Common repository (shared folder), all
can read/write documents/ programs

nnnnnnnnnnnnnnnnnnnnnnn

Change control - repository

h%w

copy
Loy
copy e\
copy

SOftEng

Repository - file server

John 1 copy doc.doc
S — \ 2 copy doc.doc
. Mary

—

4 copy doc.doc

3 copy doc.doc

Changes by John are lost

nnnnnnnnnnnnnnnnnnnnnnn

Change control

= Changes must be disciplined
+ Who controls
+ What is controlled
+ How control is implemented

= Approaches

* Check in - check out model, Workspaces
+ CCB

- On top of check in check out

SOftEng

Workspace and check in/out

Check out

/(Svn:upda/e;

Check in
(svn: commit)

Check out

\

Check in

SQOtEng

Check-in check-out

» Check-out

* Extraction of Cl from repository
- with goal of changing it or not
- After checkout next users are notified

» Check-in

¢ Insertion of Cl under control

SOftEng

Workspace

» ‘Private’ space where developer has
full control

SOftEng

Repository - check in checkout

John || 1 checkout doc.doc v x

2 checkin doc.doc v x

SOftEng

Checkin checkout vs. file system

Check in /out File system
= Cls are in repository | |= Files are in shared
directory
= To rd/wr Cl user = Any user can get
needs to do check copy of file, or work
out on original
= After checkout next ||= Users can work on
user knows that Cl copies of file
is used by someone without knowing
else that others are
doing the same

SOftEng

Check in/out - choices

* Who can do check in/out

» Checked-out Cl is locked or not

+ |f locked, one writer, many readers
- One only can modify

» Checked-in Cl increments version or
not

+ If not, old version is lost

SOftEng

Check in / check out - scenarios

* Lock modify unlock (or serialization)
+ One can change at a time

= Copy modify merge
+ Many change in parallel, then merge

nnnnnnnnnnnnnnnnnnnnnn

John || 1 check out doc.doc v x

e\ check oc.d

' ' /&‘Gd/' T Mary
\ I /EIZ |

3 check in doc.doc vx+1 _—

4 check out doc.doc

First check out locks the file
So&'ié"r%’g,‘er checkouts are allowed until check in

Problems - lock

» Locker forgets to unlock
= No parallel work, delays

nnnnnnnnnnnnnnnnnnnnnnn

Copy modify merge

John || 1 check out doc.doc v x

2 check out doc.doc v x
— \
. Mary

L - |

3 check in doc.do
4 check in doc.docv x +1°
conflict signal
manual merge x+1, x+1’
check in x+2

The second check in signals conflict
SR 10 do a manual merge of x+1 and x+1"_in x+2

= Pro
* More flexible
= Cons
* Requires care to resolve the conflict

nnnnnnnnnnnnnnnnnnnnnnn

CM Tools

= CVS

= Subversion
= Clearcase
» Bitkeeper

SOftEng

CCB

» Configuration Control Board

* Authorizes changes to a baseline
- Corrective maintenance

+ Defines what will be in next baseline
- Perfective maintenance

http://softeng.polito.it

Configuration control board

= Changes should be reviewed by an external
group who decide whether or not they are
cost-effective from a strategic and
organizational viewpoint rather than a
technical viewpoint

= Should be independent of project
responsible for system. The group is
sometimes called a change control board

= May include representatives from client
and contractor staff

SOftEng

Change procedure

Request change by completing a change request form
Analyze change request
if change is valid then
Assess how change might be implemented
Assess change cost
Submit request to change control board
if change is accepted then
repeat
make changes to software
submit changed software for quality approval
until software quality is adequate
create new system version
else
reject change request
else
reject change request

xxxxxxxxxxxxxxxxxxxxxxxx

Change request form

= Definition of change request form is part
of the CM planning process

= Records change required, suggestor of
change, reason why change was
suggested and urgency of change (from
requestor of the change)

= Records change evaluation, impact
analysis, change cost and
recommendations (System maintenance

staff)

SOftEng

Change request form

Change Request Form

Project: Proteus/PCL-Tools Number: 23/94

Change requester: 1. Sommerville Date: 1/12/98

Requested change: When a component is selected from the structure,
display the name of the file where it is stored.

Change analyser: G. Dean Analysis date: 10/12/98
Components affected: Display-Icon.Select, Display-Icon.Display

Associated components: FileTable

Change assessment: Relatively simple to implement as a file name table
is available. Requires the design and implementation of a display field. No
changes to associated components are required.

Change priority: Low
Change implementation:
Estimated effort: 0.5 days

Date to CCB: 15/12/98 CCB decision date: 1/2/99
CCB decision: Accept change. Change to be implemented in Release 2.1.
Change implementor: Date of change:

Date submitted to QA: QA decision:

Date submitted to CM:

SO 1t [E | Comments

http://softeng.|

Tools to support change process

* Trac, Jira, Bugzilla, ..

= See Trac demo

* For trac: change - ticket
* Usr demo pwd demo

SOftEng

http://softeng.polito.it

rac - create ticket

Create New Ticket
Shert summary:

Display name position
Type: enhancement v

Full description (you may use wikiFarmatting hare):
B I A -~ :] — 1[-l
When 8 cosponent 1s selected frow the structure, display the rame of the file vhere 1t 1s stored.

"'Relatively sisple to 1eplesent as a file nawe table 15 available, Requires the design and
inplesentation of a display field. Mo changes to associated coaponents are required'’

Ticket Properti
Pricrity: loaw |» Miestene: 2.1 |
Carmponent: eomponentl |v Versien: |
Saverity: gritical v Kaywords: Fila table
Assign to: Ce: |, Sommenville. G. Dean

| have files to attach to this ticket

fre———

iPreview Submit ticket

SQOtEng

rac - see all (active) tickets

Use Demo/Demo to beg i as the admin user
.

i trac

Sewth
Iagrand SN & Prgent Namapenemt

omndrwdure Logod Seting HeptOuch Abodt Tra

[[W | i | Fawirw | brewstoucs [' ide | Swh | Aden

Mosloble At Cuom Ouery
{1} Active Tickets

o List al active tickets by prorty.
» Color each row based on priceity,
o 1 atickst has been acoeptad. 2

& appended after the oanecs name

Ticket Summary Compeaent Yersion Milestone Type Owner

¥ None cormpanent? Nane enhancemert None

Nene cormponentl 20 None enhancemet None

LE] None companantd 24 Nane tast None o007

#9 bla Test Nane ul rodiz 03002
2 None cormpanent] 14 tast None Q007

paifica hgh szhool cormpanentd 12 21 tast None Q20007

#11 teste 1 b 21 anoryrmous *

#13 Error en c8culo del IETU 5 21

210 fasle] 21 somebody

#16 ORA test] 24 21 e T

12 Sheet summary Cocs 20 21 tast samshody

£14 af asdi adt companent 1] 21 tist Fale

2| cravela marker commpanentd | 30 cetect demo * 022007

£135 Display narme postion mpanent 1 enhancamart soamebody

TracReparts

SOftEng

http://softeng.polito.it

Trac - open ticket

Ticket #15 (new enhancement)

Display name position pened 7 minut

Aaparted by Ao Ansigredto | Sorvmervile
Friorey law R 21
crmpanunt File Tadw - 21
Swveiy crbical Howyveor che Flw table
Cc I Sermmarvik, 6. Daan
Descriptior Rephy

when a component is selected from the structure. display the name of tha file where it is stored,

Relatvely smple to implement as a file name table is avalable, Requires the design and implementation
of 5 display field, No changes o asscciated components are required

Attachments

Attach File

Change History

SQOtEng

Lifecycle for change (bug)

Naw bug frem 3
uar with cancenfirm
or m product witheut
UNCONFIRNED wintw

UNCONFIRMED

Bup I= mopered

- By confirmed ar v T reuer con i rrmed b
e e o b vt
Jwnership
change Deviiop e =
Anished wich bug
[Poaibie real asnn:
FXED
CUDLICATE
WONTHIX
woneTonve
IWALD
REMIND 1 Developren: =
LATER fninted wkh bug

wih sl on walutien werknd

By 15 repenad

SOftEng

http://softeng.polito.it

CM Planning

nnnnnnnnnnnnnnnnnnnnnn

CM plan

= Contains key CM related choices and
policies in a project
+ Using or not a CM tool, what tool
+ What should and should not be a Cli
* Change control policy
* Who is CM manager

SOftEng

Example

= The product

+ Several subsystems, each subsystem an
executable and several source files (modules)

+ Hierarchy
= The team

+ One person responsible per module

* One person responsible per subsystem
= The repository

* One repository per subsystem
¢ Check in/out
+ Workspace per person

nnnnnnnnnnnnnnnnnnnnnn

Example

check-in

Workspace)

programmatorg Repository
sottosistema A

Workspace
programmatore

Workspace
programmatore

SOftEng

Repository
prodotto

Workspace
integrazione
prodotto

Workspace
integrazione
ottosistema B

SOftEng

Build

SOftEng

System building

= The process of compiling and linking
software components into an
executable system

= Different systems are built from
different
combinations of components

= |nvariably supported by automated
tools that are driven by ‘build scripts’

nnnnnnnnnnnnnnnnnnnnnn

System building

Version
management §
system

System y Linker
builder 1

Build e COdtc Object code Executable
: componen 1 G

S : components system

ST Versions P

Compilers ¥

SOftEng

Component dependencies

System building problems

= Do the build instructions include all
required components?

¢+ When there are many hundreds of
components making up a system, it is
easy to miss one out. This should
normally be detected by the linker

SOftEng

» |s the appropriate component version
specified?
* A more significant problem. A system

built with the wrong version may work
initially but fail after delivery

= Are all data files available?

* The build should not rely on 'standard’
data files. Standards vary from place to
place

OftEng

System building problems

» Are data file references within
components correct?

+ Embedding absolute names in code
almost always causes problems as
naming conventions differ from place to
place

= |s the system being built for the right
platform

+ Sometimes must build for a specific OS

version or hardware configuration
OftEng

Is the right version of the compiler
and other software tools specified?

* Different compiler versions may actually
generate different code and the compiled
component will exhibit different
behaviour

SOftEng

System representation

Systems are normally represented for
building by specifying the file name to be
processed by building tools. Dependencies
between these are described to the
building tools

Mistakes can be made as users lose track
of which objects are stored in which files

A system modelling language addresses
this problem by using a logical rather than
a physical system representation

SOftEng

Dependencies

edit
utils.c | | files.c | search.c | insert.c kbd.c \/main.c
di C —command.c
—_—
defs.h buffer.h command.h

xxxxxxxxxxxxxxxxxxxxxxx

edit : main.o kbd.o command.o display.o insert.o search.o files.o utils.o

cc l—o edit main.o kbd.o command.o display.o insert.o search.o files.o
utils.o

main.o T main.c defsth
CC —C main.c
kbd.o : kbd.c defs.h command.h
cc -c kbd.c
command.o : command.c defs.h command.h
cc —-c command.c
display.o : display.c defs.h buffer.h
cc —c display.c
insert.o : insert.c defs.h buffer.h
CC -C insert.c
search.o : search.c defs.h buffer.h
cc -c search.c
files.o : files.c defs.h buffer.h command.h
cc —c files.c
utils.o : utils.c defs.h
cc —c utils.c
clean :
rm edit main.o kbd.o command.o display.o insert.o search.o files.o utils.o

SOftEng

Build tools

= Make
= Ant
= Maven

nnnnnnnnnnnnnnnnnnnnnn

The process and CM

Requirement

engineering

Requirement
inspection

Architecture
and design

Design
inspection

)

Test, code
inspection

Implementation

=4 —

SOftEng

Requirement
document

Design Software
document system

—

Summary

= CM is about

+ allowing to retrieve different (past) states
of a document (versioning),

* keeping track of consistent sets of
documents (configurations and baselines)

+ offering a place to store documents
(repository) and safe to ways to access
them (lock modify unlock or copy modify
merge)

OftEng

References and Further Readings

= “Software configuration management: A
roadmap”, J.Estublier, Proc. INt.
Conf.onSoftware Engineering, 2000, IEEE
Press.

= |[EEE STD 1042 - 1987 IEEE guide to
software configuration management

= |[EE STD 828-2005 Standard for Software
Configuration Mangement Plans

= “Configuration Management Principle and
Practice”, A.M.J.Hass,2002, Addison Wesley

OftEng

Tools

= CM + VM
+ RCS
+ CVS
+ SCCS
+ PCVS
¢ Clearcase
+ Subversion
+ BitKeeper
= Build
+ Make
+ Ant
+ Maven

nnnnnnnnnnnnnnnnnnnnnn

RCS

= Unitis file
= Baseline

» Check in check out

¢ Cl command

- Inserts file in baseline

- Associates comment explaining the change

- Associates new version number (automatically or not)
¢+ CO command

- Extracts file, in Rd or Wr mode

SOftEng

» |[dent command

* Associates name to file, starting from
attributes (name author version)

= Rlog

* Extracts from baseline description
- List of composing files
- Comments attached to files

xxxxxxxxxxxxxxxxxxxxxxxx

+ Storage of versions based on delta
- Storage space saved
- Check in / out can be slow
¢ Lock mechanism (default)
- At checkout file is locked
- Checkin possible only if user did checkout

http://softeng.polito.it

CVS

= Built on top of RCS
= Client server
= Unit is file or directory

= Same commands as RCS (if applied to
directory they are applied to all
contained files)

» Check out with lock or not

* Concurrent work on file possible
¢ Reconciliation at checkin (semi automatic)

........................

PCVS

» Client server

= Concepts
* Project = set of files + directories
+ Archive = set of all versions of file
+ Revision = version of file

= Suite of tools
+ Version manager
+ Configuration builder (to support creation of release)
+ Tracker to support change request
+ Notify (via email) to notify changes

SOftEng

Functions

= Create project

= Browse project

» Check out (w w/out lock)

= Check in

= Reports

= Branch merge management

nnnnnnnnnnnnnnnnnnnnnn

Svn - subversion

= See slides

SOftEng

Make

= Part of Unix

= Allows to describe components and
dependencies among components

= Allows to describe operations to build
system from components

» Builds system - recompiles only if
component was changed (using data

tag)

OftEng

edit : main.o kbd.o command.o display.o insert.o search.o files.o utils.o
cc -o edit main.o kbd.o command.o display.o insert.o search.o files.o

utils.o
main.o : main.c defs.h
CC —-C main.c
kbd.o : kbd.c defs.h command.h
cc —c kbd.c
command.o : command.c defs.h command.h
cc —-c command.c
display.o : display.c defs.h buffer.h
cc -c display.c
insert.o : insert.c defs.h buffer.h
CC —c insert.c
search.o : search.c defs.h buffer.h
cc -c search.c
files.o : files.c defs.h buffer.h command.h
cc —c files.c
utils.o : utils.c defs.h
cc —c utils.c
clean :

rm edit main.o kbd.o command.o display.o insert.o search.o files.o utils.o

ANT

A build tool like make

= Open source

+ from the Apache Jakarta project

* http://jakarta.apache.org/ant
Implemented in Java

Used to build many open source
products

¢ such as Tomcat and JDOM

http://softeng.polito.it

Why Use Ant Instead of make?

+ Ant is more portable
- Ant only requires a Java VM (1.1 or higher)
- make relies on OS specific commands to carry out it’s
tasks
* Ant targets are described in XML
- make has a cryptic syntax
- make relies proper use of tabs that is easy to get wrong
- you can’t see them
+ Ant is better for Java-specific tasks

- faster than make since all tasks are run from a single
VM

- easier than make for some Java-specific tasks such as
generating javadoc, building JAR/WAR files and working
with EJBs

SOftEng

How Does Ant Work?

= Ant commands (or tasks) are implemented by Java
classes
* many are built-in
+ others come in optional JAR files
¢ custom commands can be created
= Each project using Ant will have a build file

+ typically called build.xml since Ant looks for this by
efault

= Each build file is composed of targets

* these correspond to common activities like compiling and
running code

= Each target is composed of tasks

+ executed in sequence when the target is executed
+ like make, Ant targets can have dependencies

- for example, modified source files must be compiled before
iE appllcatlon can be run

http://softeng.polito.it

How

= Targets to be executed

+ can be specified on the command line when invoking Ant
+ if none are specified then the default target is executed
+ execution stops if an error is encountered so all requested
targets may not be executed
= Each target is only executed once

+ regardless of the number of other targets that depend on
it, ex:
- the “test” and “deploy” targets both depend on “compile”
- the “all” target depends on “test” and “deploy”
- but “compile” is only executed once when “all” is executed

= Some tasks are only executed when they need to
be

+ for example, files that have not changed since the last
time they were compiled are not recompiled
SOftEng

Build file example (1)

<?xml version="1.
<project name="Web App." default="deploy" basedir="."s | arerelative to this

L' target that is run when none are specified
<!-- Define global properties. -->

0" encoding="UTF-8"?>

relative directory references

<property name="appName" value="shopping"/>

<property name="buildDir" value="classes"/>

<property name="docDir" value="doc"/>
<property name="docRoot" value="docroot"/>

Some of these are used to
set “classpath” on the next page.

<property name="junit" value="/Java/JUnit/junit.jar"/> Others are used in task parameters.

<property name="srcDir" value="src"/>

<property name="tomcatHome" value="/Tomcat"/>

<property name="servlet" value="${tomcatHome}/lib/servlet.jar"/>
<property name="warFile" value="${appName)}.war"/>

<property name="xalan" value="/XML/Xalan/xalan.jar"/>

<property name="xerces" value="/XML/Xalan/xerces.jar"/>

Where possible, use UNIX-style
paths even under Windows.
This is not possible when
Windows directories on drives
other than C must be specified.

Build file example (2)

<path id="classpath">

<pathelement
<pathelement
<pathelement
<pathelement
<pathelement
</path>

<target name="all" depends="test,javadoc,deploy" « means that the test, javadoc and deploy
description="runs test,

path="${buildDir}"/>
path="${xerces}"/>
path="${xalan}"/>
path="${servlet}"/>
path="${junit}"/>

doesn’t have any tasks of its own;
just executes other targets

SOf

ng

http://softeng.polito.it

used in the compile,
javadoc and test targets

javadoc and deploy"/>

targets must be executed before this target

Build file example (3)

<target name="clean" description="deletes all generated files">

<delete dir="${buildDir}"/> <!-- generated by the prepare target -->
<delete dir="${docDir}/api"/> <!-- generated by the javadoc target -->
<delete>
<fileset dir=".">
<include name="${warFile}"/> <!-- generated by the war target --»>
<include name="TEST-*.txt"/> <!-- generated by the test target -->
</fileset>
</delete> memmlhmlhepmpa@tmgennum
</targets> be executed before this target
compiles all files in or below sreDir that have no .class file or
<target name="compile" depends="prepare" | have been modified since their .class file was created;
description="compiles source files"> don’t have to list specific file names as is common with make

<javac srcdir="${srcDir}" destdir="${buildDir}" classpathref="classpath"/>
</targets>

makes the servlet available through Tomcat;

<target name="deploy" depends="war,undeploy" Tomcat won’t expand the new war file unless the
corresponding webapp subdirectory is missing

description="deploys the war file to Tomcat">

<copy file="${warFile}" tofile="${tomcatHome}/webapps/${warFile}"/>
</target>

Build file example (4)

<target name="dtd" description="generates a DTD for Ant build files">
<antstructure output="build.dtd"/>

generates a DTD that is useful for learning
</target> the valid tasks and their parameters

<target name="javadoc" depends="compile"
description="generates javadoc from all .java files">
<delete dir="${docDir}/api"/>
<mkdir dir="${docDir}/api"/>
<javadoc sourcepath="${srcDir}" destdir="${docDir}/api®
packagenames="com.ociweb.*" classpathref="classpath"/>

</target> e
can’t just use a single * here and can’t use multiple *'s

<target name="prepare" description="creates output directories">
<mkdir dir="${buildDir}"/>
<mkdir dir="${docDir}"/>
</targets>

generates javadoc for all
.Jjava files in or below srcDir.

creates directories needed by other targets
if they don’t already exist

S http:/ /softeng. polito. it —-

Build file example (5)

<target name="test" depends="compile" description="runs all JUnit tests">

<l-- Delete previous test logs. --> . . .
P g runs all JUnit tests in or below sreDir

<delete>

<fileset dir=".">

<include name="TEST-*.txt"/> <!-- generated by the test target -->

</fileset>
</delete>

junit.jar must be in the CLASSPATH environment variable for this to work.
It’s not enough to add it to <path id="classpath"> in this file.

<taskdef name="junit"

classname="org.apache.tools.ant.taskdefs.optional.junit.JUnitTask"/>
<junit printsummary="yes">
<classpath refid="classpath"/>
<batchtest>
<fileset dir="${srcDir}"><include name="**/*Test.java"/></fileset>

<formatter type="plain"/> ** specifies to look in any

</batchtest> subdirectory at any depth
</junits>

</target>

Build file example (6)

<target name="undeploy" description="undeploys the web app. from Tomcat">

<delete dir="${tomcatHome}/webapps/${appName}"/>

makes the servlet unavailable to Tomcat

<delete file="${tomcatHome)}/webapps/${warFile}"/>
</target>

<target name="war" depends="compile" description="builds the war file">

<war warfile="${warFile}" webxml="web.xml">

<classes dir="${buildDir}"/> ;
) . that can be deployed to a servlet engine
<fileset dir="${docRoot}"/> like Tomcat

</wars t
</target> contains HTML, JavaScript, CSS and XSLT files

</project>

creates a web application archive (WAR)

LI 1Y

http://softeng.polito.it

Download

xxxxxxxxxxxxxxxxxxxxxxxx

Commands

= ant [options] [target-names]
* omit target-name to run the default target

* runs targets with specified names, preceded by
targets on which they depend

+ can specify multiple target-names separated by
spaces

+ -D option specifies a property that can be used
by targets and tasks

- —Dproperty-name=property-value
= ant -help
* lists other command-line options

SOftEng

Core tasks (some)

Chmod
Concat
= Copy

= Cvs

= Delete
= Exec

= Java

= Javac

= Javadoc

xxxxxxxxxxxxxxxxxxxxxxxx

Mail
Mkdir
Move
Sleep
Sql
Tar
Zip
Unzip

