
Configuration managementConfiguration managementConfiguration managementConfiguration management

Outline

� Motivation

� Versioning

� Configuration items, configurations,
baselines

� Change control

� Build

� Configuration management plan

� Configuration management tools

Motivation

Main Phases

DevelopmentDevelopmentDevelopmentDevelopment

deploymentdeploymentdeploymentdeployment

OperationOperationOperationOperation

t

MaintenanceMaintenanceMaintenanceMaintenance

retirementretirementretirementretirement

DevelopmentRequirements Requirements Requirements Requirements
definitiondefinitiondefinitiondefinition

DesignDesignDesignDesign

ImplemenImplemenImplemenImplemen
tationtationtationtation

t

Project managementProject managementProject managementProject management
Configuration managementConfiguration managementConfiguration managementConfiguration management

RequirementRequirementRequirementRequirement
documentdocumentdocumentdocument

DesignDesignDesignDesign
documentdocumentdocumentdocument

CodeCodeCodeCode

R
e
q
.
in

s
p
e
c
ti

o
n

R
e
q
.
in

s
p
e
c
ti

o
n

R
e
q
.
in

s
p
e
c
ti

o
n

R
e
q
.
in

s
p
e
c
ti

o
n

C
o
d
e
 i
n
s
p
e
c
ti

o
n
 +

 t
e
s
t

C
o
d
e
 i
n
s
p
e
c
ti

o
n
 +

 t
e
s
t

C
o
d
e
 i
n
s
p
e
c
ti

o
n
 +

 t
e
s
t

C
o
d
e
 i
n
s
p
e
c
ti

o
n
 +

 t
e
s
t

D
e
s
.
in

s
p
e
c
ti

o
n

D
e
s
.
in

s
p
e
c
ti

o
n

D
e
s
.
in

s
p
e
c
ti

o
n

D
e
s
.
in

s
p
e
c
ti

o
n

Development

Integrate
units

Design
.

Requirements
engineering

Requirement
document

Design
document

Unit

Unit

System

Implement
unit

Implement
unit

VV system

VV
design

VV requirements

VV unit

VV unit

Requirement
document

Design
document

Unit

Unit

System

Project management
Configuration management

Quality management

Time and space dimensions

� Space

� System made of many parts (documents,
code)

� System (and parts) adapted for many
situations

� Time

� Parts, and system, change over time

Software - space

� Made of many parts

– Documents

– Programs

� With different instantiations

� Customers, platforms

� Thousands of separate documents are
generated for a large software system

Time - Change is inevitable

� A software system changes
� Different instantiations of software for different customers

� Same software changes over time

“No matter where you are in the system life cycle, the system
will change, and the desire to change it will persist
throughout the life cycle.” [Bersoff et al., 1980]

Issues

� What is history of document?

� versioning

� What is the correct set of documents
for a specific need?

� configuration

� Who can access and change what?

� Change control

� How the system is obtained?

� build

Goals of CM

� Identify and manage parts of software

� Control access and changes to parts

� Allow to rebuild previous version of
software

Versioning

Terms

� Configuration item (CI)

� Configuration Management aggregate

� Configuration

� Version

� Baseline

Versioning

� No history

� Different names

� Tool capable of keeping track of versions

� Same name

� Different version name (ex 1.0 2.0 2.1 or 1,2,3,)

� User decides when to change version (commit)

� Always possible to recover a past version

Versioning – CI

� CI, configuration item

� Element (file) under configuration
control

� Has a name and a version number

� All its version numbers are kept

� User decides to change version number
with specific operation (commit)

� It is possible to retrieve any version

Configuration Item

� Unit for the CM system
a work product or piece of software that is treated as a single
entity for the purpose of configuration management.

� May correspond to one/more
document(s), one/more programs
– Simple example of CIs

– Requirement document

– Design document

– Source code module

Version

� Instance of CI

� Ex Req document 1.0

� Req document 1.1

Version identification

� Procedures for version identification
should define an unambiguous way of
identifying component versions

� basic techniques for component
identification

� Version numbering

� Attribute-based identification

� Simple naming scheme uses a linear
derivation
e.g. V1, V1.1, V1.2, V2.1, V2.2 etc.

� Actual derivation structure is a tree or
a network rather than a sequence

� Names are not meaningful.

� Hierarchical naming scheme may be
better

Version numbering

Links between CIs

Ex.

� System 1.0 (configuration 1.0)

– File2.c 1.0 + File1.c 1.0 + Readme 1.0

� System 1.1 (configuration 1.1)

– File2.c 1.0 + File1.c 1.1 + Readme 1.0

Configuration

� Set of CIs, each in a specific version

config 1config 1config 1config 1

config 2config 2config 2config 2

ClassA 1.0ClassA 1.0ClassA 1.0ClassA 1.0

config 3config 3config 3config 3

ClassB 1.1ClassB 1.1ClassB 1.1ClassB 1.1

ClassA 1.1ClassA 1.1ClassA 1.1ClassA 1.1

ClassB 1.0ClassB 1.0ClassB 1.0ClassB 1.0

baselinebaselinebaselinebaseline

� Choices of CM system

� What parts of software system become
CIs

� (not all documents may become CIs)

� Changes to CI are subject to
procedures defined by CM system

� Typically, change must be approved and
recorded

� New version of CI must be generated

Configuration

� Snapshot of software at certain time

� Various CIs, each in a certain version

� Same CI may appear in different
configurations

� Also configuration has version

Baseline

� configuration in stable, frozen form

� Not all configurations are baselines

� Any further change / development will
produce new version(s) of CI(s), will not
modify baseline

� Types of baselines

� Development – for internal use

� Product – for delivery

� Record of changes applied to a document
or code component

� Should record, in outline, the change
made, the rationale for the change, who
made the change and when it was
implemented

� May be included as a comment in code. If a
standard prologue style is used for the
derivation history, tools can process this
automatically

Derivation history

Component header info

Derivation history - svn

Svn – version identification

� In subversion a version is called � revision

� Each configuration has a new number

� Each element changes revision, even if has not
been changed

A

B

1 2 3 4

A’

B’

A

B

revision#

A’

5

B’

Branches

printer printer printer printer
driver 1.0driver 1.0driver 1.0driver 1.0

printer printer printer printer
driver 1.1driver 1.1driver 1.1driver 1.1

printer printer printer printer
driver 1.2driver 1.2driver 1.2driver 1.2

printer printer printer printer
driver 2.0driver 2.0driver 2.0driver 2.0

(linux)(linux)(linux)(linux)

printer printer printer printer
driver 2.1driver 2.1driver 2.1driver 2.1

(linux)(linux)(linux)(linux)

printer printer printer printer
driver 1.3driver 1.3driver 1.3driver 1.3
(windows)(windows)(windows)(windows)

branchbranchbranchbranch

Merge

printer printer printer printer
driver 1.1driver 1.1driver 1.1driver 1.1

printer printer printer printer
driver 1.2driver 1.2driver 1.2driver 1.2

printer printer printer printer
driver 2.0driver 2.0driver 2.0driver 2.0

(linux)(linux)(linux)(linux)

printer printer printer printer
driver 2.1driver 2.1driver 2.1driver 2.1

(linux)(linux)(linux)(linux)

printer printer printer printer
driver 1.3driver 1.3driver 1.3driver 1.3
(windows)(windows)(windows)(windows)

branchbranchbranchbranch

printer printer printer printer
driver 2.2driver 2.2driver 2.2driver 2.2

(linux)(linux)(linux)(linux)

printer printer printer printer
driver 1.4driver 1.4driver 1.4driver 1.4
(windows)(windows)(windows)(windows)

printer printer printer printer
driver 1.4driver 1.4driver 1.4driver 1.4
(windows)(windows)(windows)(windows)

mergemergemergemerge

Change control

Typical situation

� Team develops software

� Many people need to access parts of
software

� Common repository (shared folder), all
can read/write documents/ programs

Change control - repository

repositoryrepositoryrepositoryrepositorycopycopycopycopy

copycopycopycopy

copycopycopycopy

copycopycopycopy

Repository - file server

repositoryrepositoryrepositoryrepository
with file with file with file with file
serverserverserverserver

1 copy doc.doc1 copy doc.doc1 copy doc.doc1 copy doc.doc

2 copy doc.doc2 copy doc.doc2 copy doc.doc2 copy doc.doc

3 copy doc.doc3 copy doc.doc3 copy doc.doc3 copy doc.doc

4 copy doc.doc4 copy doc.doc4 copy doc.doc4 copy doc.doc

JohnJohnJohnJohn

MaryMaryMaryMary

Changes by John are lostChanges by John are lostChanges by John are lostChanges by John are lost

Change control

� Changes must be disciplined

� Who controls

� What is controlled

� How control is implemented

� Approaches

� Check in – check out model, Workspaces

� CCB

– On top of check in check out

Workspace and check in/out

workspace1

repository

Check out

Check in

workspace2

Check out
(svn: update)

Check in
(svn: commit)

Check-in check-out

� Check-out

� Extraction of CI from repository

– with goal of changing it or not

– After checkout next users are notified

� Check-in

� Insertion of CI under control

Workspace

� ‘Private’ space where developer has
full control

Repository – check in checkout

repositoryrepositoryrepositoryrepository
with CM toolwith CM toolwith CM toolwith CM tool

1 checkout doc.doc v x1 checkout doc.doc v x1 checkout doc.doc v x1 checkout doc.doc v x

2 checkin doc.doc v x+12 checkin doc.doc v x+12 checkin doc.doc v x+12 checkin doc.doc v x+1

JohnJohnJohnJohn

Checkin checkout vs. file system

Check in /out

� CIs are in repository

� To rd/wr CI user
needs to do check
out

� After checkout next
user knows that CI
is used by someone
else

File system

� Files are in shared
directory

� Any user can get
copy of file, or work
on original

� Users can work on
copies of file
without knowing
that others are
doing the same

Check in/out - choices

� Who can do check in/out

� Checked-out CI is locked or not

� If locked, one writer, many readers

– One only can modify

� Checked-in CI increments version or
not

� If not, old version is lost

Check in / check out - scenarios

� Lock modify unlock (or serialization)

� One can change at a time

� Copy modify merge

� Many change in parallel, then merge

Lock modify unlock

repositoryrepositoryrepositoryrepository
with CM toolwith CM toolwith CM toolwith CM tool

1 check out doc.doc v x1 check out doc.doc v x1 check out doc.doc v x1 check out doc.doc v x

2 check out doc.doc2 check out doc.doc2 check out doc.doc2 check out doc.doc

3 check in doc.doc vx+13 check in doc.doc vx+13 check in doc.doc vx+13 check in doc.doc vx+1

JohnJohnJohnJohn

MaryMaryMaryMary

First check out locks the fileFirst check out locks the fileFirst check out locks the fileFirst check out locks the file
No other checkouts are allowed until check inNo other checkouts are allowed until check inNo other checkouts are allowed until check inNo other checkouts are allowed until check in

NONONONO

4 check out doc.doc4 check out doc.doc4 check out doc.doc4 check out doc.doc

Problems – lock

� Locker forgets to unlock

� No parallel work, delays

Copy modify merge

repositoryrepositoryrepositoryrepository

1 check out doc.doc v x1 check out doc.doc v x1 check out doc.doc v x1 check out doc.doc v x
2 check out doc.doc v x2 check out doc.doc v x2 check out doc.doc v x2 check out doc.doc v x

3 check in doc.doc v x+13 check in doc.doc v x+13 check in doc.doc v x+13 check in doc.doc v x+1

JohnJohnJohnJohn

MaryMaryMaryMary

The second check in signals conflictThe second check in signals conflictThe second check in signals conflictThe second check in signals conflict
User has to do a manual merge of x+1 and x+1’ in x+2User has to do a manual merge of x+1 and x+1’ in x+2User has to do a manual merge of x+1 and x+1’ in x+2User has to do a manual merge of x+1 and x+1’ in x+2

4 check in doc.doc v x +1’4 check in doc.doc v x +1’4 check in doc.doc v x +1’4 check in doc.doc v x +1’
conflict signalconflict signalconflict signalconflict signal

manual merge x+1, x+1’ manual merge x+1, x+1’ manual merge x+1, x+1’ manual merge x+1, x+1’
check in x+2check in x+2check in x+2check in x+2

� Pro

� More flexible

� Cons

� Requires care to resolve the conflict

CM Tools

� CVS

� Subversion

� Clearcase

� Bitkeeper

� ..

CCB

� Configuration Control Board

� Authorizes changes to a baseline

– Corrective maintenance

� Defines what will be in next baseline

– Perfective maintenance

� Changes should be reviewed by an external
group who decide whether or not they are
cost-effective from a strategic and
organizational viewpoint rather than a
technical viewpoint

� Should be independent of project
responsible for system. The group is
sometimes called a change control board

� May include representatives from client
and contractor staff

Configuration control board

Change procedure

� Definition of change request form is part
of the CM planning process

� Records change required, suggestor of
change, reason why change was
suggested and urgency of change (from
requestor of the change)

� Records change evaluation, impact
analysis, change cost and
recommendations (System maintenance
staff)

Change request form

Change request form

Tools to support change process

� Trac, Jira, Bugzilla, ..

� See Trac demo

� For trac: change � ticket

� Usr demo pwd demo
� http://www.hosted-projects.com/trac/TracDemo/Demo

Trac – create ticket

Trac – see all (active) tickets

Trac – open ticket

Lifecycle for change (bug)

....

CM Planning

CM plan

� Contains key CM related choices and
policies in a project

� Using or not a CM tool, what tool

� What should and should not be a CI

� Change control policy

� Who is CM manager

Example

� The product

� Several subsystems, each subsystem an
executable and several source files (modules)

� Hierarchy

� The team

� One person responsible per module

� One person responsible per subsystem

� The repository

� One repository per subsystem

� Check in/out

� Workspace per person

Example

Build

� The process of compiling and linking
software components into an
executable system

� Different systems are built from
different
combinations of components

� Invariably supported by automated
tools that are driven by ‘build scripts’

System building

System building

Component dependencies

� Do the build instructions include all
required components?

� When there are many hundreds of
components making up a system, it is
easy to miss one out. This should
normally be detected by the linker

System building problems

� Is the appropriate component version
specified?

� A more significant problem. A system
built with the wrong version may work
initially but fail after delivery

� Are all data files available?

� The build should not rely on 'standard'
data files. Standards vary from place to
place

� Are data file references within
components correct?

� Embedding absolute names in code
almost always causes problems as
naming conventions differ from place to
place

� Is the system being built for the right
platform

� Sometimes must build for a specific OS
version or hardware configuration

System building problems

� Is the right version of the compiler
and other software tools specified?

� Different compiler versions may actually
generate different code and the compiled
component will exhibit different
behaviour

System representation

� Systems are normally represented for
building by specifying the file name to be
processed by building tools. Dependencies
between these are described to the
building tools

� Mistakes can be made as users lose track
of which objects are stored in which files

� A system modelling language addresses
this problem by using a logical rather than
a physical system representation

Dependencies

utils.cutils.cutils.cutils.c

defs.hdefs.hdefs.hdefs.h

files.cfiles.cfiles.cfiles.c

buffer.hbuffer.hbuffer.hbuffer.h command.hcommand.hcommand.hcommand.h

search.csearch.csearch.csearch.c insert.cinsert.cinsert.cinsert.c

display.cdisplay.cdisplay.cdisplay.c command.ccommand.ccommand.ccommand.c

kbd.ckbd.ckbd.ckbd.c main.cmain.cmain.cmain.c

editediteditedit

edit : main.o kbd.o command.o display.o insert.o search.o files.o utils.o

cc -o edit main.o kbd.o command.o display.o insert.o search.o files.o
utils.o

main.o : main.c defs.h

cc -c main.c

kbd.o : kbd.c defs.h command.h

cc -c kbd.c

command.o : command.c defs.h command.h

cc -c command.c

display.o : display.c defs.h buffer.h

cc -c display.c

insert.o : insert.c defs.h buffer.h

cc -c insert.c

search.o : search.c defs.h buffer.h

cc -c search.c

files.o : files.c defs.h buffer.h command.h

cc -c files.c

utils.o : utils.c defs.h

cc -c utils.c

clean :

rm edit main.o kbd.o command.o display.o insert.o search.o files.o utils.o

Build tools

� Make

� Ant

� Maven

The process and CM

Requirement
engineering

Architecture
and design

Implementation

Design
document

Software
system

R
e
q
u
ir

e
m

e
n
t

in
s
p
e
c
ti

o
n

D
e
s
ig

n

in
s
p
e
c
ti

o
n

T
e
s
t,

 c
o
d
e

in
s
p
e
c
ti

o
n

Requirement
document

Summary

� CM is about

� allowing to retrieve different (past) states
of a document (versioning),

� keeping track of consistent sets of
documents (configurations and baselines)

� offering a place to store documents
(repository) and safe to ways to access
them (lock modify unlock or copy modify
merge)

References and Further Readings

� “Software configuration management: A
roadmap”, J.Estublier, Proc. INt.
Conf.onSoftware Engineering, 2000, IEEE
Press.

� IEEE STD 1042 – 1987 IEEE guide to
software configuration management

� IEE STD 828-2005 Standard for Software
Configuration Mangement Plans

� “Configuration Management Principle and
Practice”, A.M.J.Hass,2002, Addison Wesley

Tools

� CM + VM
� RCS
� CVS
� SCCS
� PCVS
� Clearcase
� Subversion
� BitKeeper

� Build
� Make
� Ant
� Maven

RCS

� Unit is file

� Baseline

� Check in check out

� CI command

– Inserts file in baseline

– Associates comment explaining the change

– Associates new version number (automatically or not)

� CO command

– Extracts file, in Rd or Wr mode

� Ident command

� Associates name to file, starting from
attributes (name author version)

� Rlog

� Extracts from baseline description

– List of composing files

– Comments attached to files

� Storage of versions based on delta

– Storage space saved

– Check in / out can be slow

� Lock mechanism (default)

– At checkout file is locked

– Checkin possible only if user did checkout

CVS

� Built on top of RCS

� Client server

� Unit is file or directory

� Same commands as RCS (if applied to
directory they are applied to all
contained files)

� Check out with lock or not

� Concurrent work on file possible

� Reconciliation at checkin (semi automatic)

PCVS

� Client server

� Concepts
� Project = set of files + directories

� Archive = set of all versions of file

� Revision = version of file

� Suite of tools
� Version manager

� Configuration builder (to support creation of release)

� Tracker to support change request

� Notify (via email) to notify changes

Functions

� Create project

� Browse project

� Check out (w w/out lock)

� Check in

� Reports

� Branch merge management

Svn - subversion

� See slides

Make

� Part of Unix

� Allows to describe components and
dependencies among components

� Allows to describe operations to build
system from components

� Builds system – recompiles only if
component was changed (using data
tag)

edit : main.o kbd.o command.o display.o insert.o search.o files.o utils.o

cc -o edit main.o kbd.o command.o display.o insert.o search.o files.o
utils.o

main.o : main.c defs.h

cc -c main.c

kbd.o : kbd.c defs.h command.h

cc -c kbd.c

command.o : command.c defs.h command.h

cc -c command.c

display.o : display.c defs.h buffer.h

cc -c display.c

insert.o : insert.c defs.h buffer.h

cc -c insert.c

search.o : search.c defs.h buffer.h

cc -c search.c

files.o : files.c defs.h buffer.h command.h

cc -c files.c

utils.o : utils.c defs.h

cc -c utils.c

clean :

rm edit main.o kbd.o command.o display.o insert.o search.o files.o utils.o

ANT

� A build tool like make

� Open source

� from the Apache Jakarta project

� http://jakarta.apache.org/ant

� Implemented in Java

� Used to build many open source
products

� such as Tomcat and JDOM

Why Use Ant Instead of make?

� Ant is more portable
– Ant only requires a Java VM (1.1 or higher)

– make relies on OS specific commands to carry out it’s
tasks

� Ant targets are described in XML
– make has a cryptic syntax

– make relies proper use of tabs that is easy to get wrong
– you can’t see them

� Ant is better for Java-specific tasks
– faster than make since all tasks are run from a single

VM

– easier than make for some Java-specific tasks such as
generating javadoc, building JAR/WAR files and working
with EJBs

How Does Ant Work?

� Ant commands (or tasks) are implemented by Java
classes
� many are built-in
� others come in optional JAR files
� custom commands can be created

� Each project using Ant will have a build file
� typically called build.xml since Ant looks for this by

default

� Each build file is composed of targets
� these correspond to common activities like compiling and

running code

� Each target is composed of tasks
� executed in sequence when the target is executed
� like make, Ant targets can have dependencies

– for example, modified source files must be compiled before
the application can be run

How ..
� Targets to be executed

� can be specified on the command line when invoking Ant

� if none are specified then the default target is executed

� execution stops if an error is encountered so all requested
targets may not be executed

� Each target is only executed once
� regardless of the number of other targets that depend on

it, ex:
– the “test” and “deploy” targets both depend on “compile”

– the “all” target depends on “test” and “deploy”

– but “compile” is only executed once when “all” is executed

� Some tasks are only executed when they need to
be
� for example, files that have not changed since the last

time they were compiled are not recompiled

Build file example (1)

Build file example (2)

Build file example (3)

Build file example (4)

Build file example (5)

Build file example (6)

Download

� http://ant.apache.org

� http://ant.apache.org/manual

Commands

� ant [options] [target-names]
� omit target-name to run the default target
� runs targets with specified names, preceded by

targets on which they depend
� can specify multiple target-names separated by

spaces
� -D option specifies a property that can be used

by targets and tasks
– -Dproperty-name=property-value

� ant -help
� lists other command-line options

Core tasks (some)

� Chmod

� Concat

� Copy

� Cvs

� Delete

� Exec

� Java

� Javac

� Javadoc

� Mail

� Mkdir

� Move

� Sleep

� Sql

� Tar

� Zip

� Unzip

