
Scaled trace forms of central simple algebras

D. W. Lewis

Introduction

Any central simple algebra over a field of characteristic not two has a well-defined
non-singular quadratic form called the trace form attached to it. This quadratic form
was studied in [6] from the viewpoint of the algebraic theory of quadratic forms. In
this article we examine a generalization of trace forms to “scaled trace forms” which
are defined via the reduced trace map together with scaling by a non-zero element
of the algebra.

In section 1 of the paper we give our basic definitions and obtain necessary and
sufficient conditions for the scaled trace forms to be non-singular. In section 2 we
deal with the “split” case, i.e. the case when the algebra is a full matrix algebra
over the field. In section 3 we investigate the algebraic invariants of scaled trace
forms. We show that the determinant of a scaled trace form is, up to sign, equal to
the reduced norm of the scaling element. Also we give formulae for the signature
at each ordering when the underlying field is formally real. We cannot calculate
the Hasse-Witt invariant in general but we determine it in two special cases only.
In sections 4 and 5 we relate scaled trace forms to the transfer homomorphism of
quadratic form theory and use them to obtain information about the kernel and
image of the extension of scalars homomorphism of Witt rings.

We use the terminology and notation of the book of Scharlau [9] and refer the
reader to this book for any further background information on quadratic form theory.
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1 Scaled trace forms

Let A be a central simple algebra over a field F of characteristic not two. Let A
have degree n, i.e. A has dimension n2 as an F -vector space. The reduced trace

map tr : A → F is defined by taking a splitting field L of A, an isomorphism
ρ : A ⊗F L → MnL, and then defining tr z to be the usual trace of the matrix
ρ(z ⊗ 1) for each z ∈ A. It is well-known that the value of tr z lies in F and is
independent of the choice of L and ρ. See [9, p. 296].

(The characteristic polynomial of z over F is defined to be the characteristic
polynomial of ρ(z ⊗ 1) over L which turns out to have coefficients in F and to
be independent of the choice of L and ρ! We could also define tr z as minus the
coefficient of the second highest degree term in this characteristic polynomial.)

Let z be a non-zero element of A. The mapping qz : A → F given by qz(x) =
tr (zx2) for each x ∈ A will be called a scaled trace form. Note that for z = 1 this
reduces to the ordinary trace form which we studied in [6]. Also in [7] we examined
scaled trace forms in the split case, i.e. the case A = MnF , the ring of all n × n
matrices with entries in F .

Lemma 1.1.The map qz is a quadratic form over F and is non-singular if and
only if the equation zx + xz = 0 has only the trivial solution x = 0 for x ∈ A.
Proof It is easy to check that qz is a quadratic form and that its associated sym-
metric bilinear form is φz : A × A → F , φz(x, y) = 1

2
tr
(

z(xy + yx)
)

for each
x, y ∈ A.

The definition of non-singularity yields that qz is non-singular if and only if the
equation φz(x, y) = 0 for all y ∈ A implies x = 0. Using the properties of the trace

map we can also write φz(x, y) = 1
2
tr
(

(zx + xz)y
)

. It is well-known [6,lemma 1.1]
that the trace form of A is non-singular. The condition for non-singularity of φz

given in the lemma now follows easily.

Corollary 1.2. (Some special cases of note).
(a) If A is a quaternion division algebra and z ∈ A then qz is non-singular if and
only if tr z 6= 0. (Here tr z = z + z, where z is the conjugate of z in A.)
(b) If A is a division algebra of odd degree then qz is non-singular for all z 6= 0.
(c) If A = MnF , (the split case), then qz is non-singular if and only if σ(z)∩ σ(−z)
is the empty set, σ(z) being the set of all eigenvalues of the matrix z in an algebraic
closure of F .
Proof

(a) Let A be generated in the usual way by elements i, j satisfying ij = −ji, i2 =
a, j2 = b for some a, b ∈ F . If the equation zx + xz = 0 has a non-zero solution
x ∈ A then z = −xzx−1 so that tr z = −tr z by properties of trace. Hence tr z = 0.
Conversely if tr z = 0 then z = α1i + α2j + α3ij for some α, β, γ in F . Taking
x = δ1i + δ2j + δ3ij with δ1α1a + δ2α2b− δ3α3ab = 0 we see that zx + xz = 0.
(b) If qz fails to be non-singular then zx + xz = 0 for some x ∈ A, x 6= 0, so
that z = −xzx−1. Let nr : A → F be the reduced norm map. Recall that, for
any z ∈ A, nr(z) is the determinant of ρ(z ⊗ 1) where ρ is the isomorphism used
above in defining the reduced trace. (Also nr z could be defined as (−1)n times
the constant term in the characteristic polynomial of z over F .) Then nr z = −nr z
using properties of the reduced norm and the fact that the degree of A is odd. Hence
nr z = 0 so that z = 0 in the division algebra A.
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(c) The equation zx + xz = 0 can be viewed as a set of n2 linear equations in n2

unknowns, the entries of the matrix x. The dimension of the solution set of this
system does not change on passing to the algebraic closure of F . In this algebraic
closure the matrix z is similar to a matrix j in Jordan form, i.e. there exists an
invertible matrix p such that p−1zp = j. Then the equation zx+xz = 0 is equivalent
to the equation jy + yj = 0 after putting y = p−1xp. The eigenvalues of z are the
diagonal entries of j and it is an easy exercise to check that σ(z) ∩ σ(−z) being
empty is the necessary and sufficient condition for jy + yj = 0 to have the unique
solution y = 0.
See also [7].

Lemma 1.3.

(a) If the elements z1 and z2 are conjugate in the central simple algebra A, i.e. z2 =
tz1t

−1 for some invertible t ∈ A, then qz1
and qz2

are isometric.
(b) If z is invertible in the central simple algebra A then qz and qz−1 are isometric.
Proof:

(a) The map A → A, x → txt−1 is an isometry.
(b) The map A → A, x → z−1x is an isometry.

We now look at some examples of scaled trace forms. In each case we will
assume that the scaling factor z satisfies the conditions, as in 1.1 and 1.2, which
ensure non-singularity of the scaled trace form qz.

Example 1.Let A be a quaternion algebra, and write

A =

(

a, b

F

)

,

i.e. A is generated in the usual way by elements i, j satisfying ij = −ji, i2 = a,
j2 = b for some a, b ∈ F . Let z ∈ A satisfy tr z 6= 0. From (a) and (c) of 1.2 this is
the necessary and sufficient condition for qz to be non-singular.

Writing t = tr z and n = nr z we obtain the following diagonalization of qz.

qz ≃ 〈tn, ta, tb,−tab〉

This comes from the basis {z, i, j, ij} of A which is orthogonal with respect to qz, z
being the conjugate of z.

Note that the split case, i.e. A ∼= M2F , is included here by putting a = 1 so that

qz ≃ 〈tn, t〉 ⊥ 〈1,−1〉.

Example 2. Let A be a biquaternion algebra, i.e. a tensor product of two
quaternion algebras A1 and A2. We write

Ar =

(

ar, br

F

)

for r = 1, 2 and let ir, jr be the generators of Ar so that i2r = ar, j2
r = br, irjr = −jrir

etc.
Let z ∈ A be a basic tensor of the form z1 ⊗ z2 where zr ∈ Ar for r = 1, 2.
The formula for the reduced trace of a tensor product;

tr A1⊗A2
(x ⊗ y) = tr A1

(x)trA2
(y) for all x ∈ A1, y ∈ A2
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shows that qz : A → F is the product of the forms qz1
and qz2

.
(This last statement does not require A1 and A2 to be quaternion algebras and

remains true for any central simple algebras A1 and A2).
The description in example 1 now yields the diagonalization

qz ≃ 〈t1n1, t1a1, t1b1,−t1a1b1〉〈t2n2, t2a2, t2b2,−t2a2b2〉

tr, nr denoting the reduced trace and reduced norm of zr, r = 1, 2.
It seems a lot more difficult to obtain a description of qz for a general element z

of a biquaternion algebra.

2 The Split Case

Proposition 2.1.

Let A = MnF and let z ∈ A satisfy the condition of 1.2 (c) ensuring non-
singularity of qz. If z is an upper (or lower) triangular matrix then

qz ≃ 〈z11, z22, . . . , znn〉 ⊥ h

where h is a sum of n(n − 1)/2 hyperbolic planes and zii are the diagonal entries
of z. (These diagonal entries are of course the eigenvalues of z which belong to F
since z is triangular.)
Proof: The above description of qz arises as follows;
The subspace of diagonal matrices in A yields a subform 〈z11, z22, . . . , znn〉 of qz

by using the standard basis matrices eii, i = 1, 2, . . . , n, which have entry one in
the (i, i)-place and zero elsewhere. Its orthogonal complement with respect to qz

is hyperbolic because it contains a totally isotropic subspace of half its dimension,
namely the subspace of strictly upper (or strictly lower) triangular matrices.

Proposition 2.2. Let A = MnF and let z ∈ A satisfy the condition of 1.2 (c)
ensuring non-singularity of qz. The Witt index of qz is at least n(n − 1)/2.

Write z1 ⊕ z2 for the block diagonal matrix
(

z1 0
0 z2

)

.

It is easy to see that qz1⊕z2
is Witt equivalent to the orthogonal sum qz1

⊥ qz2
.

(The subspace of matrices of the form

(

a 0
0 b

)

yields the sum qz1
⊥ qz2

while its

orthogonal complement is hyperbolic because it contains a totally isotropic subspace,

the matrices of the form

(

0 0
a 0

)

, of half the dimension.) Now any matrix in MnF

is similar to a direct sum of companion matrices, the rational canonical form, so it
suffices to prove the result for a companion matrix z, i.e.

z =



















0 0 · · · 0 a1

1 0 · · · 0 a2

0 1 · · · 0 a3
...

... · · · ...
...

0 0 · · · 1 an
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for some elements a1, a2, . . . , an of F .

For such a matrix z one may check that qz contains a hyperbolic subspace of
dimension n(n − 1), namely the subspace W of matrices in MnF which have zero
as each entry in the bottom row. The restriction of qz to W can be shown to be
non-singular. (Let x ∈ W and one can show that φz(x, y) = 0 for all y ∈ W implies
x = 0.) The strictly upper triangular matrices form a totally isotropic subspace of
W which has half the dimension of W . This shows that qz has a hyperbolic subspace
of dimension n(n − 1).

Proposition 2.3. Let A = MnF and let z ∈ A satisfy the condition of 1.2
(c) ensuring non-singularity of qz. Let L be a splitting field of the characteristic
polynomial of z over F . Let λ1, λ2, . . . , λn be a complete set of roots of z in L, (i.e. a
complete set of eigenvalues of z), including repetitions. Then qL

z ≃ 〈λ1, λ2, . . . , λn〉 ⊥
h where h is hyperbolic of dimension n(n− 1) and qL

z denotes the form qz extended
to L.

Proof. By 1.3 (a) and 2.1 it suffices to show that over L the matrix z becomes
similar to an upper triangular matrix. This is shown by induction on n. For n = 1
the result is trivially true. Assume the result true for n− 1. Let λ be an eigenvalue
in L of the n × n matrix z. Let v ∈ Ln be an eigenvector so that zv = λv. Letting
v be the first element of some basis of Ln we see that z is similar to a matrix of the
form











λ ∗ ∗ ∗ ∗
0

C
0











where C is an (n − 1) × (n− 1) matrix with entries in L. (The above n × n matrix
represents the linear map f : Ln → Ln, f(v) = zv, with respect to the chosen basis).
The result follows by applying the inductive assumption to C .

Corollary 2.4. Let A = MnF and let z1, z2 be two elements of A which have the
same characteristic polynomial over F . Let L be the splitting field of this polynomial
over F and assume [L : F ] is odd, i.e. L is an odd degree extension of F . Then
qz1

and qz2
are isometric.

Proof. By 2.3 we see that qL
z1

and qL
z2

are isometric. By Springer’s theorem, [9,
p. 46–7], it follows that qz1

and qz2
are isometric.

Proof. For an alternative approach to scaled trace forms in the split case see [7]
where it is shown that qz is represented by the matrix 1

2
(zt ⊗ i + i ⊗ z)w, where i

is the n × n identity matrix, zt is the transpose of z, and w is the “shuffle matrix”

defined by w =
n
∑

i=1

n
∑

j=1

eij ⊗ eji. (Here eij is the standard basis matrix with entry

one in the (i, j)-place and zero elsewhere.)

The matrix w is a symmetric matrix which represents the usual trace form of
MnF. The above results on qz can also be obtained from this viewpoint [7].

Remark 2. It remains open to find a diagonalization of qz for matrices z in
general. One would hope that there is a description involving the coefficients of the
characteristic polynomial of z. Also one may ask whether corollary 2.4 is true for
even degree extensions.



286 D. W. Lewis

3 Isometry Class Invariants

We now discuss some of the fundamental isometry class invariants of scaled trace
forms.

The Determinant

Recall that the determinant of any non-singular quadratic form is the element of the
group of square classes F/F 2 given by the determinant of any matrix representing
the form.

Proposition 3.1. Let qz : A → F be a scaled trace form on a central simple
algebra of degree n over a field F and assume qz is non-singular. The determinant
of qz is equal to (−1)n(n−1)/2nrz in F/F 2.
Proof. By the argument in [6, theorem 1.3] it suffices to calculate the determinant
in the split case. (It is shown there that the determinant does not change under the
extension of F to a generic splitting field of A.)

But this calculation has been done in the split case [7] by using the matrix
representation 1

2
(zt ⊗ i + i⊗ z)w for qz as described in Remark 1 above. It is shown

there that the determinant of this matrix is equal to (−1)n(n−1)/2 det z. In fact
detw = (−1)n(n−1)/2 while properties of Kronecker sums show that det 1

2
(zt ⊗ i+ i⊗

z) = det z (modulo F 2).
By the definition of reduced norm the result follows.

The Signatures

Let F be a formally real field, let P be an ordering of F , and let q be a quadratic form
over F . We write sigPq for the signature of the quadratic form q at the ordering P
of F . First we can obtain a signature formula for scaled trace forms over quaternion
algebras.

3.2. Let A be a quaternion algebra, and write A =
(

a,b
F

)

, i.e. A is generated in

the usual way by elements i, j satisfying ij = −ji, i2 = a, j2 = b for some a, b ∈ F .
Let z ∈ A satisfy tr z 6= 0 so that qz is non-singular. Let t = tr z and n = nrz. Let
F be a formally real field, and let P be an ordering of F .

We have the following signature formula;

sigPqz = {(sigPq1) + (sigP〈n〉) − 1}sigP〈t〉

(Note that q1 is the usual trace form of A, labelled TA in [L] where we showed that
sigPq1 = ±2, the minus sign occurring precisely when both a and b are negative in
P .)
Proof. We saw earlier that qz ≃ 〈tn, ta, tb,−tab〉 and q1 = 〈2, 2a, 2b,−2ab〉. Hence
sigPqz = sig P〈t〉{sigPq1 − sigP〈1,−n〉} because in the Witt ring of F we have
〈n, a, b,−ab〉 = 〈1, a, b,−ab〉 − 〈1,−n〉. This gives the result.

Remark We may rewrite this signature formula as follows;
Let A =

(

a,b
F

)

with both a and b being negative in the ordering P of F . (This

includes the case of the real quaternions). Then we have

sigPqz = −2sigP〈t〉
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since n is positive in P when a and b are both negative. (z = α + βi + γj + δij
implies n = α2 − aβ2 − bγ2 + abδ2).

Let A =
(

a,b
F

)

with at least one of a and b positive in P . Then we have

sigPqz = 2sigP〈t〉

when n is positive in P ,
sigPqz = 0

when n is negative in P .
Next we will obtain a signature formula in the split case.
Proposition 3..3 Let A = MnF and let z ∈ A satisfy the condition of 1.2 (c)

ensuring non-singularity of qz. Let F be formally real and let P be an ordering on
F .

Let FP be a real closure of F so that FP(
√
−1) is algebraically closed. Let the

eigenvalues of the matrix z be µ1, µ2, . . . , µr, λ1, λ1, λ2, λ2, . . . , λs, λs where µi ∈ FP

for each i, λi ∈ FP(
√
−1) for each i, λ denotes the conjugate of λ in FP(

√
−1), and

r + 2s = n. (We do not exclude the possibility of repetitions in the µi or λi). We
have the following signature formula;

sigPqz =
r
∑

i=1

sigP〈µi + 2
s
∑

j=1

sigP〈λj + λj〉

where P is the unique ordering on FP .
(Note that µi 6= 0 for all i and λj + λj 6= 0 for all j by the assumption of non-
singularity of qz.)
Proof. Using the real Jordan form [3] we have that over FP the matrix z is similar
to a sum blocks of the following kind. For each eigenvalue µ ∈ FP we have the usual
kind of Jordan blocks which are upper triangular. For each unrepeated eigenvalue

λ = α + β
√
−1 we get a 2 × 2 block B =

(

α β
−β α

)

in the real Jordan form. (This

corresponds to the conjugate pair λ, λ.) For each repeated conjugate pair λ, λ we
have blocks like



















B I 0 · · · 0
0 B I · · · 0
...

. . .
. . .

...
B I

0 0 0 0 B



















where B is as above and I is the identity 2 × 2 matrix. This is a “block upper
triangular matrix” and the scaled trace form it yields is Witt equivalent to that
given by the block diagonal matrix



















B 0 0 · · · 0
0 B 0 · · · 0
...

. . .
... B 0
0 0 0 0 B
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(In the same way as in 2.1 the subspace of diagonal 2 × 2 blocks yields the form
given by this latter matrix while its orthogonal complement is hyperbolic because
the set of strictly upper triangular blocks give a totally isotropic subspace of half
the dimension.)

Using the split case of example 1 earlier we see that qB is Witt equivalent over

FP to the two-dimensional form 〈λ + λ, λλ(λ + λ)〉. (Note that if B =

(

α β
−β α

)

we have t = 2α = λ + λ and n = α2 + β2 = λλ.) Now, as in the proof of 2.2, the
scaled trace form qz will decompose into a sum

〈µ1, µ2, . . . , µr〉 ⊥ 〈λ1 + λ1, λ1λ1(λ1 + λ1), . . . , λs + λs, λsλs(λs + λs)〉 ⊥ h

with h hyperbolic. The signature formula follows since λλ is positive in FP .
Proposition 3.4. Let A be any central simple algebra over F and let z ∈ A

satisfy the condition of 1.1 ensuring non-singularity of qz. Let F be formally real
and let P be an ordering on F . Let FP be a real closure of F so that FP(

√
−1) is

algebraically closed. Let the roots of the characteristic polynomial of z over F be
µ1, µ2, . . . , µr, λ1, λ1, λ2, λ2, . . . , λs, λs where µi ∈ FP for each i, λi ∈ FP(

√
−1) for

each i, λ denotes the conjugate of λ in FP(
√
−1), and where r + 2s = n. We do not

exclude the possibility of repetitions in the µi or λi.
We have the following signature formulae;

sigPqz = (−1)sgnP
A





r
∑

i=1

sigP〈µi〉 + 2
s
∑

j=1

sigP〈λj + λj〉




where P is the unique ordering on FP , and sgnPA is the “sign function” defined as
in [10, p 74], i.e. sgnPA = 0 if FP splits A, sgnPA = 1 otherwise.
Proof. Either FP splits A completely, i.e. A⊗FP

∼= MnFP , or else A⊗FP
∼= MmD

where m = n/2 and D =
(−1,−1

FP

)

, the “quaternions” over FP . In the first case the

result follows from 3.3 since any isomorphism ρ : A⊗FP → MnFP yields ρ(z⊗1) as
a matrix whose eigenvalues are the roots of the characteristic polynomial of z over
F .

In the second case ρ(z⊗1) will be similar in MmD to an upper triangular matrix
of the form













d1 ∗ ∗ · · · ∗
0 d2 ∗ · · · ∗
...

. . . ∗
0 0 · · · 0 dm













where each di ∈ D and the characteristic polynomial of z over F decomposes over
FP into a product

∏m
i=1(x−di)(x−di). In the same way as we dealt with triangular

matrices earlier we find that qz becomes Witt equivalent to an orthogonal sum
∑m

i=1 qdi
of scaled trace forms over D. Writing ti = di + di and ni = didi we have,

by example 1 earlier, that qdi
≃ 〈tini, tia, tib,−tiab〉 and hence, by 3.2, sigPqdi

= −2
sigP〈ti〉. But corresponding to the quadratic (x− di)(x− di) we have a pair of roots

λ = 1
2

(

ti ±
√

(t2i − 4ni)
)

of the characteristic polynomial of z over F . If t2i − 4ni ≥ 0

in P then the two roots are in FP and they both have the same sign as ti. (Note
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that ni > 0 in FP0. If t2i −4ni < 0 in P then we have a pair of conjugate roots λi, λi

in FP(
√
−1) and ti = λi + λi.

This completes the proof.
Remark. In the special case when z = 1 the signature formula in 3.4 reduces

to that of [6, theorem 2.3(i)].
We now give another signature formula involving extension fields of F in the

case when A is a division algebra.
Proposition 3.5. Let A be a central division algebra over the field F and let

P be an ordering of F . Let z ∈ A satisfy the condition of 1.1 ensuring the non-
singularity of qz. Let L be a finite separable extension field of F and suppose that
the ordering P extends to at least one ordering of L.
We have the following signature formula;

sigPqz =
1

m





∑

R⊇P

sigRqL
z





where m is the number of extensions of the ordering P to an ordering R of L, and
the sum is over all such orderings R.
Proof. Consider the transfer map tr∗ : W (L) → W (F ) of Witt rings induced by
the reduced trace map L → F . We apply the Frobenius reciprocity theorem in
quadratic form theory [9,p 48] to the forms qz over F and 〈1〉 over L. This yields
that tr∗(q

L
z ) ≃ qz · tr∗〈1〉. Now m = sigPtr∗〈1〉 by [9, p 116] so that taking signatures

yields sigPtr∗(q
L
z ) = m sigPqz. By a theorem of Knebusch, [9, p 124],

sigPtr∗(q
L
z ) =

∑

R⊇P

sigRqL
z

and this completes the proof.
Corollary 3.6. Let A be a central division algebra over the field F and let P

be an ordering of F . Let L be a finite separable extension field of F and suppose
the ordering P extends to at least one ordering of L. We have the following formula
for the “sign function”;

(−1)sgnP
A =

∑

R⊇P

(−1)sgnR
(A⊗F L)

Proof. Let z = 1 in 3.5, use the formula sigPq1 = (−1)sgnP
A(deg A) obtained in

[6], and the fact that the degree is unchanged on extending to L.
Proposition 3.7. Let A be a central division algebra over the field F and let

P be an ordering of F . Let z ∈ A satisfy the condition of 1.1 ensuring the non-
singularity of qz. Let L be a maximal subfield of A which contains the subfield F (z)
of A. Assume that L is a Galois extension of F and that the ordering P extends to
at least one ordering of L. We have the following signature formula;

sigPqz =
1

m
(deg A)





∑

R⊇P

sigR〈z〉




where m is the number of extensions of the ordering P to an ordering R of L, and
the sum is over all such orderings R.
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Proof. L is a splitting field of A so that A ⊗F L ∼= MnL, where n = deg A, and
under any isomorphism z⊗1 will map to a matrix similar to a diagonal matrix with
entries zσ where σ runs through the elements of the Galois group G of L over F .
(We can use the canonical isomorphism A ⊗F L → EndLA, x ⊗ y → fx⊗y where
fx⊗y(w) = xwy for w ∈ L, A being viewed as a right L-vector space of dimension
n. Since L is Galois, A is a crossed product algebra with an L-basis of elements
{tσ}, σ ∈ G, σ extending to the inner automorphism of A via tσ. Then fz⊗1 has the
required diagonal matrix representation with respect to the above L-basis.)

Hence, using 2.1 and 1.3 (a), qL
z is Witt equivalent to

∑

σ∈G〈zσ〉. Since tr∗〈zσ〉 =
tr∗〈z〉 for all σ ∈ G we see that tr∗q

L
z is the sum of n copies of tr∗〈z〉 up to Witt

equivalence. As in the proof of 3.5 we use the Frobenius reciprocity theorem and
the Knebusch theorem to obtain the result.

The Hasse-Witt invariant.

In general it does not seem so easy to calculate the Hasse-Witt invariant of the forms
qz. In the split case it seems that almost any value may occur as the Hasse-Witt
invariant of qz depending on the choice of z.

In the case of A =

(

a, b

F

)

, a quaternion algebra, we can easily see from our

description in example 1 earlier that the Hasse-Witt invariant [9,p 80] is given by
s(qz) = (a, b)(t,−n)(n,−1) in the Brauer group B(F ) where t and n are the reduced
trace and reduced norm of z respectively.

In the case of a biquaternion algebra and scaled trace form qz for z = z1 ⊗ z2 as
in example 2 earlier we saw that

qz ≃ 〈t1n1, t1a1, t1b1,−t1a1b1〉〈t2n2, t2a2, t2b2,−t2a2b2〉

Using the formula in [5] for the Hasse-Witt invariant of a product of quadratic forms
it is easy to check that s(qz) = (−n1,−n2) in B(F ) for this example.

An adaption of the Galois cohomology technique used in [8] to calculate the
Hasse-Witt invariant of the usual trace form, i.e. q1, may well be the best approach
to try in general. In [8] we showed that

s(q1) = (−1,−1)n(n−2)/8An/2 in B(F )

for a central simple algebra A of even degree n over F . (For n odd the trace form
q1 is isometric to the trace form in the split case and so is not so interesting). We
leave it as an open problem to calculate s(qz) in general.

4 Witt kernels

We now describe a relationship between scaled trace forms and the usual transfer
map [9,p 48] and show how this viewpoint may give new information about Witt
kernels.

Let L be a finite separable extension of the field F . The trace map tr : L → F
yields a transfer map tr∗ : W (L) → W (F ), an additive homomorphism of Witt
rings, and extension of scalars gives a ring homomorphism r∗ : W (F ) → W (L).
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The kernel of r∗ is an ideal in W (F ) often known as a Witt kernel. Let y ∈ L
and consider the map my : L → L given by left multiplication by y. Now my is
represented by a matrix in MnF where n = [L : F ], the matrix being unique up
to similarity, and hence we may define a scaled trace form qmy

: MnF → F as in
section 1. (Note that qmy

is not necessarily non-singular. Take F = R, L = C,
y = i and qmy

is singular).
Proposition 4.1. Let L be a Galois extension of F and let y ∈ L be such that

the scaled trace form qmy
is non-singular. Let tr∗ : W (L) → W (F ) be the transfer

map induced by the trace trL → F . Then the element qmy
− tr∗〈y〉 of W (F ) is in

the kernel of the ring homomorphism r∗ : W (F ) → W (L). Moreover if [L : F ] is
odd then qmy

= tr∗〈y〉 in W (F ).
Proof. Let G be the Galois group of L over F and let n = [L : F ]. Then there is a
canonical isometry (tr∗〈y〉)L ≃σ∈G 〈yσ〉. See [9,p6 1]. The characteristic polynomial
over F of the matrix my similar in MnL to a diagonal matrix with the diagonal entries
yσ, σ ∈ G. (The characteristic polynomial is a power of the minimal polynomial of
y over F , the minimal polynomial is irreducible, and my is similar to a sum of
copies of the companion matrix of the minimal polynomial. The companion matrix
is diagonalizable over L since it has distinct roots in L. If H is the subgroup of
G corresponding to the subfield F (y) of L then yσ = yσ′

if and only if the cosets
σH and σ′H are equal.) Now 2.1 shows that qL

my
is Witt equivalent to

∑

σ∈G〈yσ〉.
Hence qmy

− tr∗〈y〉 is in the Witt kernel. When [L : F ] is odd this Witt kernel is
well-known to be zero by Springer’s theorem [9,p 46]. Thus qmy

= tr∗〈y〉 in W (F )
for [L : F ] odd.

Remark 1.

For [L : F ] even it is generally not the case that qmy
= tr∗〈y〉 in W (F ). For example,

taking y = 1 yields qmy
= 〈1, 1, . . . , 1〉, the sum of n copies of 〈1〉, in W (F ) while

tr∗〈1〉 is the trace form of L over F .

Remark 2.

Witt kernels are not so well understood in general. See [1], [2], [4], [11] for some
results on Witt kernels, mainly in the cases of quadratic, biquadratic and quartic
extensions.

We have a method of generating elements of the Witt kernel by taking all ele-
ments in W (F ) of the kind qmy

− tr∗〈y〉 where y runs through all the elements of L
for which qmy

is non-singular. As suggested by Jan van Geel one may ask whether
the full Witt kernel is equal to the ideal in W (F ) generated by all elements of the
above type. We cannot answer this question in general, but for quadratic extensions
it is easy to see that the answer is yes. (Taking y = 1 we see that qm1

− tr∗〈1〉
generates the Witt kernel.)



292 D. W. Lewis

5 Witt images

Let L be an extension field of F and r∗ : W (F ) → W (L) be the usual extension of
scalars homomorphism. The image of r∗ will be called a Witt image. We will see
now that scaled trace forms can yield information about Witt images.

Proposition 5.1. Let L be an extension field of F and r∗ : W (F ) → W (L) be
the usual extension of scalars homomorphism. Let φ be an anisotropic quadratic
form over L. Suppose that φ has a diagonal representation 〈α1, α2, . . . , αn〉 for
some elements αi ∈ L, i = 1, 2, . . . , n, and for each i = 1, 2, . . . , n the value of the
elementary symmetric function pi(α1, α2, . . . , αn) is in F . Then φ is in the Witt
image of r∗ : W (F ) → W (L).
Proof. Recall that the functions pj are defined as follows ;

p1(α1, α2, . . . , αn) =
n
∑

i=1

αi,

p2(α1, α2, . . . , αn) =
n
∑

i<j

αiαj,

p3(α1, α2, . . . , αn) =
n
∑

i<j<k

αi, αj, αk

...
...

pn(α1, α2, . . . , αn) =
n
∏

i=1

αi

Then the polynomial
∏n

i=1(x−αi) is in the polynomial ring F [x] since its coeffi-
cients are, up to sign, given by the elementary symmetric functions of the roots αi.
Let c denote the companion matrix of this polynomial so that c ∈ MnF and consider
the scaled trace form qc over F . The characteristic polynomial of c is

∏n
i=1(x − αi)

which splits completely in L. Thus r∗(qc) = φ in W (L) by 2.1.
Corollary 5.2. Let K be a field of characteristic not two.

Let L = K(x1, x2, . . . , xn), the field of rational functions over K in the indetermi-
nates x1, x2, . . . , xn. Let F = K(p1, p2, . . . , pn), the subfield of symmetric rational
functions in x1, x2, . . . , xn. (We have written pi as short for pi(x1, x2, . . . , xn).)
Then the quadratic form 〈x1, x2, . . . , xn〉 over L is in the Witt image of r∗ : W (F ) →
W (L).
Proof. Take φ = 〈x1, x2, . . . , xn〉 in 5.1.

Remark 1.

It is easy to obtain the result of 5.2 directly for n = 2 by using the Witt relation
〈α, β〉 = 〈α + β, αβ(α + β)〉. Specifically we have

〈x1, x2〉 = 〈x1 + x2, x1x2(x1 + x2)〉 = 〈p1, p1p2〉

With a little more work we can do a similar thing for n = 3. We find that

〈x1, x2, x3〉 = 〈p1, p1p2 − p3, p1p3(p1p2 − p3)〉

where p1 = x1 + x2 + x3, and p1p2 − p3 = (x1 + x2)(x1 + x3)(x2 + x3).
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Maybe it is possible to obtain the result of 5.2 for general n by performing
some more complicated manipulations involving the Witt relation but this does not
seem obvious. Also the Witt kernel of r∗ : W (F ) → W (L) is most certainly not
trivial so there can be many different elements of W (F ) which map to the element
〈x1, x2, . . . , xn〉 of W (L).

Remark 2.

Note that K(x1, x2, . . . , xn) is a Galois extension of K(p1, p2, . . . , pn) with Galois
group Sn acting in the obvious way on K(x1, x2, . . . , xn). I am indebted to David
Leep for pointing out the following alternative proof of 5.2. The result of Knebusch-
Scharlau [9,p 61], as mentioned at the start of the proof of 4.1, is easily generalized
to the following;

Let K be a Galois extension of a field F with Galois group G. Let E be an
intermediate field corresponding to the subgroup H of G, i.e. E is the subfield of K
fixed by H. Let C be a complete set of coset representatives of H in G so that G is
the disjoint union of the cosets σH where σ runs through C . Let φ be a nonsingular
quadratic form over E and let tr∗E/F be the transfer map given by the trace map
from E to F . Then the generalized version of the theorem of [9,p 61] says that
(tr∗E/Fφ)K =

∑

σ∈C〈φσ〉.
We now apply this to the situation of 5.2. Take K and F as in the statement

of 5.2, take E = F (x1), G = Sn, H the subgroup of Sn fixing x1, so H ∼= Sn−1,
and take φ = 〈x1〉 viewed as a form over E. For coset representatives we may take
C = {τ1, τ2, τ3, . . . , τn} where τ1 is the identity of Sn and τj is the transposition
switching x1 and xj for each j = 2, 3, . . . , n. The conclusion of 5.2 follows at once.

Remark 3.

Another proof of 5.2, via matrix theory, can be seen as follows.
The diagonal matrix D with entries x1, x2, . . . , xn is congruent over L to the

symmetric matrix

S =













s1 s2 s3 · · · sn

s2 s3 s4 · · · sn+1
...

. . .
...

sn sn+1 · · · · · · s2n−1













whose entry in the (i, j)-place is the power sum si+j−1, where sk =
n
∑

i=1

xk
i , each sk

being in F since the power sums are symmetric functions of x1, x2, . . . , xn.
Specifically it is easy to check that V DV t = S where V is the Vandermonde

matrix












1 1 · · · 1
x1 x2 · · · xn
...

xn−1
1 xn−1

2 · · · xn−1
n













which is an invertible matrix in L since the xi are distinct.
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