
1

Programming the hp 49g+ in User RPL
language using your PC

by Gilberto E. Urroz, March 2006.

These instructions are aimed at the production of User RPL language programs for the hp 48gii,
hp 49g, and hp 49g+ graphic calculators using a personal computer. The programs can be
developed in the PC using the HPUserEdit 4.0 editor program. After developing your program
in HPUserEdit 4.0, you can load it into the Emu48 emulator program set up with the hp 49g
ROM (unsupported ROM 1.19-6, dated from mid 2003), or with the hp 49g+ ROM (version 2.0,
dating from 2005). You can test and debug the program in the emulator and then save it to a
file, that can then be transferred to the calculator via the hp communications software.

Instructions for the installation of Emu48 and HPUserEdit 4.0 are available in a different
document found in the same web site where you downloaded this document. The same web
site provides references on UserRPL programming.

Example 1 - Developing a program in HPUserEdit 4.0
Figure 1, below, shows the interface for HPUserEdit 4.0. (Press Cntl L to see the line numbers,
if needed.)

2

The figure shows the main program area with line numbers on the left margin, the folders
containing command lists, a menu for object delimiters (starts with Program), a menu for
program structures, a menu for input commands, and a list of special characters. The tab
atop the programming area shows the default file name for the program, namely, Object 1.
Click the IMPORT button:

and import the example whose name is ejemplo1.hp. The first line in the program contains the
characters:

%%HP: T(0)A(D)F(.);

This line is needed when transferring an ASCII program file through the Kermit file transfer
protocol (Kermit is a protocol developed in the early 1990s). Both Kermit and the more recent
transfer protocol XMODEM are available in the calculators and the hp communications
software. At this point, we’ll keep the first line as shown above while we type the following
program:

Notice that in this case we use the IF … THEN … ELSE … END command structure and a couple
of functions from the HYPERBOLIC folder in the list of commands. To enter the program
containers, << >>, double click on the PROGRAM button. This will place the opening and
closing program containers in the program area leaving the cursor in between. At this point,
type the characters “1 >”. To load the IF … THEN … ELSE … END command simply click on the
IF button. Move the cursor in front of the word THEN and type the characters “2 +”. To load
functions from the HYPERBOLIC folder, first click on the HYPERBOLIC folder on the left-hand

3

side of the interface. This action opens the folder to show all the HYPERBOLIC functions.
Then, to load SINH or COSH, simply double click on the corresponding name. Complete the
program as shown above.

The operation of this program is equivalent to the function f(x) = sinh(x+2) for x>1, or f(x) =
cosh(x+2) for x<1. The value of x is the number entered in stack level 1, in RPN mode, before
activating the program.

To see the program in operation, first save the program to a file called Prog1.hpe by using the
option File>Save As… in HPUserEdit 4.0.

Running the program in Emu48
Activate the emulator program Emu48 making sure that an HP 49G “skin” is selected. For
example, when running Emu48, you may get the following response:

This window indicates that a file named SPEC49G.KML will be loaded which uses the HP 49G
ROM (the fifth line reads: Rom ROM.E49 Loaded). This “skin” will produce a Special HP49G -
wide and glowing, which, as you will see, is not the standard HP 49G format. Press the OK
button to activate the emulator. This is what we get for this “skin”:

4

If you don’t get this “skin” the first time you run the emulator, you can always change it by
selecting the option View>Change KML Script… Click the down arrow in the selection list
entitled Current KML Script: and select Special HP49G - wide and glowing. Finally, press the
OK button to activate the emulator.

I like this HP 49G “skin” because it fits in all type of computer screen sizes, and it shows the
calculator keyboard intact on the right-hand side of the interface. It also shows the F1 through
F6 keys under the screen for manipulating menu keys.

Notice that for programming development I prefer to use the calculator in RPN mode, and set
system flag 117 to soft MENU.

To load the program we prepared in HPUserEdit 4.0 use the option Edit>Load Object.. Browse
through your files until you locate the file Prog1.hpe, and press the Open button. The file will
be listed in the calculator screen as a character string:

Before storing the program into a variable, we need to remove the characters from the first
line and convert the remaining string into a program. Press the down arrow key activate the

text editor, remove the characters %%HP: T(0)A(D)F(.); from the string, and press ` .
The resulting string is now:

To convert to a string use the OBJ command by typing „ ° @TYPE@ @O BJ² @. Then, store the
resulting program into a variable called ‘P1’, i.e.,

Press K to store the variable, and press J to recover the variable menu. You should

have a variable called @@P1 @@ in your menu keys. To see the program in action, type a number,

say 5, and press @@P1 @@. The result is a 2 in the stack and an error message. The error message

5

results from the fact that the value 2 is used for the IF comparison and, therefore, is no longer
available for operating (adding 2 and calculating SINH). The program needs to be modified by
adding a DUP command before the 1.

To effect this correction, press ‚ @@P1 @@, then press the down arrow key to see the program.

Insert the function DUP before the 1 by using „ ° @STACK! @@DUP@. Then, press ` „

@@P1 @@ to store the new version of the program in variable P1. Now, type a 5 and press @@P1 @@. The
correct result is now SINH(7).

If we wanted to produce a floating-point, rather than a symbolic, result, we may add function

NUM at the very end of the program. Edit the program to include this function following a
procedure similar to that used earlier to add function DUP. The program, before storing it
into P1, should look like this:

After storing the program into P1, and running with argument 5, the result is 548.3161….

In this exercise we illustrated the loading of a program into the emulator as well as their
editing and modification. We could have also performed those modifications in the editor and
re-loaded the program into the emulator. In the present case, the modifications were made in
the emulator itself, therefore, they are not present in the original program file Prog1.hpe.

Transferring the program to the calculator
Before transferring the program to the calculator, we need to save the program to a binary file
by listing the program in the emulator screen (Edit>Save Object…) and saving it into the name
Prog1 (no suffix). The program is now ready to be transferred to the calculator through the hp
communications software.

Please notice that this exercise shows a relatively short program that can simply be written in
the calculator itself. The use of the editor (HPUserEdit 4.0) is justified only when writing a
long and elaborate program that will be difficult to type and follow in the calculator’s limited-
size screen.

Example 2 - Typing a non-Kermit file in HPUserEdit 4.0
In this exercise we will type the complete text for the program developed earlier while

eliminating the heading line for Kermit transmission (%%HP: T(0)A(D)F(.);).

Activate HPUserEdit 4.0, open a new file (use option File>New), and remove the top line in the
file before typing the remaining lines in the program. Save the program to a file called
Prog2.hpe. The HPUserEdit 4.0 interface should look as shown in the following page.

To type the function name “ NUM”. This function is not available in the function folders
listed in the left-hand side of the interface. Therefore, its full name needs to be typed in the
program area by the user.

6

NOTE: The user can type a calculator’s function name into the program at any time. Thus,
double-clicking on the function’s name to enter it in the program is not the only way to enter
function names.

To type the character “ ”, double click on the corresponding cell in the Characters in the
HPUserEdit 4.0 interface.

NOTE: Double clicking in any special character cell will enter the corresponding character at
the current cursor location.

With the file saved in Prog2.hpe we can now load the file into the emulator by using the option
Edit>Load Object... The resulting calculator screen is now:

This object is delimited by double quotes (“”), therefore, it represents a string object in the

calculator. To convert it to a program, use function OBJ , i.e., „ ° @TYPE@ @O BJ² @, and then

7

save it into variable P2. Enter the argument 5, and press J @@P2@@ to run the program. The
result is the same as before, namely, 548.3161….

In summary, it is not necessary to retain the heading line (%%HP: T(0)A(D)F(.);) when
creating a new file in the HPUserEdit 4.0, unless you will be using the Kermit file transfer
protocol and transferring the file in ASCII format. The procedure for program debugging and
transfer suggested in this document obviates the use of ASCII format, and, since XMODEM is the
preferred mode of file transmission for the hp 49g+ and the hp 48gii, we need not to worry
about retaining the heading line.

NOTE: In the procedure suggested in this document, we first debug and test the program in the
emulator and export it as a binary file, which is eventually transferred to the calculator. As an
alternative, you could type your program in HPUserEdit 4.0, save it in your computer, and
transfer it to your calculator without going through the emulator. The object received by the
calculator will be a calculator string object, which will need to be converted into a program by
using function OBJ . In this case, you will do the debugging and testing of the program in the
calculator itself.

Example 3 - Using the INPUT command for a single input
The INPUT command can be used as a simple way to prompt the user to enter data to a
program. As an exercise, we’ll type a simple application of the INPUT command in HPUserEdit
4.0.

Activate the program, request a new file (File>New), and double click on INPUT button in the .
The cursors should now be between the two program containers. Double click on the INPUT
item in the right-hand side of the interface. This will produce an input box with fields labeled
“Message” and “Command Line”. Type the entries as shown below:

8

Make sure to enter the two set of colons around the ‘x’ and to keep a space before and after
the list delimiters “{“ and “}”. Press the Insert button to enter the command. The program
area in HPUserEdit 4.0 should now contain the lines:

The outer set of double quotes in line number 3 is not required, thus, we edit those double
quotes out, while also adding the additional commands show below to complete the program:

Save the program to file Prog4.hpe, and load it into the emulator as a character string. Use

function OBJ („ ° @TYPE@ @O BJ² @) to convert the string to a program, and store it into

variable P3. Then, press J @@P3@@ to activate the program. The emulator screen will look as
follows:

The left-facing arrow in front of the prompt :x: indicates the position of the cursor ready to
receive a numerical input from the user. Type the number 2 and press [ENTER] to execute the
program. The result is the number 11 (i.e., 2*22 + 3 = 2*4+3).

Example 4 - Using the INPUT command for two inputs
In this example we use the INPUT command to allow the user to enter two input numbers. As
in the previous exercise, activate HPUserEdit 4.0, request a new file (File>New), eliminate the
top line, double click on the program containers item in the right-hand side of the interface,
and double click on the INPUT item in the right-hand side of the interface. Type the following
entries in the resulting input form as shown next:

9

Press the Insert button, edit out the first and last double quotes in line 3, and complete the
program to look as follows:

Notice that after the command OBJ is executed, the values of x and y are stored into a and

b, respectively (a b), and a subprogram is included to calculate the value
22 ba + , i.e.,

we actually calculate the value
22 yx + . The subprogram consists of the commands in the

inner set of program containers that end with function NUM. The local variables a and b are
used only within the subprogram and are not available once the program is executed. The

result, namely,
22 yx + , is shown in the stack after program execution.

Save this program into file Prog4.hpe, emulator as a character string. Use function OBJ

(„ ° @TYPE@ @O BJ² @) to convert the string to a program, and store it into variable P4. Then,

press J @@P4@@ to activate the program. The emulator screen will look as follows:

10

To enter the numerical values of x and y, say x = 3 and y = 4, you need to insert them after the
corresponding prompts, e.g.,

Press [ENTER] to activate the program. The result is the number 5, i.e., 543 22 =+ .

To make the prompt screen easier to read, we could add a couple of RETURN characters
(‚ ë) before the prompts :x: and :y: in the emulator. Thus, edit the program P4 by using
‚ ë ˜ , insert the two RETURN characters and press ` . The program, in the calculator
screen should now look like this:

Notice that, when you pressed ‚ ë , new lines were inserted in the screen. After you
pressed ` , however, the screen shows the RETURN characters explicitly (). Store this new

version of the program into variable P4. Execute the program once more by pressing @@P4@@ to
obtain the following screen:

The input cursor () is now in front of the :x: prompt. Type 3 and press the down arrow key

(˜) to place the input prompt cursors in front of the :y: prompt. Type 4, and press ` to
execute the program. Before pressing ` the screen will look as follows:

The result is once more the number 5.

NOTE: Because HPUserEdit 4.0 does not include the RETURN character () as one of the
special characters available, you must enter it in the emulator (or in the calculator, if skipping
the emulator step) after loading the program. To enter the RETURN character, use ‚ ë .

11

Example 5 - Using the INPUT command for three inputs
This example uses an INPUT string to enter three numerical values. The values are then used
to build a vector with function V3. Type the following program in the editor, and save it to
file Prog5.hpe.

Load Prog5.hpe into the emulator as a string, and convert it from a string into a program

(„ ° @TYPE@ @O BJ² @). Add the RETURN characters (‚ ë) before each prompt in the input

string so that the program will look like this before storing it into variable @@P5@@:

Store and run the program (J @@P5@@), entering the following input values:

Press ` to execute the program. The result is the vector [2.5, 3.2, 1.5].

Example 6 - Using the CHOOSE input function
The CHOOSE input function is used to select among a list of possible values for input. In this
example, we’ll create a CHOOSE box with two options. First, open a new file (File>New),
remove the top line, double click on the program container icon in the right-hand side of the
interface, and then double click on the CHOOSE item in the same area. A CHOOSE input form
will be generated that looks like this (with empty fields, of course):

12

To fill in the fields type Units coefficient in the “Title” field. Then, enter SI Units under the

Show objects heading. Enter 1 under the Return objects heading. Ideally, this entry form
should allow the entry of all options for the CHOOSE box. However, it doesn’t seem to be
working properly in this version. Thus, when you press the Insert button, you only get the
following entry:

Considering this limitation of the CHOOSE entry form, we need to complete and edit the
command in the HPUserEdit 4.0 window to read as follows:

Add the additional commands shown below to the program and save it in file Prog6.hpe. Load

the file into the emulator as a string, and convert it from a string into a program („ ° @TYPE@
@O BJ² @). Save the resulting program into variable P6.

Run the program (J @@P6@@) to see the CHOOSE box in action. The following figures show the
result of three possible outcomes:

13

1 - Selecting “SI Units” - Press @@O K@@

2 - Selecting “ES Units” - Press ˜ @@O K@@

3 - Canceling the program - Press @CANCL@

Example 7 - Using the INFORM input function
The INFORM input function is used to produce a well-documented entry form. In this example
we produce an input form to allow the user to enter three different values, C, R, and S,
defined as “Chezy’s coefficient”, “Hydraulic Radius,” and “Channel bed slope,” respectively.
The corresponding reconfiguration values will be { 120 1 0.00001}, while the default will be
{110 1.5 0.0001}. The format for the INFORM command will be given by {2 1 }. The required
information, for the first line of the form, is listed in the following input form in HPUserEdit
4.0:

14

After pressing the Insert button, you get the following entry:

Editing the rest of the INFORM command in the editor, we get:

Type in the rest of the program to read as shown in the following figure. Store the program
into file Prog6.hpe. Load the file into the emulator as a string, and convert it from a string

into a program („ ° @TYPE@ @O BJ² @). Save the resulting program into variable P7.

15

Run the program (J @@P7@@) to see the resulting INBOX:

As the program gets activated, the INFORM box will show the three variables whose values are
to be entered by the user. The values shown above are those in the default list, namely, {110
1.5 0.00001}. The field corresponding to C is highlighted first. At this point the user can type

a new value and press @@O K@@, or simply press @@O K@@ to keep the default value. Afterwards, the
value of R will be highlighted. Also, notice that the as a given variable’s value is highlighted,
the descriptive line at the bottom of the screen changes accordingly.

The next two figures show the highlighting of variables R and S. The values used for this
exercise are as follows C = 98, R = 0.75, and S = 0.01.

Pressing @@O K@@ one last time after highlighting and changing the value of S, the program
following the INBOX command gets activated and a result is shown.

16

The FORMAT specification used in this case, namely { 2 1 }, produces the arrangement of input
fields shown above. Other formats will produce different results as shown next:

 An empty format list, i.e., { }, or the format list {1 2}, produces

 A format list containing {3 0} produces

Example 8 - Exporting a program from the emulator
Suppose that you have edited a program in the emulator and would like to add additional
commands in the editor (HPUserEdit 4.0). The simplest way to proceed is to list the program in
the emulator’s screen and then use the option Edit>Save Object. The next step is to save the
object to a file. Then, move to the editor, press the Import button, and the contents. The
program file will be listed in the editor’s screen.

As an example, consider the latest version of program P7 shown above, i.e., the one with the
format list {3 0}. Listed in the emulator screen the program looks as follows (the format list is
not visible, but it has been changed from the original {2 1} in P7):

Use the option Edit>Save Object, and save it as Prog8.hpe. Move to the HPUserEdit 4.0 editor,
open a new file (File>New), and use press the Import button. The resulting program is shown
next:

« "CHEZY'S EQUATION" { { "C:" "Chezy's coefficient" 0 } { "R:"
"Hydraulics radius" 0 } { "S:" "Channel bed slope" 0 } } { 3 0 } { 120
1 .0001 } { 110 1.5 .00001 } INFORM
 IF

 THEN OBJ DROP C R S 'C*√(R*S)' NUM "Q" TAG
 ELSE "Operation cancelled" MSGBOX
 END
»

Example 9 - Using comment lines in your program
Comment lines in UserRPL start with an ampersand (@). These lines are informational only
and will be ignored by the emulator or calculator. In this example we take the file exported to
the editor in Example 7 and add a few comment lines as shown in the following screen:

17

«
@ UserRPL program to calculate

@ open channel flow velocity Q

@ through Chezy's equation

@

@ INFORM specifications

"CHEZY'S EQUATION"
{ { "C:" "Chezy's coefficient" 0 }
 { "R:" "Hydraulics radius" 0 }
 { "S:" "Channel bed slope" 0 } }
 { 2 1 } { 120 1 .0001 }
 { 110 1.5 .00001 }
 INFORM
@ INFORM operation

 IF @if a 1 is received
 THEN @decompose input and
 @calculate Q

 OBJ DROP

 C R S 'C*ƒ(R*S)'

 NUM "Q" TAG
 ELSE
 @if a 0 is received
 @report cancel operation
 "Operation cancelled"
 MSGBOX
 END
»

Notice that the comment lines are shown in italic format, thus making them easy to distinguish
from programming statements. A line that starts with an ampersand (@) is a comment line in
its entirety (i.e., no executable commands are present in that line). However, a comment can
be added at the end of a command in a given line, thus producing a combined command-
comment line. Anything after the ampersand in that line will be ignored during execution.

The program listed above will be stored into file Prog7new.hpe. Load this file into the
emulator as a string. At this point the emulator screen will look as follows:

Convert this string into a program by using „ ° @TYPE@ @O BJ² @. Notice that this conversion
removes the comment lines from the program:

Save the resulting program into variable P7n. Press @@P7n @@ to run the program.

18

NOTE: Comment lines are only useful in files open in the editor. Once the string containing the
program is transferred to the emulator and converted into a program, the comment lines will
be removed.

Example 10 - Using INPUT for input and MSGBOX for output
This example, taken from the hp 49g+ User’s Guide (Chapter 21) uses an INPUT command to
enter data, and creates a long output string that is displayed in a message box (command
MSGBOX). The specifications for command INPUT are listed in lines 2 through 7. Line 10
contains the command to process the input data. Lines 13 and 14 produce a list of the values
of V, T, and n with attached units. Lines 17 through 22 are used to put together the output
string. The value of p is calculated in lines 21 and 22. Command MSGBOX, in line 23 produces
the output. Lines 24 through 26 show the three levels of subprograms used in this program.
The listing shown below includes comment lines that are not contained in the User’s Guide
listing.

1. «
2. @ INPUT specifications

3. "Enter V,T and n [S.I.]:"
4. { "
5. :V:
6. :T:
7. :n:" { 2. 0. } V }
8. INPUT
9. @ Processing of input data

10. OBJ V T n
11. @ Subprogram to add units to

12. @ variables

13. « V '1_m^3' * { } + T '1_K'

14. + n '1_mol' * + EVAL V T n
15. @ Subprogram to create output

16. @ string

17. « V "V" TAG STR "

18. " + T "T" TAG STR "

19. " + n "n" TAG STR "
20. " +
21. '(8.34451_J/(K*mol))*(n*T/V)'

22. EVAL "p" TAG STR + + +
23. MSGBOX
24. »
25. »
26. »

Once the program is transferred to the emulator as a string, converted to a program, stored
(say in P8) and executed, the following input string will be used for input:

After pressing ` , the result is show in the following screen:

19

Press @@O K@@ to exit the program.

Example 11 - Using list operations for discrete probability
distributions - modular programming
A discrete probability distribution is typically defined by a probability mass function (or pmf)
given as a table of values (xi, fi), for i = 1, 2, …, n. For the development of the program in this
example we will enter the values of x and y as lists of values, say:

x = { 1, 2, 3, 4, 5}
f = { 0.1 0.2 0.3 0.1 0.3}

The lists x and f will be stored in variables called @@@@x@@@ and @@@@f@@@, respectively. The program
will perform the following tasks:

1. Check that 1
1

=∑
=

n

i

if . If it is true, continue with step 2, otherwise stop procedure and

report result.

2. Calculate the mean of the distribution, i.e., ∑
=

⋅=
n

i

ii fx
1

μ .

3. Calculate the variance and the standard deviation of the distribution, i.e.,

∑
=

⋅−=
n

i

ii fxXVar
1

2)()(μ , and)(XVar=σ .

4. Calculate the skewness of the distribution, i.e., ∑
=

⋅−=
n

i

ii fx
1

3

33)(
1 μ
σ

α .

5. Calculate the skewness of the distribution, i.e., ∑
=

⋅−=
n

i

ii fx
1

4

44)(
1 μ
σ

α .

The first thing to notice is that the calculation of variance (step 4), skewness (step 5), and
kurtosis (step 6), involve similar summations. Thus, we could develop a program called SUMN
to calculate the summations involved in those steps. The following program can be used for
that purpose:

« MUCALC n mu

« x mu - n ^ f * ΣLIST
»
»

The program SUMN, listed above, calls another program MUCALC, used to calculate the mean
value, which is listed below:

« CHKF
IF

THEN x f * ΣLIST
END
»

20

The following program is used to check if the sum of the values in f adds to 1.0. Instead of

seeking an exact equality we will check instead that ε≤−⎟
⎠

⎞
⎜
⎝

⎛∑
=

1
1

n

i

if , where ε is a small

quantity, say ε = 0.00001. The value of ε will be stored in variable @@@̄ @@@.The program will be
called CHKF:

«f ΣLIST 1 - ABS ε >
IF
THEN
 "f is not a pmf" MSGBOX
 0
ELSE

 1 "Σf" TAG MSGBOX
END»

Notice that if ε>−⎟
⎠

⎞
⎜
⎝

⎛∑
=

1
1

n

i

if , the program reports that list f is not a probability mass

function (pmf) and returns a zero, otherwise it returns a one.

The functions VARX, STDEV, SKEW, and KURT calculate, respectively, the variance, standard
deviation, skewness and kurtosis of the distribution. The corresponding programs are listed
next:

VARX:

« CHKF
IF
THEN 2 SUMN
END

"Var(X)" TAG

»
STDEV:

«VARX √ "σ" TAG
»

SKEW:

«CHKF
IF
THEN 3 SUMN STDEV 3 ^ /
END

"α3" TAG
»

KURT:

«CHKF
IF
THEN 4 SUMN STDEV 4 ^ /
END

"α4" TAG
»

21

NOTE: Since we are dealing with a number of small programs, instead of saving the programs in
files from within the editor and then loading those files in the emulator, we can simply copy
the programs in the editor (Edit>Select All followed by Edit>Copy) and paste them in the
emulator (Edit>Paste String). The strings thus pasted can be converted into programs with

function OBJ („ ° @TYPE@ @O BJ² @), and saved in the emulator for debugging and testing.

To enter data we can use the following program entitled DATAIN:

«
"Discrete prob. distribution"
{ { "x:" "values of random variable" 5}
{ "f:" "values of probability" 5}

{ "ε:" "tolerance" 0 } }
{ 3 0 }
{ { 1 2 3 4 5 } { 0.2 0.2 0.2 0.2 0.2 } 0.0001 }
{ { 1 2 3 4 5 } { 0.2 0.2 0.2 0.2 0.2 } 0.0001 }
INFORM
IF
THEN

 OBJ DROP

 'ε' STO 'f' STO 'x' STO
 "Data stored" MSGBOX
ELSE
 "Operation cancelled"
 MSGBOX
END
»

Finally, to control the entire operation we create the following program called DPCALC (which
stands for Discrete Probability CALCulation):

«"Discrete probability dist."
{ { "1. Enter data" DATAIN}
 { "2. Check pmf" CHECKF }
 { "3. Mean value" MUCALC }
 { "4. Variance" VARX}
 { "5. Standard deviation" STDEV}
 { "6. Skewness" SKEW}
 { "7. Kurtosis" KURT}
 { "8. Exit" } }
1
CHOOSE
IF
THEN EVAL
ELSE "Operation cancelled" MSGBOX
END
»

Thus, you should have loaded in your emulator nine programs, namely:

• DPCALC: main program

• DATAIN: data input routine

• CHKF: routine to check property that sum of probabilities is equal to 1

• MUCALC: routine to calculate the mean value

• SUMN: routine to calculate the summation needed for VARX, SKEW, KURT

22

• VARX: routine to calculate the variance

• STDEV: routine to calculate the standard deviation

• SKEW: routine to calculate the skewness

• KURT: routine to calculate the kurtosis

To facilitate the calculation, it is recommended that you copy all your programs into a sub-
directory, say, one called DPDIST (for Discrete Probability DISTribution). The main program is
DPCALC. When you launch this program the following CHOOSE box is provided:

You can use the vertical arrow keys to highlight the program of interest, or simply press the

corresponding number in the keyboard. After highlighting a selection, press @@@O K@@@ to execute
that program. The following screen shots show the different programs in action:

• Option 1 - Enter data (DATAIN)

• Option 2 - Check pmf (CHKF)

• Option 3 - Mean value (MUCALC)

• Option 4 - Variance (VARX)

23

• Option 5 - Standard deviation (STDEV)

• Option 6 - Skewness (SKEW)

• Option 7 - Kurtosis (KURT)

• Option 8 - Exit (no action)

• Cancel operation - when you press @CANCL, the result is this screen:

Example 12 - Creating a library out of your UserRPL programs
A library is a binary program that is available for use from any directory in your memory. The
easiest way to produce a library is by using the library called LIBRARY MAKER available under
the name libmaker.zip in http://www.hpcalc.org. The zip file for LIBRARY MAKER contains
three files: lbmkr.lib, lbmkr.src, and lbmkr.txt. Extract those files to a folder of your
choosing. Then load lbmrk.lib onto the emulator (or calculator), which will produce the
following screen:

24

The library contents are listed in stack level 1. At this point it is necessary to store this

contents into port 0 by typing the number 0 and pressing K . To load the library into

memory it is necessary to press the keys $ and C , simultaneously. This will re-start the
emulator (or calculator) and make the library available for use.

The exercise proposed herein will create a library out of the collection of programs defined in
the previous example (Example 11). We assume that all the programs are gathered in a sub-

directory. From within that sub-directory, press ‚ á , and then press @)LIBMA and @LBMKR@.
These actions produce the following screen:

The form contain the following fields:

• ROMID: an integer number between 769 and 1792 that identifies the library about to be
created (for example, library LBMKR has ROMID = 1001, as shown above).

• TITLE: a string that identifies the library.

• VISIBLE: the list of the programs or variables that will be visible to the user.

• HIDDEN: the list of the programs or variables that will be hidden from the user.

• CONFIG: use the default value of 1

For the present case we will use: ROMID = 1777, TITLE = “DPDIST”, VISIBLE = {DPCALC}, HIDDEN
= {DATAIN, CHKF, MUCALC, SUMN, VARX, STDEV, SKEW, KURT}, and CONFIG = 1. Thus, the
input form for our case will show the following options:

After entering all the information in the input form, press @@O K@@ to obtain the following screen:

The library is now ready to be stored in port 0 (0 K) and loaded into memory it is

($ and C , simultaneously). After the emulator re-start we can press ‚ á , and

then press @)DPDIS and @DPCAL@ to activate the library. Before we do that, however, let’s move to
the HOME directory by pressing „ § , simultaneously (to hold down the „ key in your

25

emulator press it using the right mouse button and then press §). Now, press

‚ á @)DPDIS and @DPCAL@. The result is the following:

which is what we programmed in the previous example. Thus, let’s repeat the entries in
Example 11 to verify that the library program is performing the expected tasks:

26

Finally, when you press @CANCL, the result is this screen:

Having verified that the library works properly, we need to export it from the emulator by

storing it into a variable. To get it listed in the screen use ‚ á @)@@@0 @@@ and ‚ @1 777@. The
resulting screen is:

To store it into variable DPD, type ‘DPD’ and press K . Press J to verify the existence of

variable @@DPD@ in your list of variables. Press @@DPD@ to list the contents of the variable in the
screen once more, and then use the option Edit>Save Object… to save the library to a
computer file, say DPD. This file can then be transferred to your calculator in order to store
the library into port 0 (or port 1 or port 2) and make it available for use in your calculator.

SUMMARY
In conclusion, in this document we presented several exercises to demonstrate the use of the
editor HPUserEdit 4.0 and the emulator Emu48 (with an hp 49 ROM) to develop UserRPL
programs. Also, we demonstrated the use of the library LIBRARY MAKER to convert a directory
of UserRPL programs into an hp 49 library.

For additional information visit the web page:

http://www.engineering.usu.edu/cee/faculty/gurro/Software_Calculators/Calculators.htm

This document was prepared by Gilberto E. Urroz, Ph.D., P.E., Associate Professor, Department
of Civil and Environmental Engineering and Utah Water Research Laboratory, Utah State
University, Logan, Utah, March 12, 2006.

