Utilizing the New ALV Object Model w
SAP DEVELOPER NETWORK

SDN Community Contribution

(This is not an official SAP document.)

Disclaimer & Liability Notice

This document may discuss sample coding or other information that does not include SAP official interfaces
and therefore is not supported by SAP. Changes made based on this information are not supported and can
be overwritten during an upgrade.

SAP will not be held liable for any damages caused by using or misusing the information, code or methods
suggested in this document, and anyone using these methods does so at his/her own risk.

SAP offers no guarantees and assumes no responsibility or liability of any type with respect to the content of
this technical article or code sample, including any liability resulting from incompatibility between the content
within this document and the materials and services offered by SAP. You agree that you will not hold, or seek
to hold, SAP responsible or liable with respect to the content of this document.

© 2005 SAP AG The SAP Developer Network: http://sdn.sap.com 1

Utilizing the New ALV Object Model wﬂpnmmm NETWORK

Applies To:

The code sample in this paper can be used on SAP NetWeaver 04 (Web AS 6.40) or later.

Summary
This code sample presents a report template that utilizes the new ALV Object Model.

An additional updated code sample is available that demonstrates a different class hierarchy using interface
methods. Although you can download the updated code (refactoring.zip), we would encourage you to use the
Refactoring Assistant to make the changes to the original code sample. If you need help with the Refactoring
Assistant, see Tomas Ritter's Refactoring ABAP classes weblog describing this tool.

By: Thomas Jung
Company: Kimball International, Kimball Electronics Group

Date: 21 October 2005

Y 0] 0] =T I TSRS 2
SUMMIAIY .ottt e e oottt e e e e e e et et e e e e e e e e e eeababeeeeeeeeeseabsbaeeeeeeeeeabennaaaeens 2
[a1 (oTo U3 o] o HO PP PP PPP P PPPPRPRN 3
BIC=T 0] 0] F= Y (=T o o o | =T o SR 3
L0 11 o | PRSP RPSP 6

B = 0] o] F= Y L= O TSR 6
CONSTRUGTOR ..ttt ettt ettt ettt et e et e skt e ehe e emeeane e e ese e aneeameesmeeamteenteenaeenneas 7

e I 1 S SRR 8
GET_DEFAULT _LAY OUT ..ttt ettt ettt e st e e e e nae e aaeeaneesneeameeaneeenneeaneas 8
EVENT HANAIEIS ...ttt ettt et e e e e e e e e e e e e e anee 9

F NI T O] | USRS 9
SET_REPORT _TITLE ..ottt ettt ettt e e nneas 9
PUBLISH ALV ettt ettt ettt ettt e ettt e et e e em e e emae e e se e e amteeeemeeeanseeeneeeamneeenneenn 9
PROCESS_FUNCTIONS. ...ttt sttt ettt et eesteesteeeneeeneeene e 10
SET_COLUMNS ...ttt sttt et e e st e e st e e e nte e e esteeaseeesseeesnseeesnseeanneaans 11
PROCESS _LAYOUT ..ttt ettt ettt s e st e et e te e teesaeeemeeemeeeeeeaseeaneeanneeaneenes 11
REGISTER _EVENTS ..ottt sttt e e snee e st e e ene e ense e e snaeeeneee e 12
PROCESS_REPORT_HEADERS ..ottt 12

© 2005 SAP AG The SAP Developer Network: http://sdn.sap.com 2

Utilizing the New ALV Object Model w
SAP DEVELOPER NETWORK

PROCESS TOP _OF LIS ..o a e e 13
PROCESS _TOP_OF _LIST PRINT ...eutitiiiiiii ettt a e e 17
N 1 Lo o = o T 17

Introduction

When developing custom reports, it is important to have a way of creating consistent yet feature-rich
applications. The SAP ALV functionality goes a long way towards facilitating this need. For years, our
company has had a simple program template for creating basic reports. This template already consisted of all
the logic necessary to create and interact with the old REUSE_ALYV function modules. The use of this
template allows developers to focus on the specific business logic for their new report without having to spend
any time on creating the Ul. This also has the effect that nearly all of our custom reports have the same look
and feel.

We are currently going through an upgrade from 4.6C to ECC 5.0 (Web AS 6.40). New in Web AS 6.40 is the
ALV Object Model. The ALV OM is a more object-oriented (OO) approach to the entire suite of ALV output
formats. Our goal was to recreate our template program in order to take advantage of this new ALV OM. At
the same time, we wanted to get away from the approach of copying from template. We wanted to use OO to
create most of our logic in an ABAP objects class. This way, instead of copying the logic, individual programs
could just reuse this existing class. If specific logic needed to be included (perhaps to handle double-click
navigation), this could now be done via inheritance from this base template class. In this way, we can add
new features or make fixes to all applications based on this template class with relative ease.

Template Program

We still have a template program that you copy from. This program now is really just a shell to call the ALV
OM template class. This is the place where you can supply your business logic. This logic might be coded
locally within this copied program (or better — placed in a separate class and called from here). The main
reason for still having a classic program as the starting point is only to easily support select-
options/parameters. If there was an easy way to do this without a dialog program, we could go completely
00!

This template program has some very simple logic to fill an internal table from SFLIGHT for demonstration
purposes.

R R R S I S b I S S S b S b S b I S b S Sh b S Sb b S Sb b b Sb b S S R S b S S S SR e S b S S b b Sb b I Sb b b db b b Sb b S db b S 2b b Y

* Program Name: KEG Program Template for Creation: 10/07/2005

* ALV Object Model

* *
* SAP Name : ZESU REPORT TEMPLATE ALV OM Application: U *
* *
* Author : Thomas Jung Type: 1 *
* *
* Description : This program is a template for the ALV Object Model *
* *

© 2005 SAP AG The SAP Developer Network: http://sdn.sap.com 3

Utilizing the New ALV Object Model

WEAP DEVELOPER NETWORK

* Inputs: *
* *
* Outputs: *
* *
* External Routines

*

* *
* Return Codes:

* *
* Ammendments : *
* Programmer Date Req. # Action *
. *
* *

R e I b I b S b S b S b S b b S b b S b I Sb b I S b S Sb b b db S b S SE S SR e S b S S Sb I S b b S db I S b b Sb b I db b S 4b b Y

report =zesu report template alv om.

tables: sflight.

data: itab type table of sflight.

e g
* CLASSES

e
data: keg alv type ref to zcl es alv om.
g g

* SELECTION SCREEN

© 2005 SAP AG The SAP Developer Network: http://sdn.sap.com 4

Utilizing the New ALV Object Model WEAMMLOPE“ NETWORK

selection-screen begin of block five with frame title text-017.
parameter: variant like disvariant-variant. "ALV GRID VARIANT
parameter: nodatal as checkbox. "RUN ALV WITHOUT DATA

selection-screen end of block five.

K *
* AT SELECTION SCREEN *
K o *

**Respond to the F4 Request by the User for Help on the ALV Grid
**Variant Selection
at selection-screen

on value-request for variant.

keg alv->f4 layouts(changing c¢ variant = variant).

K o *
* INITIALIZATION *
K *

**Initialize for Selection Screen Output
initialization.
create object keg alv exporting i repid = sy-repid.
keg alv->get default layout(

changing c¢_variant = variant).

K o *
* START-OF-SELECTION *
K *

start-of-selection.

keg alv->auth check().

if nodatal = 'X'.

else.

select * from sflight into table itab.

© 2005 SAP AG The SAP Developer Network: http://sdn.sap.com 5

Utilizing the New ALV Object Model w
SAP DEVELOPER NETWORK

* Perform to read data and do processing

endif.

keg alv->set report title('Dialog Template' (t01l)).
keg alv->publish alv(exporting i variant = variant
changing itab = itab).

Output

In the following screen shot you can see the format of the output. It looks very much like the old Reuse ALV
Grid. We have created a common header (the processing logic for this is in the template class) with all the
information that we feel is import.

KEG Program Template for ALV OM Programs

Dialog Template

Kirnbal Intermational (Kimbal Electronics Group)

Program: ZESU_REPCRT_TEMPLATE_ALY _CM

Systerm: D15 Client; 028

Date: 10/13/2005 Time: 10:41:21 ESTHC

Local Date: 10/1=/2005% Local Time: 17:41:21 CET
Cient |10 | Mo.|Fight Date | airfare|Cure, |Plane Type |Capacity| Occupied| Totl|
088/ A 17 11/17/2004 = 422,94 USD |747-400 385 374 192,124,985
0S8 AA 17 12/15/2004 = 422.94 USD | 747-400 385 372193,148.41
098 AA 17 01/12/2005 = 422.04 USD 747400 | 295 374192 556,44
088 AA 17 02/09/2005 422,94 USD 747400 | 385 371 191,164.88
028 AA 17 03/09/2005 422,94 USD 747-400 395 374 195,622.64
038 A4 17 04/06/2005 = 422.94 USD |747-400 385 373 1192,420.96
058 AA 17 05/04/2005 @ 422,94 USD 747400 | 385 373193,199.26 |
02e A 17 06/01/2005 42204 USD 747-400 = 395 367 190,029,792
038 A4 17 06/29/2005 = 422.94 USD |747-400 385 363 159,071.40
0S8 AA 17 O07/27/2005 = 422.94 USD | 747-400 385 0 0.00
098 AA 17 08/24/2005 = 422.04 USD 747400 | 295 62| 33,560.29
nae ad 17 N9 F20nS 472 041150 747400 | 2es) 12| 53 430 10!
[0

Template Class

The vast majority of the coding and logic resides in the template class, ZCL ES ALV _OM. There are several
global attributes:

© 2005 SAP AG The SAP Developer Network: http://sdn.sap.com 6

Utilizing the New ALV Object Model w
SAP DEVELOPER NETWORK

Attribute |Leue| |*ufi5i___ |Rea___|Tﬁ,rr:|ing |ﬂ\55|:u:iated Type Description |
REPID: InstancePrivate Type STREPID i ABAF Program: Current Me
ALY TnstancePrivats Type Ref CL_SALY TABLE | © |Basis Class for Simple Table
ALY M3G InstancePrivate | | Type Ref CX_SALYV MSG = |alv: General Error Class w
TITLE InstancePrivate || Type STRING 2 |Report Title

The following are the methods in this class. Several of them are delivered empty (such as the event
handlers). These can be redefined if this class is inherited to provide more specific functionality.

|ﬂunalyze |Leve| |‘ufi5i___ |f'-'1 |Descripti|:|r'|

ONSTRUCTOR: InstancPubli dfs CONSTRUCTOR

Fd LAYOUTS InstancPubli Respond to the F4 Request by the Liser for
GET DEFAULT LATOUT InstancPubli Get Default Layout

ON_USEE COMMAND InstancPubli M On User Command Event Handler
0N_EEFORE_USER_COMMAND InstancPubli M On Before User Command Event Handler
ON_AFTER USER COMMAND InstancPubli M On After User Cormmand Event Handler
ON_DOUBLE_CLICK InstancPubli M On Double Click Event Handler

ON_LINE CLICK InztancPubli M On Link Click Event Handler

ON_TOP_OF PAGE InstancPubli O On Top OF Page Event Harder

ON_END OF PAGE InstancPubli M ©On End of Page Event Handler

AUTH CHECE InstancFubls Authorization Check

PUBLISH ALV InstancPubli Prepare and Publish the ALY Grid
SET_BEPORT TITLE InstancPubli Set the Report Tithe

PROCESS BEPORT HEADERS InstancProte Process the Report Headers

PROCESS TOP OF LIAT InstancProte Frocess The Top of List for On-Line Display
PROCESS TOP OF LIST PRINT InstancProte Pracess the Top of List for Print Cutput
PROCEZS LAYOUT .Inst.a.nt.PrDtE. .F'FIIII:ESS the Layout Options

iPREI CE3S FUNCTIONS InstancProte Process the ALY Grid status Functions
!SET_CEILTJHI-IS InstancProte Set Column Options

!RE GISTER, EVENTS Instandrrots Register (Flease only register those events yi
CONSTRUCTOR

This is the entrance point to the program. In this case, all it does is record the program name from the hosting
program. This program name is then used during the custom authorization check and for the processing of
the ALV variants.

method CONSTRUCTOR.
*Importing I REPID TYPE SYREPID

me->repid = i repid.

© 2005 SAP AG The SAP Developer Network: http://sdn.sap.com 7

Utilizing the New ALV Object Model WEAMMWPEH NETWORK

endmethod.

F4_LAYOUTS

This is the method that is called in the at selection-screen on value-request for variant event. It will hook into
the ALV OM to supply the F4 Value Help.

METHOD f4 layouts.
*Changing C_VARIANT TYPE SLIS VARI Layout

DATA: 1ls layout TYPE salv_s layout info,

1ls key TYPE salv_s layout key.

ls _key-report = me->repid.

1s layout = cl salv layout service=>f4 layouts(
s_key = ls key
restrict = if salv_c layout=>restrict none).
c _variant = ls layout-layout.
ENDMETHOD.

GET_DEFAULT_LAYOUT

This method is called from the INITIALIZATION event of the dialog program to preload the default ALV
variant.

METHOD get default layout.
*Changing C_VARIANT TYPE SLIS VARI Layout
DATA: 1s layout TYPE salv_s layout info,

1s key TYPE salv_s layout key.

ls _key-report = me->repid.

1s layout = cl salv layout service=>get default layout (

s_key = 1ls key
restrict = if salv c layout=>restrict none).
c _variant = ls layout-layout.

© 2005 SAP AG The SAP Developer Network: http://sdn.sap.com 8

Utilizing the New ALV Object Model w
SAP DEVELOPER NETWORK

ENDMETHOD.

EVENT Handlers

The event handler methods (ON_USER_COMMAND, ON_BEFORE_USER_COMMAND,
ON_AFTER_USER_COMMAND, ON_DOUBLE_CLICK, ON_LINK_CLICK, ON_TOP_OF_PAGE, and
ON_END_OF_PAGE) are all defined, but not implemented. This is where an inheriting class can provide a
specific function such as forward navigation. For these methods to be called they must be registered in the
method REGISTER_EVENTS.

AUTH_CHECK

This method is called at the very beginning of processing in the dialog program to perform our company’s
custom authorization check.

METHOD auth check.
AUTHORITY-CHECK OBJECT 'Z ABAP CHK'
ID 'BUKRS' DUMMY
ID 'ACTVT' DUMMY
ID '"WERKS' DUMMY

ID 'REPID' FIELD me->repid.

IF sy-subrc NE 0.
MESSAGE e024 (zes job).
ENDIF.
ENDMETHOD.

SET_REPORT_TITLE

This method can be called from the dialog program to set the title for the ALV display.

METHOD set report title.
*Importing I TITLE TYPE CSEQUENCE
me->title = 1 title.

ENDMETHOD.

PUBLISH_ALV

This is the main method of the ALV template class. This method is called after all business logic is complete.
The internal table with the final report results are passed into this method. From this point, all the Ul
processing and interaction with the ALV OO takes place.

METHOD publish alv.
*Importing I VARIANT TYPE SLIS VARI Layout
*Changing ITAB TYPE TABLE

© 2005 SAP AG The SAP Developer Network: http://sdn.sap.com 9

Utilizing the New ALV Object Model w
SAP DEVELOPER NETWORK

TRY.
cl salv_table=>factory(
EXPORTING

list display = abap_ false

IMPORTING

r salv _table = alv
CHANGING

t table = itab).

CATCH cx_salv _msg INTO alv_msg.
MESSAGE alv msg TYPE 'I'.
EXIT.

ENDTRY.

me->process_functions().
me->set columns().
me->process_layout(i variant).
me->register events().

me->process_report headers().

alv->display().

ENDMETHOD.

PROCESS_FUNCTIONS

This method is called during the PUBLISH_ALV method processing. It controls which GUI functions are
available in the ALV output screen. You can redefine this method to create custom buttons/menu options or
remove standard ones. By default this method will activate all standard functions plus the XML export
function. It also disables the Lotus function (since we don’t use Lotus at our company).

METHOD process functions.

*... Functions
*... activate ALV generic Functions
*... include own functions by setting own status

* alv->set screen status(

* pfstatus = 'SAPLSLVC FULLSCREEN'

* report 'SAPLSLVC FULLSCREEN' "me->repid

* set functions alv->c_ functions_all).

© 2005 SAP AG The SAP Developer Network: http://sdn.sap.com 10

Utilizing the New ALV Object Model w
SAP DEVELOPER NETWORK

DATA: 1lr functions TYPE REF TO cl salv functions list.
lr functions = alv->get functions().

lr functions->set all(abap_ true).

lr functions->set export xml(abap true).

lr functions->set view lotus(abap false).

ENDMETHOD.

SET_COLUMNS

Before the introduction of the ALV OM, you would create a Field Catalog to manipulate the number of
columns and/or the settings for these columns Now there is an OO approach to this where you ask the ALV
OM for a Columns Object (cl_salv_columns) and manipulate through it. The standard implementation of this
method exposes all columns and sets the optimize width. This method can be redefined to create custom
column processing.

METHOD set columns.

*... SET the columns
DATA: lr columns TYPE REF TO cl salv columns.
lr columns = alv->get columns().
lr columns->set optimize(abap true).

ENDMETHOD.

PROCESS_LAYOUT

This method contains all the logic to process the ALV Grid Variants. It sets the current layout from a
parameter on the dialog screen. It also sets the types of variants that can be saved (local, global, or both).
The standard processing uses the dialog program name as the Variant key and doesn'’t restrict the type of
variant that can be saved. Once again you can redefine this method to change the default processing of the
ALV variants.

METHOD process layout.
*Importing I VARIANT TYPE SLIS VARI Layout

*... set layout
DATA: lr layout TYPE REF TO cl salv layout,
1s key TYPE salv_s layout key.
lr layout = alv->get layout().
*... set the Layout Key

ls key-report = me->repid.

© 2005 SAP AG The SAP Developer Network: http://sdn.sap.com 11

Utilizing the New ALV Object Model w
SAP DEVELOPER NETWORK

lr layout->set key(1ls key).
*... set usage of default Layouts

lr layout->set default(abap true).
*... set Layout save restriction

lr layout->set save restriction(if salv_c layout=>restrict none).
*... set initial Layout

IF i variant IS NOT INITIAL.

lr layout->set initial layout(i variant).
ENDIF.

ENDMETHOD.

REGISTER_EVENTS

This method is used to register any of the event handlers. By default no events are registered. However, all
the coding is in place, but commented out. You can just redefine this method and uncomment any events that
you want to code for.

METHOD register events.
*... register to the events of cl salv table

DATA: 1lr events TYPE REF TO cl salv events table.

lr events = alv->get event().
*... register to the events (Please only register those events you are
using) .
* SET HANDLER me->on_ user command FOR 1lr events.

* SET HANDLER me->on before user command FOR lr events.

* SET HANDLER me->on_ after user command FOR lr events.

* SET HANDLER me->on double click FOR 1lr events.
* SET HANDLER me->on top of page FOR 1lr events.
* SET HANDLER me->on_end of page FOR 1lr events.
ENDMETHOD.

PROCESS_REPORT_HEADERS

This method is used to process the logic of the report header. You can have different output based upon
whether the ALV is displayed or printed. For our processing we will separate these two approaches into two
separate methods. That way they can be inherited and redefined individually if necessary.

METHOD process report headers.

me->process_top of list().

© 2005 SAP AG The SAP Developer Network: http://sdn.sap.com 12

Utilizing the New ALV Object Model w
SAP DEVELOPER NETWORK

me->process_top of list print().
ENDMETHOD.

PROCESS_TOP_OF_LIST

This method has the logic to work with the ALV OM to create the report header. The ALV OM has an output
format that is metadata based. That means that you don’t use write statements or HTML, but instead a neutral
formatting method. The ALV OM itself will then interpret this data and produced the best output type for the
current situation. In the processing you will see that we use GRIDs and FLOWSs to control the layout, which is
very similar to BSP or WebDynpro.

METHOD process top of list.

DATA: lr grid TYPE REF TO cl salv_form layout grid,
lr grid 1 TYPE REF TO cl salv form layout grid,
1lr flow TYPE REF TO cl salv form layout flow,
lr label TYPE REF TO cl salv form label,
lr text TYPE REF TO cl salv_ form text,

1 text TYPE string.

CREATE OBJECT lr grid.

IF me->title IS NOT INITIAL.

lr grid->create header information (

row =1
column = 1
text = me->title

tooltip = me->title).

ENDIF.

*... in the cell [2,1] create a grid

lr grid 1 = 1lr grid->create grid(

row = 2
column = 1).
*... in the cell [1,1] of the second grid create a label

lr text = 1lr grid l->create text(

row =1

© 2005 SAP AG The SAP Developer Network: http://sdn.sap.com 13

Utilizing the New ALV Object Model WEAPBMLOPE“ NETWORK

column =1

colspan = 2

text = 'Kimball International (Kimball Electronics Group) ' (kil)

tooltip = 'Kimball International (Kimball Electronics Group) ' (kil)).
lr flow = 1lr grid l->create flow(

row = 2

column =1).

lr label = 1lr flow->create label(

text = 'Program:' (t02)
tooltip = 'Program: '(t02)).

lr text = 1lr flow->create text(
text = Sy-Cprog

tooltip = sy-cprog).

lr flow = lr grid l->create flow(
row =3
column =1).

lr label = 1r flow->create label (
text = 'System:' (t03)
tooltip = 'System:' (t03)).

lr text = 1lr flow->create text(

text = sy-sysid
tooltip = sy-sysid).
lr flow = 1lr grid l->create flow(
row = 3
column = 2).

lr label = 1r flow->create label (

© 2005 SAP AG The SAP Developer Network: http://sdn.sap.com 14

Utilizing the

text

tooltip =

lr text =1
text =

tooltip =

lr flow =
row

column

DATA: datel
DATA: timel
WRITE sy-da
WRITE sy-uz

DATA: tzone

New ALV Object Model

'Client:' (t04)
'Client: ' (t04)).

r flow->create text(
sy-mandt
sy-mandt).

lr grid l->create flow(
=4
=1).

(12) TYPE c.
(8) TYPE c.

tum TO datel.
eit TO timel.

sys TYPE tznzonesys.

WEAP DEVELOPER NETWORK

SELECT SINGLE tzonesys FROM ttzcu INTO tzonesys.

lr label =
text =

tooltip =

lr text =1
text =

tooltip =

lr flow =
row
column

lr label =
text =

tooltip =

lr text =1

© 2005 SAP AG

lr flow->create label(
'Date: ' (t05)
'Date:' (t05)).

r flow->create text(
datel
datel).

lr grid 1->create flow(
=4
2).

lr flow->create label(
'Time: "' (t06)
'"Time:"' (t0o6)).

r flow->create text(

The SAP Developer Network: http://sdn.sap.com 15

Utilizing the New ALV Object Model WEAPBMLOPE“ NETWORK

text = timel
tooltip = timel).

lr text = 1lr flow->create text(
text = tzonesys

tooltip = tzonesys).

IF sy-timlo NE sy-uzeit.
WRITE sy-datlo TO datel.
WRITE sy-timlo TO timel.

lr flow =
row
column

lr label =
text

tooltip

lr text =
text

tooltip

lr flow =
row
column

lr label =
text

tooltip
Ir text =
text

tooltip

lr text =

© 2005 SAP AG

lr grid l1->create flow(
=5
1).

lr flow->create label(
= 'Local Date:' (t07)
= 'Local Date:' (t07)).

lr flow->create text(
= datel
= datel).

lr grid l->create flow(
=5

=2).

lr flow->create label(
= 'Local Time:' (t08)

= 'Local Time:' (t08)).
lr flow->create text(
= timel

= timel).

lr flow->create text(

The SAP Developer Network: http://sdn.sap.com

16

Utilizing the New ALV Object Model w
SAP DEVELOPER NETWORK

text = sy-zonlo

tooltip = sy-zonlo).

ENDIF.

alv->set top of list(1lr grid).

ENDMETHOD.
PROCESS_TOP_OF_LIST_PRINT

For the purpose of our template, we want to produce the same output when printed as when displayed on-
line. Therefore the standard implementation of this method will just call over to its online counterpart.
However thought redefinition, an individual application can create specific processing for the print version of
the header that differs from the on-line version.

METHOD process top of list print.

me->process_top of list().

ENDMETHOD.

Author Bio

Thomas Jung is an applications developer for the Kimball Electronics Group. He has been
involved in SAP implementations at Kimball as an ABAP developer for over 9 years. He has done work in the
Microsoft world with VB and .NET Development, but his first love remains as always: ABAP. For several
years, Tom has been involved in the use of BSP development at Kimball and more recently in the introduction
of ABAP web services for critical Interfaces and WebDynpro ABAP. He holds the Special Interest Group
Chair position for Web Technologies within ASUG (America’s SAP User’s Group). He is also the co-author of
the SAP PRESS Book, Advanced BSP Programming.

© 2005 SAP AG The SAP Developer Network: http://sdn.sap.com 17

