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Introduction

Osseointegration or osteointegration refers to a direct

bone-to-metal interface without interposition of non-bone

tissue. This concept has been described by Branemark, as

consisting of a highly differentiated tissue making "a direct

structural and functional connection between ordered, living

bone and the surface of a load-carrying implant"1,2. Through

his initial observations on osseointegration, Branemark

showed that titanium implants could become permanently

incorporated within bone that is, the living bone could

become so fused with the titanium oxide layer of the implant

that the two could not be separated without fracture. It

occurred to this investigator that such integration of titani-

um screws and bone might be useful for supporting dental

prostheses on a long-term basis1.

From this discovery in experiments focused on observing

the micromovements of bone, through its laboratory develop-

ment and initial application in the dental sciences, osseointe-

gration has become a realized phenomenon of importance2.

Currently, an implant is considered as osseointegrated when

there is no progressive relative movement between the

implant and the bone with which it has direct contact.

Essentially, the process of osseointegration reflects an anchor-

age mechanism whereby non-vital components can be reliably

incorporated into living bone and which persist under all nor-

mal conditions of loading2,3. However, the term osseointegra-

tion describes a clinical state that provides for long-term sta-

bility of a prosthesis, but this is not a biological property of any

implant system or metal4,5. In other words, one can claim that

a "direct bone contact" as observed histologically may be

indicative of the lack of a local or systemic biological response

to that surface. It is therefore proposed that osseointegration

is not the result of an advantageous biological tissue response

but rather the lack of a negative tissue response.

Since Branemark's initial observations, the concept of

osseointegration has been defined at multiple levels such as

clinically6, anatomically2, histologically, and ultrastructurally4.

In vivo and in vitro research has also been performed to eval-

uate the biology of the healing response to the implant sur-

face and how the material's characteristics, such as surface

preparations, chemical composition, coatings and steriliza-

tion procedures may affect the short- and long-term stability

of the metallo-biological interface7-10.

The rationale of this review is to discuss the basic scientific

work performed on the concept of biology of osseointegration

and the specific factors as they may relate to osseous healing

around an implant.
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Tissue response to implantation

Bone healing around implants involves a cascade of cellu-

lar and extracellular biological events that take place at the

bone-implant interface until the implant surface appears

finally covered with a newly formed bone11. These biological

events include the activation of osteogenetic processes simi-

lar to those of the bone healing process, at least in terms of

initial host response3,12,13. This cascade of biological events is

regulated by growth and differentiation factors released by

the activated blood cells at the bone-implant interface14.

The response of the skeleton to trauma has been well

studied mechanically and histologically with increasing inter-

est in the molecular biology of this phenomenon. The host

response after implantation is modified by the presence of

the implant and its characteristics, the stability of the fixation

and the intraoperative heating injuries that include death of

osteocytes extending 100-500 Ìm into the host bone3,11-13.

Major stages of skeletal response to implantation-related

injury and key histological events as related to the host

response after insertion and mechanical fixation of cement-

less implants include hematoma formation and mesenchymal

tissue development, woven bone formation through the

intramembranous pathway, and lamellar bone formation on

the spicules of woven bone. The first biological component to

come into contact with an endosseous implant is blood.

Blood cells including red cells, platelets, and inflammatory

cells such as polymorphonuclear granulocytes and monocytes

emigrate from post-capillary venues, and migrate into the tis-

sue surrounding the implant. The blood cells entrapped at

the implant interface are activated and release cytokines and

other soluble, growth and differentiation factors14.

Initial interactions of blood cells with the implant influ-

ence clot formation. Platelets undergo morphological and

biochemical changes as a response to the foreign surface

including adhesion, spreading, aggregation, and intracellular

biochemical changes such as induction of phosphotyrosine,

intracellular calcium increase, and hydrolysis of phospho-

lipids. The formed fibrin matrix acts as a scaffold (osteocon-

duction) for the migration of osteogenic cells and eventual

differentiation (osteoinduction) of these cells in the healing

compartment. Osteogenic cells form osteoid tissue and new

trabecular bone that eventually remodels into lamellar bone

in direct contact with most of the implant surface (osseoin-

tegration)14-16.

Osteoblasts and mesenchymal cells seem to migrate and

attach to the implant surface from day one after implanta-

tion, depositing bone-related proteins and creating a non-

collagenous matrix layer on the implant surface that regu-

lates cell adhesion and binding of minerals. This matrix is an

early-formed calcified afibrillar layer on the implant surface,

involving poorly mineralized osteoid similar to the bone

cement lines and laminae limitans that forms a continuous,

0.5 mm thick layer that is rich in calcium, phosphorus, osteo-

pontin and bone sialoprotein16,17.

Peri-implant osteogenesis

Peri-implant osteogenesis can be in distance and in contact

from the host bone. Distance osteogenesis refers to the

newly formed peri-implant bone trabeculae that develop

from the host bone cavity towards the implant surface. In

contrast, contact osteogenesis refers to the newly formed

peri-implant bone that develops from the implant to the

healing bone. The newly formed network of bone trabeculae

ensures the biological fixation of the implant and surrounds

marrow spaces containing many mesenchymal cells and wide

blood vessels. A thin layer of calcified and osteoid tissue is

deposited by osteoblasts directly on the implant surface.

Blood vessels and mesenchymal cells fill the spaces where no

calcified tissue is present14,18,19.

Murai et al. were the first to report a 20-50 mm thin layer

of flat osteoblast-like cells, calcified collagen fibrils and a

slight mineralized area at a titanium implant-bone interface17.

The newly formed bone was laid down on the reabsorbed sur-

face of the old bone after osteoclastic activity. This suggested

that the implant surface is positively recognizable from the

osteogenic cells as a biomimetic scaffold which may favor

early peri-implant osteogenesis. Cement lines of poorly min-

eralized osteoid demarcated the area where bone reabsorp-

tion was completed and bone formation initiated. A few days

after implantation, even osteoblasts in direct contact with the

implant surface began to deposit collagen matrix directly on

the early formed cement line/lamina limitans layer on the

implant surface. Osteoblasts cannot always migrate so rapid-

ly to avoid being completely enveloped by the mineralizing

front of calcifying matrix; these osteoblasts became clustered

as osteocytes in bone lacunae17.

The early deposition of new calcified matrix on the

implant surface is followed by the arrangement of the woven

bone and bone trabeculae. This is appropriate for the peri-

implant bone healing process as it shows a very active wide

surface area, contiguous with marrow spaces rich in vascular

and mesenchymal cells. Marrow tissue containing a rich vas-

culature supports mononuclear precursors of osteoclasts so

bone trabeculae remodel faster than cortical bone19.

Initially, rapid woven bone formation occurs on implants

to restore continuity, even though its mechanical compe-

tence is lower compared to lamellar bone based on the ran-

dom orientation of its collagen fibers. Woven and trabecular

bone fill the initial gap at the implant-bone interface.

Arranged in a three-dimensional regular network, it offers a

high resistance to early implant loading. Its physical archi-

tecture including arches and bridges offers a biological scaf-

fold for cell attachment and bone deposition that is biologi-

cal fixation19,20. The early peri-implant trabecular bone for-

mation ensures tissue anchorage that corresponds to biolog-

ical fixation of the implant. This begins at 10 to 14 days after

surgery. Biological fixation differs from primary (mechani-

cal) stability that is easily obtained during the implant inser-

tion. Biological fixation of the implant involves biophysical

conditions such as primary stability that is implant mechani-
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cal fixation, bio-mimetic implant surface and right distance

between the implant and the host bone. It is prevalently

observed in rough implant surfaces19. Next, woven bone is

progressively remodeled and substituted by lamellar bone

that may reach a high degree of mineralization. At three

months post-implantation, a mixed bone texture of woven

and lamellar matrix can be found around different types of

titanium implants (Figure 1)3,21.

Peri-implant bone contains regular osteons and host bone

chips enveloped in mature bone. The implant surface is cov-

ered with flattened cellsak. The bone-implant interface

shows inter-trabecular marrow spaces delimited by titanium

surface from one side and by newly formed bone from the

other one rich in cells and blood vessels19. Host bone chips

between the implant and the host bone cavity presumably

occur from the surgical bur preparation or implant insertion.

These are enveloped in a newly formed peri-implant trabec-

ular bone, and seem to be involved in trabecular bone for-

mation during the first weeks, i.e., in the biological fixation

of the implant, by improving and guiding peri-implant osteo-

genesis as osteoconductive and osteoinductive biological

material. Therefore, it may be useful in clinical practice not

washing with a saline solution or aspirating the bone cavity

before or during the implant insertion22.

From the implant side an oxidation of metallic implants

has been described both in vitro and in vivo3. Cementless fix-

ation of a joint replacement implant occurs in the context of

the surgical trauma created at the time of implantation. In

contrast to cemented fixation, in which interdigitation of

cement and the surrounding trabecular bone provides a

degree of fixation, with cementless fixation the connection

occurs at the implant's surface via newly formed bone tissue.

Successful cementless fixation depends on the establishment

and maintenance of a durable connection between the

implant and host skeleton23,24.

Major factors for the failure of peri-implant osteogenesis

include the decreased number and/or activity of osteogenic

cells, the increased osteoclastic activity, the imbalance

between anabolic and catabolic local factors acting on bone

formation and remodeling, the abnormal bone cell prolifer-

ation rate and response to systemic and local stimuli and

mechanical stress, and the impaired vascularization of the

peri-implant tissue25. Vascularization is of critical impor-

tance for the process of osseointegration. Differentiation of

osteogenic cells strictly depends on tissue vascularity.

Ossification is also closely related to the revascularization of

the differentiating tissue. Since aging impairs angiogenesis,

biomaterial osseointegration is also reduced. In the elderly,

the association of impaired angiogenesis with osteoporosis

increases the implant failure risk25.

Peri-implant bone remodeling

µone in contact with the implant surface undergoes mor-

phological remodeling as adaptation to stress and mechani-

cal loading. The turnover of peri-implant mature bone in

osseointegrated implants is confirmed by the presence of

medullary or marrow spaces containing osteoclasts,

osteoblasts, mesenchymal cells and lymphatic/blood vessels

next to the implant surface. During the remodeling of the

peri-implant bone, new osteons circle around the implant

with their long axes parallel to the implant surface and per-

pendicular to the long axis of the implants. Osteoid tissue is

produced by osteoblasts suggesting that osteogenesis is

underway. The remodelled bone can extend up to 1 mm

from the implant surface19,21.

Factors affecting osseointegration

Various factors may enhance or inhibit osseointegration.

Factors enhancing osseointegration include implant-related

factors such as implant design and chemical composition,

topography of the implant surface, material, shape, length,

diameter, implant surface treatment and coatings25, the sta-

tus of the host bone bed and its intrinsic healing potential26,

the mechanical stability and loading conditions applied on

the implant13, the use of adjuvant treatments such as bone

grafting, osteogenic biological coatings and biophysical stim-

ulation27-29, and pharmacological agents such as simvastatin

and bisphosphonates30,31.

Factors inhibiting osseointegration include excessive

implant mobility and micromotion32,33, inappropriate porosi-

ty of the porous coating of the implant34, radiation thera-

py35,36 and pharmacological agents such as cyclosporin A,

Figure 1. Photomicrograph taken by a light microscope at a high

magnification. Newly formed bone (B) in direct contact with the

implant, osteocytes (Oct) cells, Haversian canal (Hc) and some

fibrous tissues (Ft). The biomimetic coating (Bc) can be observed

in the implant's surface. (Reprinted from Publication: Materials

Science and Engineering C, 24, ECS Rigo, AO Boschi, M Yoshimoto,

S Allegrini Jr, B Konig Jr, MJ Carbonari, "Evaluation in vitro and in

vivo of biomimetic hydroxyapatite coated on titanium dental

implants", 647-651, Copyright (2004), with permission from Elsevier).
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methotrexate and cis-platinum37-39, warfarin and low molec-

ular weight heparins40, non-steroid anti-inflammatory drugs

especially selective COX-2 inhibitors41,42, and patients' relat-

ed factors such as osteoporosis, rheumatoid arthritis,

advanced age, nutritional deficiency, smoking and renal

insufficiency43-46.

The different materials, shape, length, diameter, implant

surface treatment and coatings have been proposed to

enhance clinical performance. The biocompatibility of the

material is of great importance and a predictor of osseointe-

gration, as it is essential to establish stable fixation with

direct bone-implant contact and no fibrous tissue at the

interface47. Titanium is widely used as an orthopaedic

implant material; its advantages include high biocompatibil-

ity, increased resistance to corrosion, and lack of toxicity on

macrophages and fibroblasts, and diminished inflammatory

response in peri-implant tissues. Its surface is composed of

an oxide layer that provides the ability to repair itself by

reoxidation when damaged48,49. Other materials have also

been proposed either as an alternative to titanium or as alloy

systems, including tantalum, aluminum, niobium, nickel, zir-

conium, and hafnium50-54.

Inappropriate porosity of the porous coating of an

implant also inhibits bone ingrowth. Narrow pore throats

have been found to inhibit tissue differentiation in pores,

possibly because of inadequate vascularization34. Porous tan-

talum is a low modulus metal with a characteristic appear-

ance similar to cancellous bone55. The biomaterial properties

of porous tantalum include the high volumetric porosity (70-

80%), low modulus of elasticity, high frictional characteris-

tics, and excellent biocompatibility. In vitro studies have

shown osteoblast growth and differentiation related to

porous tantalum implants. A bone-like apatite coating-scaf-

fold formation has been observed with excellent bone and

soft tissue ingrowth properties56,57. Early clinical studies in

patients having total hip arthroplasty using porous tantalum

implants reveal a high rate of radiographic and histological

bone ingrowth, improved clinical indices and no evidence of

wear and osteolysis. In revision total hip arthroplasty with or

without tantalum augments, early reports are associated with

excellent results regarding osseointegration and stability.

Porous tantalum has also been used in primary and revision

total knee arthroplasty58-62.

Modifications of metal surfaces often are employed as a

means of controlling tissue-titanium interactions and short-

ening the time of bone fixation63. Cells at the interface and

their secreted proteins involved in the process of osseointe-

gration alter the structure and physiochemical properties of

the implant surface. Continuous electrochemical events at

the tissue-implant interface are related to metal ions

released into tissue; these ions are traced in the peri-implant

tissues or other organs, in the patient's serum and urine.

Excessive metal ion release has been shown in vitro to inhib-

it cell function and apatite formation22.

Appropriate surface characteristics for osseointegration

include pore size and interconnectedness in the case of

macro-textured surfaces, surface roughness in the case of

micro-textured surfaces, and surface chemistry in the case of

ceramic coated surfaces64. Implant surfaces and types can be

divided into roughened and coated such as titanium plasma-

sprayed or hydroxyapatite-coated, machine-processed such

as machined or polished, and no coated such as sand-blast-

ed, acidetched or anodically roughened65-68.

In vitro, different surface micro-topographies were found

to modulate bone cell differentiation and mineralization in

monolayer fetal rat calvarial cell cultures on titanium

implant materials69. The roughness-dependent regulation of

osteoblast proliferation, differentiation and local factor pro-

duction is related to the activation of integrin receptors by

substrate, thus regulating phosphokinase C and A through

phospholipase C and A2 pathways70. Rough surfaces favor

osseointegration through platelets and monocytes adhe-

sion64, enhancement of direct osteoblast attachment and

subsequent proliferation and differentiation71, and enlarge-

ment of the implant area in contact with the host bone favor-

ing primary stability67. In smooth implant surfaces distance

osteogenesis is more prevalent, while in rough implant sur-

faces both distance and contact osteogenesis are present22.

In general, moderately rough surfaces favor peri-implant

bone growth better than smoother or rougher surfaces72.

Among different pore sizes, a pore size above 80 Ìm is asso-

ciated with improved bone ingrowth in both hydroxyapatite

and tricalcium phosphate materials73.

A healthy bone bed with minimal surgical trauma is

important since it is the source of cells, local regulatory fac-

tors, nutrients, and vessels that contribute to the bone heal-

ing response. The implantation site influences the osseointe-

gration process through different levels of bone cellularity

and vascularity74. A high-quality bone also seems to be

important for the initial implant stability75.

To obtain implant osseointegration, primary mechanical

stability of the implant is essential, especially in one-stage

surgical procedures. Primary mechanical stability consists of

rigid fixation between the implant and the host bone cavity

with no micro-motion of the implant or minimal distortional

strains. Excessive implant motion or poor implant stability

results in tensile and shear motions, stimulating a fibrous

membrane formation around the implant and causing dis-

placement at the bone-implant interface, thus inhibiting

osseointegration and leading to aseptic loosening and failure

of the implant32,33,76. Primary stability depends on the surgi-

cal technique, implant design, and implantation site. Cortical

bone allows a higher mechanical anchorage to the implant

than cancellous bone. Primary stability limits micro-motion

of the implant in the early phases of tissue healing and favors

successful osseointegration77.

Mechanical stress and implant micro-motion are associat-

ed with implant osseointegration or failure. In a study, 20

microns of oscillating displacement was compatible with sta-

ble bone ingrowth with high interface stiffness, whereas 40

and 150 microns of motion were not24. Implant loading leads

to micro-motion at the bone-implant interface. Some degree
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of micro-motion is tolerated. Within certain limits, mechani-

cal loading stimulates bone formation78. Bone formation is

also a function of biomechanical effects. The spherical

stress/strain tensors regulate the speed of biochemical

processes and the deviator of stress/strain tensors initiate the

biochemical reactions79. Osseointegration was observed in

the presence of elastic interface micro-motions of up to 30

Ìm, whereas micro-motions larger than 150 Ìm were report-

ed to compromise or inhibit the biological integration of the

prosthesis80-82. In general, micro-motion at the interface influ-

ences tissue differentiation and excessive micro-motion com-

promises implant osseointegration. The magnitude of micro-

motion at the interface significantly influences tissue differ-

entiation around immediately loaded implants (Figure 2)83,84.

In a randomized prospective study of 43 patients, the effect of

partial and full weight-bearing after uncemented total hip

arthroplasty was evaluated using radiostereometric analysis.

No adverse effects such as stem migration and rotation, cup

translation and rotation, and femoral head penetration-wear

were observed in patients instructed for full weight-bearing85.

Currently, weight-bearing as tolerated is recommended for

young patients with excellent bone quality after cementless

total hip arthroplasty with a double-wedge press-fit femoral

component23.

An appropriate area between the host bone and the

implant enables the migration of osteogenic cells from the

bone marrow towards the implant surface, thus favoring

rapid and extensive osteogenesis86. However, when bone is in

tight contact with the implant surface, only poor bone for-

mation or even bone resorption is seen, whereas in the gap

between the implant body and the host bone new bone tra-

beculae support the biological fixation of the implant15,19,87.

On the other hand, gaps exceeding 500 Ìm reduce the qual-

ity of the newly formed bone and delay the rate of gap filling.

In addition, injuries to the pre-existing bone, due to bone

heating injuries located beyond 100-500 Ìm, always occur

during surgical preparation. It has therefore been suggested

that an appropriate space between implant and host bone

may be useful for early peri-implant bone formation86.

Simvastatin is a lipid lowering agent with osteoanabolic

effects. Histomorphometric studies have shown increased

bone ingrowth and mechanical examination, increased inter-

face strength, superior stability and osseous adaptation at

the bone/implant interface in the simvastatin-treated

group31,88. Bisphosphonates inhibit osteoclast-mediated bone

resorption and normalize the high rate of bone turnover that

characterizes osteoporosis. Consequently, there is a ration-

ale for using bisphosphonates to enhance early stability of

implants in patients with low bone mass30,62,89-92.

Cycloxygenase-2 (COX-2) selective inhibitors non-steroid

anti-inflammatory drugs (NSAIDs) given continuously for 6

weeks in an animal model yielded statistically less bone

ingrowth compared to the control treatment. However,

when given during the initial or final 2 weeks, it did not

appear to interfere with bone ingrowth93,94. Celecoxib does

not seem to inhibit bone ingrowth or bone formation, when

Figure 2. Micromotion of 150 Ìm axial displacement of the implant

induces exuberant bone formation in gap and bone marrow com-

partments. (A) Seven days after implant placement in an unloaded

environment, bone formation occurred in the gap region, but not in

the bone marrow cavity. (B) In contrast, micro-motion induced a

dramatic increase in bone formation in the gap and bone marrow

cavity. High magnification of the periosteum showed that in both

the unloaded (C) and loaded cases (D), cells started to proliferate

and to differentiate into either chondrocytes or osteoblasts. (E)

About half of the gap region in unloaded implants was filled with a

bony matrix, (F) whereas micro-motion resulted in a nearly com-

plete osseous fill of the gap. (G) The bone marrow cavity surround-

ing the unloaded implant lacked significant, newly deposited

osseous matrix. (H) The most robust result accompanying a physi-

cal stimulus occurred in the marrow cavity, where exuberant bone

formation encapsulated most of the implant. Abbreviations: b: bone

marrow; c: cortex; im: implant; po: periosteum. Scale bar in A, B:

300 Ìm, C-H: 100 Ìm. (Reprinted from Publication: Bone, 40(4),

Leucht P, Kim JB, Wazen R, Currey JA, Nanci A, Brunski JB, Helms

JA, "Effect of mechanical stimuli on skeletal regeneration around

implants", 919-930, Copyright (2007), with permission from Elsevier).
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taken as part of a peri-operative pain relief protocol in

staged bilateral total knee arthroplasty. Meloxicam negative-

ly influenced bone healing in the cortical and cancellous

bone around titanium implants inserted in rats after contin-

uous administration41,42,95-97. Also, it has been suggested that

perioperative administration of indomethacin causes a tran-

sient decrease in attachment strength at early periods, but it

does not seem to significantly affect long-term osseointegra-

tion of porous-coated implants98.

The administration of warfarin was found to significantly

impair both the attachment strength and the ingrowth of

bone uncoated porous implants made of cobalt-chromium-

molybdenum alloy; however, no such inhibitory effect was

observed in hydroxyapatite-coated implants40. Enoxaparin,

dalteparin and unfractionated heparin led to a significant

decrease of matrix collagen type II content and calcification

in concentrations equal or higher than the therapeutic one.

In contrast, fondaparinux, a synthetic anticoagulant sub-

stance similar to heparin, showed no inhibitory in vitro

effects on human osteoblasts within the concentration range

investigated (0.01-100 Ìg/ml). Therefore, fondaparinux may

be used to avoid the heparin-related negative influence on

osteoblast-dependent fracture healing and endoprosthetic

implant integration99,100.

In vitro and animal research has shown slower biomaterial

osseointegration and higher rate of prosthetic device failures

in the presence of osteoporosis44,101-104. Osteoporosis seems to

compromise the biological and mechanical fixation of

implants used for fracture fixation and joint replacement. The

increased risk of implant failure in osteoporotic bone is sec-

ondary to various factors that are present and alter its struc-

tural, biological and mechanical properties. Osteoporosis

seems to affect cell proliferation, protein synthesis, cell reac-

tivity to local factors, and mesenchymal cells numbers46,105. In

osteoporosis, the number and activity of cells of the

osteogenic lineage (mesenchymal cells and osteoblasts) is

decreased, the number and activity of osteoclasts is increased,

and vascularization is impaired11,106. It has been shown that

ovariectomized-induced osteopenia in rats impairs the

osseointegration of HA-coated titanium implants and that

ibandronate administered at doses analogous to those used to

clinically treat osteoporosis and metabolic bone diseases

counters this harmful effect. Ibandronate may, therefore, have

a role in improving the osseointegration of implants in

patients with osteoporosis and metabolic bone diseases107.

The role of radiation therapy remains controversial; how-

ever, radiation therapy seems to delay bone remodeling pre-

and post-implantation35,36. Osteon formation and osseointe-

gration is compatible with bone irradiation108. After evalua-

tion of the tissue response to bone-anchored implants

retrieved from irradiated sites in patients, Bolind et al. found

that it is possible to achieve bone anchorage of implants in

irradiated tissue, but they did not conclude on radiation dose

and bone tissue response109.

Iliac bone marrow grafting has been used to enhance bone

ingrowth into the porous coating of tibial components in

total knee arthroplasty. Decreased incidence of radiolucent

lines has been observed when iliac marrow grafting was used,

suggesting that it enhances biological fixation in porous coat-

ed implants110. Demineralized bone matrix (DBM) has also

been used to enhance osseointegration on porous implants.

However, in the presence of a good bone-implant interfer-

ence fit, there is no beneficial effect in applying DBM gel to

a porous-coated or hydroxyapatite-coated porous implant

surface. The small amount that can be applied and the

degree of osteoinductive properties of DBM seem to pre-

clude it from having a significant biological effect111.

Because of autologous bone graft harvesting-related com-

plications and its limited available quantity of autologous

bone graft, bone allograft and bone graft substitutes, and

"biological" coatings have been used to induce osseointegra-

tion28,29. Hydroxyapatite coating on metallic implant devices

offers the possibility of combining the strength of the metals

with the bioactivity of the ceramics. Different techniques of

preparation include ion sputtering, plasma spray, sol-gel,

electrodeposition and a biomimetic process. Calcium phos-

phate ceramics may increase the protein adsorption on the

implant surface favoring both the platelet adhesion-activa-

tion and fibrin binding by accelerating implant healing and

they increase the implant surface3.

Several growth and differentiation factors have been used

either alone or combined as biocoatings of conventional

implants to accelerate and enhance the bone ingrowth and to

strengthen implant fixation. These factors include the bone

morphogenetic proteins (BMPs), in particular BMP-2 and

BMP-7 or osteogenic protein-1 (OP-1), and growth factors

such as platelet-derived growth factor (PDGF), insulin-like

growth factor (IGF), and transforming growth factor-beta 1

(TGF‚-1) alone or combined with IGF-1, and TGF‚-2.

Other biological coatings that have been used to improve

osseointegration of titanium implants include collagen and

other extracellular matrix proteins such as fibronectin and

vitronectin112-115, and systemic administration of pharmaco-

logical agents such as ibandronate and human parathyroid

hormone 1-34116,117.

Coating endosseous implants with growth factors such as

BMPs may be one way to accelerate and/or enhance the

quality of osseointegration118. High doses of OP-1 resulted in

inhibition of fibrous tissue formation, which, however, did

not seem to promote bone formation119. In an acetabulum

model, no effect of OP-1 was found on the corporation of

impacted bone grafts120. Recently, cell-mediated regional

gene therapy was introduced to deliver potent morphogens

or growth factors in regenerative medicine. Direct applica-

tion of the BMP-2 gene using a liposomal vector enhanced

bone regeneration in a bony defect; gene delivery combined

with bone grafting could induce rapid osseointegration of

the bone-implant interface at an earlier stage121.

BMP-2 can also increase new bone formation synergisti-

cally with FGF and IGF-1 to improve bone-implant osseoin-

tegration. The combination of BMP-2 and b-FGF showed

faster growth of new bone at 8 months122.
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Gene expression has been identified around titanium

implants in in vivo bone healing in an animal model using

DNA microarray; 86 genes were up-regulated (more than

two-fold) in the implant-healing group compared to the

osteotomy-healing group as a control. The up-regulated

genes included collagenous and non-collagenous extracellu-

lar matrix-related genes, proteoglycans and bone resorption-

related genes123.

Conclusion

Cell types, implant and bone tissues, growth factors and

cytokines are involved in a co-ordinated manner during the

inflammatory, formation and remodeling phases of bone

healing26. This means that osseointegration should be

regarded not as an exclusive reaction to a specific implant

material but as the expression on the endogenous basic

regenerative potential of bone. The final goal is controlled,

guided, and rapid peri-implant bone healing which leads to

fine and fast osseointegration for direct structural and func-

tional connection between living bone and the surface of an

implant into bone allowing early implant loading. A better

understanding of the complex biological events occurring at

the bone-implant interface will ultimately lead to improved

biologically-driven design strategies for endosseous

implants.
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