
Comprehensive Comprehensions

Comprehensions with ‘Order by’ and ‘Group by’

Philip Wadler

University of Edinburgh

Simon Peyton Jones

Microsoft Research

Abstract

We propose an extension to list comprehensions that makes it
easy to express the kind of queries one would write in SQL using
ORDER BY, GROUP BY, and LIMIT. Our extension adds expressive
power to comprehensions, and generalises the SQL constructs that
inspired it. Moreover, it is easy to implement, using simple desug-
aring rules.

1. Introduction

List comprehensions are a popular programming language feature.
Originally introduced in NPL [Dar77], they have made their way
into Miranda, Haskell, Erlang, Python, and Scala, among other
languages.

It is well known that list comprehensions have much in com-
mon with database queries [TW89], but they are significantly less
powerful. For example, consider this SQL query

SELECT dept, SUM(salary)
FROM employees
GROUP BY dept
ORDER BY SUM(salary) DESCENDING
LIMIT 5

The GROUP BY clause groups records together; the ORDER BY sorts
the departments in order of salary bill; and the LIMIT clause picks
just the first five records. This support for grouping and sorting is
extremely useful in practice, but is not available in list comprehen-
sions.

In this paper we propose an extension to list comprehensions
that makes it easy to express the kind of queries one would write in
SQL using ORDER BY, GROUP BY, and LIMIT. Here, for example,
is how the above SQL query would be rendered in our extension.

[(the dept, sum salary)
| (name, dept, salary) <- employees
, group by dept
, order by Down (sum salary)
, order using take 5].

Moreover, our extensions are significantly more general than SQL’s
facilities. We make the following contributions.

[Copyright notice will appear here once ’preprint’ option is removed.]

• We introduce two new qualifiers for list comprehensions, order
and group (Section 3). Unusually, group redefines the value
and type of bound variables, replacing each bound variable by
a list of grouped values. Unlike other approaches to grouping
(as found in Kleisli, XQuery, or LINQ), this makes it easy to
aggregate groups without nesting comprehensions.

• Rather than having fixed sorting and grouping functions, both
order by and group by are generalised by an optional using
clause that accept any function of types

∀a.(a → τ) → [a] → [a]
∀a.(a → τ) → [a] → [[a]]

respectively (Sections 3.2 and 3.5). Polymorphism elegantly
guarantees that the semantics of the construct is independent
of the particulars of how comprehensions are compiled.

• We present the syntax, typing rules, and formal semantics of
our extensions, explaining the role of parametricity (Section 4).
Our semantics naturally accommodates the zip comprehensions
that are implemented in Hugs and GHC (Section 3.8).

• We show that the extended comprehensions satisfy the usual
comprehension laws, plus some new specific laws (Section 5).

Other database languages, such as LINQ and XQuery, have similar
constructs, as we discuss in Section 7. However, we believe that no
other language contains the same general constructs.

2. The problem we address

List comprehensions are closely related to relational calculus and
SQL [TW89]. Database languages based on comprehensions in-
clude CPL [BLS+94], Kleisli [Won00], Links [CLWY06], and the
LINQ features of C# and Visual Basic [MBB06]. XQuery, a query
language for XML, is also based on a comprehension notation,
called FLWOR expressions [BCF+07]. Kleisli, Links, and LINQ
provide comprehensions as a flexible way to query databases, com-
piling as much of the comprehension as possible into efficient SQL;
and LINQ can also compile comprehensions into XQuery.

Many SQL queries can be translated into list comprehensions
straightforwardly. For example, in SQL, we can find the name and
salary of all employees that earn more than 50K as follows.

SELECT name, salary
FROM employees
WHERE salary > 50

As a list comprehension in Haskell, assuming tables are represented
by lists of tuples, this looks very similar:

[(name, salary)
| (name, salary, dept) <- employees
, salary > 50]

1 2007/6/18

Here we assume that employees is a list of tuples giving name,
salary, and department name for each employee.

While translating SELECT-FROM-WHERE queries of SQL into list
comprehensions is straightforward, translating other features, in-
cluding ORDER BY and GROUP BY clauses, is harder. For example,
here is an SQL query that finds all employees paid less than 50K,
ordered by salary with the least-paid employee first.

SELECT name
FROM employees
WHERE salary < 50
ORDER BY salary

The equivalent in Haskell would be written as follows.

map (\(name,salary) -> name)
(sortWith (\(name,salary) -> salary)
[(name,salary)
| (name, salary, dept) <- employees
, salary < 50])

Since we cannot sort within a list comprehension, we do part of the
job in a list comprehension (filtering, and picking just the name and
salary fields), before reverting to conventional Haskell functions to
first sort, and then project out the name field from the sorted result.
The function sortWith is defined as follows:

sortWith :: Ord b => (a -> b) -> [a] -> [a]
sortWith f = sortBy (\ x y ->

compare (f x) (f y))

It takes a comparison-key extractor function f, which extracts from
each input record the key to be used as a basis for sorting. The
function sortBy is part of the Haskell Prelude, and has type

sortBy :: (a -> a -> Bool) -> [a] -> [a]

It is given the function to use when comparing two elements of the
input list.

Translating GROUP BY is trickier. Here is an SQL query that
returns a table showing the total salary for each department.

SELECT dept, sum(salary)
FROM employees
GROUP BY dept

An equivalent in Haskell is rather messy:

let
depts =
nub [dept

| (name,dept,salary) <- employees]
in
[(dept,

sum [salary
| (name,dept’,salary) <- employees
, dept == dept’])

| dept <- depts]

This uses the library function

nub :: Eq a => [a] -> [a]

which removes duplicates in a list. Not only is the code hard to
read, but it is inefficient too: the employees list is traversed once to
extract the list of departments, and then once for each department to
find that department’s salary bill. There are other ways to write this
in Haskell, some with improved efficiency but greater complexity.
None rivals the corresponding SQL for directness and clarity.

It is tantalising that list comprehensions offer a notation that is
compact and powerful – and yet fails to match SQL. Furthermore,
ORDER BY and GROUP BY are not peripheral parts of SQL: they are
both heavily used.

Thus motivated, we propose some modest extensions to the
list-comprehension notation that allows such SQL queries to be
expressed neatly. For example, the two queries above can be ex-
pressed using our extensions like this:

[name
| (name, salary, dept) <- employees
, salary < 50
, order by salary]

[(the dept, sum salary)
| (name, salary, dept) <- employees
, group by dept]

Our extensions are modest in the sense that they can be explained
in the same way as before, by a simple desugaring translation.
Furthermore, they embody some useful generalisations that are not
available in SQL.

3. The proposal by example

We now explain our proposal in detail, using a sequence of exam-
ples, starting with order by and moving on to group by. We use
informal language, but everything we describe is made precise in
Section 4. To avoid confusion we concentrate on one particular set
of design choices, but we have considered other variants, as we dis-
cuss in Section 6.

We will use a table listing the name, department, and salary of
employees as a running example.

employees :: [(Name, Dept, Salary)]
employees = [("Simon", "MS", 80)

, ("Erik", "MS", 100)
, ("Phil", "Ed", 40)
, ("Gordon", "Ed", 45)
, ("Paul", "Yale", 60)]

3.1 Order by

The SQL query

SELECT name, salary
FROM employees
ORDER BY salary

is expressed by the following comprehension

[(name, salary)
| (name, dept, salary) <- employees
, order by salary]

which returns

[("Phil", 40)
, ("Gordon", 45)
, ("Paul", 60)
, ("Simon", 80)
, ("Erik", 100)]

The sort key (written after the keyword by) is an arbitrary
Haskell expression, not just a simple variable. Here, for example,
is a rather silly comprehension, which sorts people by the product
of their salary and the length of their name:

[(name, salary)
| (name, dept, salary) <- employees
, order by salary * length name]

However, this generality has more than frivolous uses. We can
readily sort by multiple keys, simply by sorting on a tuple:

[(name, salary)
| (name, dept, salary) <- employees

2 2007/6/18

, order by (salary, name)]

But suppose we want the highest salary first? SQL uses an addi-
tional keyword, DESCENDING:

SELECT name, salary
FROM employees
ORDER BY salary DESCENDING name ASCENDING

We can use the power of Haskell to express this, simply by using a
different key extractor:

[(name, salary)
| (name, dept, salary) <- employees
, order by (Down salary, name)]

where Down is elegantly defined thus:

newtype Down a = Down a deriving(Eq)
instance Ord a => Ord (Down a) where

compare (Down x) (Down y) = y ‘compare‘ x

Since Down is a newtype, it carries no runtime overhead; it simply
tells Haskell how to build the ordering dictionary that is passed to
the sorting function.

3.2 User-defined ordering

Another useful way to generalise order is by allowing the user to
provide the sorting function. For example, she may know a partic-
ularly efficient way to sort the records — perhaps these particular
records have an integer index, so that radix sort is available — or
perhaps she wants a non-lexicographic comparison method for peo-
ple’s names. We therefore generalise order to take an (optional)
user-defined function:

[(name, salary)
| (name, dept, salary) <- employees
, order by name using strangeSort]

If strangeSort sorts on the second letter of the person’s name we
would get

[("Paul", 60)
, ("Phil", 40)
, ("Simon", 80)
, ("Gordon", 45)
, ("Erik", 100)]

Here “using” is a new keyword that allows the user to supply the
function used for ordering the results:

strangeSort :: (a -> String) -> [a] -> [a]

Omitting the “using f” clause, as we did in the previous section, is
equivalent to writing “using sortWith” (a function introduced in
Section 2).

Furthermore, there is nothing that requires that the user-supplied
function should do sorting! Suppose, for example, that we want to
extract all employees with a salary greater than 70, highest salary
first. In SQL, we could do so as follows:

SELECT name, salary
FROM employees
WHERE salary > 70
ORDER BY salary DESCENDING

This translates to the comprehension

[(name, salary)
| (name, dept, salary) <- employees
, salary > 70
, order by Down salary]

which returns

[("Erik", 100)
, ("Simon", 80)]

However, we might want to write this more efficiently, first sort the
list and then only take elements while the salary is above the limit.

[(name, salary)
| (name, dept, salary) <- employees
, order by Down salary
, order by salary > 70 using takeWhile]

This uses the standard library function to extract the initial segment
of a list satisfying a predicate.

takeWhile :: (a -> Bool) -> [a] -> [a]

In general, we can write

order by e using f

whenever e has type τ and f has type

∀a. (a → τ) → [a] → [a].

We require f to be polymorphic in the element type a, which
guarantees that it gives uniform results regardless of the type of
tuple we present, but we do not require it to be polymorphic in
the comparison-key type τ . Intuitively, the user-supplied function
will be given a list of records whose exact shape (how many fields,
laid out how) is a matter for the desugaring transformation. So the
desugaring transform supplies the function f with a comparison-
key extraction function, which f in turn uses to extract a compari-
son key from each record. This key has a type τ fixed by the sorting
function (not the desugaring transform). We return to the question
of polymorphism in Section 4.4.

3.3 Dropping the by clause in ordering

The ability to process the record stream with a user-defined func-
tion, rather than with a fixed set of functions (sort ascending, sort
descending, etc) is a powerful generalisation that takes us well be-
yond SQL. Indeed, another apparently-unrelated SQL construct,
LIMIT, turns out to be expressible using order using. Suppose
we want to find the three employees with the highest salary. In SQL,
we would use the LIMIT notation:

SELECT name, salary
FROM employees
ORDER BY salary DESCENDING
LIMIT 3

We can do this using a trivial variant of order that drops the “by”
clause:

[(name, salary)
| (name, dept, salary) <- employees
, order by Down salary
, order using take 3]

which returns

[("Erik", 100),
("Simon", 80),
("Paul", 60)]

The effect of omitting the by clause is simply that the supplied
function is used directly without being applied to a key-extractor
function.

As a second (contrived) example, we could sort into descending
salary order by first sorting into ascending order and then reversing
the list:

[(name, salary)
| (name, dept, salary) <- employees

3 2007/6/18

, order by salary
, order using reverse]

In general, we can write

order using f

whenever f is an arbitrary Haskell expression with type

∀a. [a] → [a].

Again, we require f to be polymorphic in the element type a.
However, omitting “by” is mere convenience, since

order using f ≡ order by () using λx. f

where x does not appear in f .

3.4 Group by

Having described how order by works, we now move on to
group by. As an example, the SQL query

SELECT dept, SUM(salary)
FROM employees
GROUP BY dept

translates to the comprehension

[(the dept, sum salary)
| (name, dept, salary) <- employees
, group by dept]

which returns

[("MS", 180), ("Ed", 85), ("Yale", 60)]

The only new keywords in this comprehension are group by. Both
the and sum are ordinary Haskell functions. The Big Thing to no-
tice is that group by has changed the type of all the variables in
scope: before the group by each tuple contains a name, a depart-
ment and a salary, while after each tuple contains a list of names, a
list of departments, and a list of salaries! Here is the comprehension
again, decorated with types:

[(the (dept::[Dept]), sum (salary::[Salary])
| (name::Name, dept::Dept, salary::Salary)

<- employees
, group by (dept::Dept)]

Hence we find the sum of the salaries by writing sum salary.
Function the returns the first element of a non-empty list of equal
elements:

the :: Eq a => [a] -> a
the (x:xs) | all (x ==) xs = x

Thanks to the group by all values in the dept list will be the same,
and so we extract the department name by writing the dept.

Unlike SQL, which always returns a flat list, we can use compre-
hensions to compute more complex structures. For example, to find
the names of employees grouped by department, we could write

[(the dept, name)
| (name, dept, salary) <- employees
, group by dept]

which returns

[("MS", ["Simon","Erik"])
, ("Ed", ["Phil","Gordon"])
, ("Yale", ["Paul"])]

Or if we want to pair names with salaries, we could write

[(the dept, namesalary)
| (name, dept, salary) <- employees

, let namesalary = (name, salary)
, group by dept]

which returns

[("MS", [("Simon", 80), ("Erik", 100)])
, ("Ed", [("Phil", 40), ("Gordon", 45)])
, ("Yale", [("Paul", 60)])]

As above, the type of namesalary is changed by the group quali-
fier. Before the group qualifier namesalary has type (Name,Salary),
but after it has type [(Name,Salary)]. In Section 4 we make pre-
cise what “before” and “after” mean, and we also formalise the
usual let notation for Haskell list comprehensions used in this
example.

3.5 User-defined grouping

Just as with order, we can generalise group to take an (op-
tional) user-defined function. The default grouping function is
groupWith, which sorts on the group key:

groupWith :: Ord b => (a -> b) -> [a] -> [[a]]
groupWith f = groupBy (\x y -> f x == f y)

. sortWith f

To accumulate adjacent groups without sorting, we may use the
following variant:

groupRun :: Eq b => (a -> b) -> [a] -> [[a]]
groupRun f = groupBy (\x y -> f x == f y)

For example, we may count the length of adjacent runs of trades on
a given stock with the following.

[(the stock, length stock, average price)
| (stock, price) <- trades
, group by stock using groupRun]

If trades is the list

[("MSFT", 80.00)
, ("MSFT", 70.00)
, ("GOOG", 100.00)
, ("GOOG", 200.00)
, ("GOOG", 300.00)
, ("MSFT", 30.00)
, ("MSFT", 20.00)]

this returns

[("MSFT", 2, 75.00)
, ("GOOG", 3, 200.00)
, ("MSFT", 2, 55.00)]

In general, we can write

group by e using f

whenever e has type τ and f has type

∀a. (a → τ) → [a] → [[a]].

As before, we require f to be polymorphic in the element type a.
The only difference between sort by and group by is that the
former takes a list to a list, while the latter takes a list to a list of
lists.

3.6 Dropping the by clause in grouping

It is also possible to drop the “by” clause in a group. For example,
the following function breaks a stream into successive runs of a
given length.

runs :: Int -> [a] -> [[a]]
runs n = map (take n) . iterate (drop 1)

4 2007/6/18

For example, one can compute a running average over the last three
trades for a given stock as follows.

[average price
| (stock, price) <- trades
, stock == ’MSFT’
, group using runs 3]

For the data above, this returns

[60.00, 40.00]

(since 60 = (80 + 70 + 30) / 3 and 40 = (70 + 30 + 20) / 3).
In general, we can write

group using f

whenever f has type

∀a. [a] → [[a]]

Again, we require f to be polymorphic in the element type a. As
before, omitting “by” is mere convenience, since

group using f ≡ group by () using λx. f

where x does not appear in f .

3.7 Having

In SQL, while one filters rows with WHERE, one filters groups with
HAVING. Here is the previous query, modified to consider only
employees with a salary greater than 50K, and departments having
at least ten such employees.

SELECT dept, SUM(salary)
FROM employees
WHERE salary > 50
GROUP BY dept
HAVING COUNT(name) > 10

In our notation, both the WHERE and HAVING clauses translate into
guards of the comprehension.

[(the dept, sum salary)
| (name, dept, salary) <- employees
, salary > 50
, group by dept
, length name > 10]

The rebinding of variables to lists leads naturally to guards serving
the same purpose as HAVING clauses, when they appear after the
grouping operator.

3.8 Zip

GHC and Hugs have for some time supported an extension to
list comprehensions that makes it easy to draw from two lists in
parallel. For example:

[x+y
| x <- xs
| y <- ys]

Here we draw simultaneously from xs and ys, so that if xs is
[1,2,3] and ys is [4,5,6] the comprehension returns [5,7,9].
Of course there can be multiple qualifiers in each of the parallel
parts. For example:

[x+y
| x <- xs, order by x
| y <- ys]

Here we sort the list xs before pairing with the corresponding
element of ys.

3.9 Parenthesised qualifiers

With the new generality of qualifiers, it makes sense to parenthesise
qualifiers. For example, consider

p1 = [(x,y,z)
| (x <- xs

| y <- ys)
, z <- zs]

Here we draw from xs and ys in parallel, and then take all combi-
nations of such pairs with elements of zs. For example, if

xs = [1,2]
ys = [3,4]
zs = [5,6]

then the comprehension would return

[(1,3,5), (1,3,6), (2,4,5), (2,4,6)]

It would mean something quite different if we wrote

p2 = [(x,y,z)
| x <- xs
| (y <- ys

, z <- zs)]

Here we take all combinations of elements from ys and zs, and
draw from that list and xs in parallel. There are four elements in list
of combinations, but only two in xs, so the extra ones are dropped,
and the query returns

[(1,3,5), (2,3,6)]

(The parentheses on the qualifiers are redundant in this second
example, because we take comma to bind more tightly than bar.)

Similar considerations apply to order and group. Consider

p3 = [(x,y)
| (x <- [1..3]

, y <- [1..3])
, order by x >= y using takeWhile]

and

p4 = [(x,y)
| x <- [1..3],

(y <- [1..3],
, order by x >= y using takeWhile)]

which differ only in how the qualifiers are parenthesised. The first
returns

[(1,1)]

while the second returns

[(1,1), (2,1), (2,2), (3,1), (3,2), (3,3)].

Similarly, parentheses can be used to control exactly how group
works. Consider

p5 = [(x, y, the b)
| (x <- [1..3]

, y <- [1..3]
, let b = (x >= y))

, group by b]

and

p6 = [(x, y, the b)
| x <- [1..3],

(y <- [1..3],
, let b = (x >= y)
, group by b)]

5 2007/6/18

which differ only in how the qualifiers are parenthesised. The first
returns

[([1,2,2,3,3,3], [1,1,2,1,2,3], True),
([1,1,2],[2,3,3], False)]

while the second returns

[(1, [1], True), (1, [2,3], False),
(2, [1,2], True), (2, [3], False),
(3, [1,2,3], True), (3, [], False)]

Not only the answers are different, but even the types of the an-
swers. Since x is in scope of the group in p5, it is bound to a list of
integers in the result, while since x is not in scope of group in p6
comprehension, it is bound to an integer in the result.

If no parentheses are used, both order and group scope as far
to the left as possible, so that

p3’ = [(x,y)
| x <- [1..3]
, y <- [1..3]
, order by x >= y using takeWhile]

behaves the same as example p3. As we shall see in the next
section, the syntax ensures that there is always a qualifier to the
left of an order or group.

All of this may seem a little tricky, but the good news is that
parentheses are never required. Instead, one can simply use a nested
comprehension, at some modest cost in duplicated variable bind-
ings. For example, p4 can be written:

p4’ = [(x,y)
| x <- [1..3],
, y <- [y | y <- [1..3]

, order by x >= y using takeWhile]]

4. Semantics

We now explain the semantics of extended comprehensions, look-
ing at the syntax, the translation into a language without compre-
hensions, the type rules, the role of parametricity, and an alternate
translation.

4.1 Syntax

The syntax of comprehensions is given in Figure 1. We let x, y, z
range over variables, e, f, g over expressions, w over patterns,
and p, q, r range over qualifiers. A comprehension consists of an
expression and a qualifier. There are two qualifiers that bind a single
variable (generators and let), two that bind no variables (guards
and empty qualifiers), two that combine two qualifiers (cartesian
product and zip), and two that modify a single qualifier (order
and group). In a generator the expression is list-valued, while in
a guard the expression is boolean-valued. On the left hand side
of a generator is a pattern which is (for now) an arbitrarily-nested
tuple of variables. The empty qualifier is not much use in practical
programs, but can be useful when manipulating comprehensions
using laws.

The grammar explicitly indicates that parentheses may be used
with qualifiers. The order and group constructs extend as far to
the left as possible, and comma binds more tightly than bar. The
cartesian product of qualifiers is associative, so that p, (q, r) and
(p, q), r are equivalent.

In the order and group constructs, either the by clause or the
using clause may be optionally omitted, but not both. A missing
using clause expands to invoke the default functions sortWith
and groupWith as defined in Sections 3.1 and 3.4:

q, order by e = q, order by e using sortWith
q, group by e = q, group by e using groupWith

Variables x, y, z

Expressions e, f, g ::= . . . | [e | q]

Patterns w ::= x | (w1, . . . , wn)

Qualifiers
p, q, r ::= w <- e Generator

| let w = e Let
| e Guard
| () Empty qualifier
| p, q Cartesian product
| p | q Zip
| q, order [by e] [using f] Order
| q, group [by e] [using f] Group
| (q) Parentheses

Figure 1. Syntax of list comprehensions

Γ ⊢ e : τ

Γ ⊢ q ⇒ ∆ Γ, ∆ ⊢ e : τ

Γ ⊢ [e | q] : [τ]
COMP

⊢ w : τ ⇒ ∆

⊢ x : τ ⇒ {x : τ}
VAR

⊢ w1 : τ1 ⇒ ∆1 . . . ⊢ wn : τn ⇒ ∆n

⊢ (w1, . . . , wn) : (τ1, . . . , τn) ⇒ ∆1 ∪ · · · ∪ ∆n

TUP

Γ ⊢ q ⇒ ∆

Γ ⊢ e : Bool
Γ ⊢ e ⇒ ()

GUARD
Γ ⊢ () ⇒ ()

UNIT

Γ ⊢ e : [τ] ⊢ w : τ ⇒ ∆

Γ ⊢ w <- e ⇒ ∆
GEN

Γ ⊢ e : τ ⊢ w : τ ⇒ ∆
Γ ⊢ let x = e ⇒ (x : τ)

LET

Γ ⊢ p ⇒ ∆ Γ, ∆ ⊢ q ⇒ ∆′

Γ ⊢ p, q ⇒ ∆, ∆′
COMMA

Γ ⊢ p ⇒ ∆ Γ ⊢ q ⇒ ∆′

Γ ⊢ p | q ⇒ ∆, ∆′
BAR

Γ ⊢ q ⇒ ∆ Γ, ∆ ⊢ e : τ
Γ ⊢ f : ∀a. (a → τ) → [a] → [a]

Γ ⊢ q, order by e using f ⇒ ∆
ORDER1

Γ ⊢ q ⇒ ∆ Γ ⊢ f : ∀a. [a] → [a]

Γ ⊢ q, order using f ⇒ ∆
ORDER2

Γ ⊢ q ⇒ ∆ Γ, ∆ ⊢ e : τ
Γ ⊢ f : ∀a. (a → τ) → [a] → [[a]]

Γ ⊢ q, group by e using f ⇒ [∆]
GROUP1

Γ ⊢ q ⇒ ∆ Γ ⊢ f : ∀a. [a] → [[a]]

Γ ⊢ q, group by e using f ⇒ [∆]
GROUP2

Figure 2. Typing of list comprehensions
6 2007/6/18

A missing by clause expands as described in Sections 3.3 and 3.6:

q, order using f = q, order by () using λx. f
q, group using f = q, group by () using λx. f

where x does not appear in f . We give typing rules and translations
for missing by clauses directly, but the same rules can be derived
by applying the above expansion.

4.2 Types

The type rules for comprehensions are given in Figure 2. We let
τ range over types, a range over type variables, and Γ and ∆
range over environments mapping variables to types. The typing
judgement Γ ⊢ e : τ indicates that in environment Γ the term e has
type τ . We only give here the rule for comprehensions (rule COMP).

The typing judgement ⊢ w : τ ⇒ ∆ indicates that pattern w
of type τ binds variables with typings described by ∆. A variable
yields a single binding (rule VAR), while a tuple yields the union of
its bindings (rule TUP).

The typing judgement Γ ⊢ q ⇒ ∆ indicates that in environment
Γ the qualifier q binds variables with typings described by ∆. A
guard and the empty qualifier yield no bindings (rules GUARD and
UNIT), while a generator and a let binding yield a binding for each
variable in w (rules GEN and LET).

A cartesian product and a zip yield the bindings introduced by
their contained qualifiers (rules COMMA and BAR). However these
two rules are not identical: in the cartesian product all bindings
introduced by the qualifier on the left p are in scope for the qualifier
on the right q, while this is not the case for a zip.

The rules for order and group require that f has a polymorphic
type and, in the case where there is a by clause, the return type τ
of f ’s argument function must match the type of e (rules ORDER1
and GROUP1). The typing rules for group also indicate that the type
of the bound variables changes to contain lists of the previous type
(rules GROUP1 and GROUP2). If ∆ is the environment

x1 : τ1, . . . , xn : τn

then [∆] is the environment

x1 : [τ1], . . . , xn : [τn].

Note that in an order or a group, the bindings yielded by the
contained qualifier q are in scope for the expression e in the by
clause, but not in scope for the expression f in the using clause.

4.3 Translation

We define the dynamic semantics of comprehensions by giving
a translation into a simpler, comprehension-free language. The
translation is given in Figure 3. It is specified in terms of two
operations on qualifiers. If q is a qualifier, then

• qv is a tuple of the variables bound in q,

• [[q]] is the list of tuples computed by q

For example, for the qualifier

q = x <- [1,2,3], y <- [4,5]

the tuple of bound variables is

qv = (x,y)

while the list of bindings is

[[q]] = [(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)] .

The top-level translation for comprehensions is given by

[e | q] = map (λqv. e) [[q]].

The definition of qv , the tuple of variables bound by q, is
straightforward (Figure 3). A generator or let binds the variables

in the pattern, a guard or empty qualifiers binds no variables,
a cartesian product or zip binds a pair consisting of the bound
variables of the two contained qualifiers, and an order or group
binds the same tuple as its contained qualifier.

The semantics of qualifiers is also straightforward (Figure 3).
A generator just returns its associated list, and a let returns a sin-
gleton list consisting of the bound value. A guard returns either a
singleton list or an empty list, depending on whether the boolean
expression is true or false. The empty qualifier returns a singleton
list containing the empty tuple. The cartesian product of two qual-
ifiers is computed in the usual way [Wad92], mapping over each
list of bindings to form a list of list of tuples, and concatenating the
result. The zip of two qualifiers is particularly straightforward —
it just applies zip! Note that p, q is defined so that the bound vari-
ables of p are in scope when evaluating q, while p | q is defined so
that the bound variables of p are not in scope when evaluating q.

The order construct simply applies the function in the using
clause to a lambda expression over the bound tuple with the body
given in the by clause and the bindings returned by the contained
qualifier. The group construct is similar, except the given function
returns a list of list of tuples, which is converted to a list of tuples of
lists by mapping with the unzip function. An auxiliary definition
specifies a suitable version of unzip corresponding to the structure
of the tuple of bound variables.

To illustrate the unzip, consider again our example from Sec-
tion 3.4:

[(the dept, sum salary)
| (name, dept, salary) <- employees
, group by dept]

The comprehension desugars as follows:

map (\ (name,dept,sal) -> (the dept, sum sal))
(map unzip3

(groupWith (\ (name,dept,sal) -> dept)
employees))

The functions groupWith and sortWith were introduced in Sec-
tions 2 and 3.5 respectively, while the standard Prelude function

unzip3 :: [(a,b,c)] -> ([a],[b],[c])

implements unzip(name,dept,sal) . Let us follow how this works

in detail. Here is the original list of employees:

employees = [("Simon", "MS", 80)
, ("Erik", "MS", 100)
, ("Phil", "Ed", 40)
, ("Gordon", "Ed", 45)
, ("Paul", "Yale", 60)]

After applying groupWith we get

groupWith (\(name,dept,sal) -> dept) employees
= [[("Simon", "MS", 80)

, ("Erik", "MS", 100)]
, [("Phil", "Ed", 40)
, ("Gordon", "Ed", 45)]

, [("Paul", "Yale", 60)]]

Unzipping turns each list of triples into a triple of lists:

map unzip3
(groupWith (\(name,dept,sal) -> dept) employees)
= [(["Simon","Erik"], ["MS","MS"], [80,100])
, (["Phil","Gordon"], ["Ed","Ed"], [40,45])
, (["Paul"], ["Yale"], [60])]

Finally, mapping (\ (name,dept,sal) -> (the dept, sum sal))
over this list gives the desired result

7 2007/6/18

[e | q] = map (λqv. e) [[q]]

(w <- e)v = w
(let w = d)v = w

(g)v = ()
()v = ()

(p, q)v = (pv, qv)
(p | q)v = (pv, qv)

(q, order [by e] [using f])v = qv

(q, group [by e] [using f])v = qv

[[w <- e]] = e
[[let w=d]] = [d]

[[g]] = if g then [()] else []
[[()]] = [()]

[[p, q]] = concat (map (λpv. map (λqv. (pv, qv)) [[q]]) [[p]])
[[p | q]] = zip [[p]] [[q]]

[[q, order by e using f]] = f (λqv. e) [[q]]
[[q, order using f]] = f [[q]]

[[q, group by e using f]] = map unzip
qv

(f (λqv. e) [[q]])
[[q, group using f]] = map unzip

qv

(f [[q]])

unzip() e = ()
unzip

x
e = e

unzip(w1,...,wn) e = (unzip
w1

(map (λ(x1, . . . , xn).x1) e), . . . , unzip
wn

(map (λ(x1, . . . , xn).xn) e))

Figure 3. Translation of comprehensions

(p, q)v = pv ⊗ qv

(p | q)v = pv ⊗ qv

[[p, q]] = concat (map (λpv. map (λqv. pv ⊗ qv) [[q]]) [[p]])
[[p | q]] = zipWith (λpv. λqv. pv ⊗ qv)[[p]] [[q]]

Figure 4. Translation of comprehensions with tuple concatenation

[e | x <- e′] = map (λx. e) e′

[e | let w = d] = let w = d in [e]
[e | e′] = if e′ then [e] else []
[e | ()] = [e]
[e | p, q] = concat [[e | q] | p]

[e | q, order by e′ using f] = [e | qv <- f (λqv. e′) [qv | q]]
[e | q, order using f] = [e | qv <- f [qv | q]]

[e | q, group by e′ using f] = [e | qv <- map unzip
qv

(f (λqv . e′) [qv | q])]
[e | q, group using f] = [e | qv <- map unzip

qv

(f [qv | q])]

Figure 5. Another translation of comprehensions

[("MS", 180)
, ("Ed", 95)
, ("Yale", 60)]

4.4 Parametricity

The type rules for order and group require the supplied function
to have a universally quantified type. Here, for instance, is the rule
for order:

Γ ⊢ q ⇒ ∆ Γ, ∆ ⊢ e : τ
Γ ⊢ f : ∀a. (a → τ) → [a] → [a]

Γ ⊢ q, order by e using f ⇒ ∆
ORDER1

Arguably, we might instead have chosen f to have a more general
type:

f : ∀ab. (a → b) → [a] → [a].

Or a more specific one:

f : (σ → τ) → [σ] → [σ]

where σ is the tuple type (τ1, . . . , τn) when ∆ is x1 : τ1, . . . , xn :
τn. Why do we choose to universally quantify one argument but
not the other?

We do not choose the more general type because it is too
general. The choices we have seen for f include the following.

sortWith : ∀ab. Ord b ⇒ (a → b) → [a] → [a]
takeWhile : ∀a. (a → Bool) → [a] → [a]

If we required f to have the more general type, then we could not
instantiate f to either of these functions. So we need a more specific
type.

8 2007/6/18

Similarly, we do not choose the more specific type because it is
too specific; it requires us to fix details of how tuples of bound
variables are encoded. Indeed, the nested encoding of tuples in
the preceding section does not quite match the flat encoding of
environments given above. For example, recall that the qualifier

q = x <- xs, y <- ys, z <- zs

yields the tuple of bound variables qv = ((x,y),z), whereas to
use the more specific type given above we would need to choose
qv = (x,y,z). So we need a more general type.

Using a universally quantified type not only ensures that the
function has the right type to work with arbitrary encodings of tu-
ples, but also ensures that changing the encoding will not change
the semantics. This follows because of semantic parametricity
(sometimes called ‘theorems for free’), which ensures universally
quantified functions satisfy certain properties [Rey83, Wad89].

In particular, the type

f : ∀a. (a → τ) → [a] → [a]

has the following free theorem

map h · f (g · h) = f g · map h

and this is exactly what is required to ensure that f gives the same
result for different ways of encoding the environment. For example,
we can relate the operation of f on the two different encodings of
tuples discussed above by choosing

h (x, (y, z)) = (x, y, z).

This has the consequence—which is exactly what we would
expect and hope for!—that the meaning of a comprehension is
independent of precise details of how binding tuples are encoded.
For instance, Figure 4 shows how to modify Figure 3 to use a
flat rather than a nested encoding. The new translation modifies
the definitions of qv , [[q]], and unzip

qv

to use tuple concatenation

rather than pairing, where tuple concatenation takes an m-tuple and
an n-tuple and yields an (m + n)-tuple,

(x1, . . . , xm) ⊗ (y1, . . . , yn) = (x1, . . . , xm, y1, . . . , yn).

In the special cases where m = 0 and m = 1 we have

() ⊗ (y1, . . . , yn) = (y1, . . . yn)
x ⊗ (y1, . . . , yn) = (x, y1, . . . , yn)

and similarly when n = 0 or n = 1.
For instance, consider the qualifier

q = (x <- xs, y <- ys), z <- zs

With the old translation (Figure 3), this yields the tuple of bound
variables

qv = ((x,y),z)

while with the new translation (Figure 4), this yields the tuple of
bound variables

qv = (x,y,z)

The definition of [[q]] is changed correspondingly. Thanks to our
requirement of universally quantified types for order and group,
we can guarantee that both choices of translation yield the same
results.

4.5 Another translation

The style of translation given here differs from that in, say [Wad87],
in that qualifiers q are translated separately into tuples of bound
variables qv and lists of bindings [[q]]. Figure 5 gives an alterna-
tive, and more conventional translation, where qualifiers translate
directly to binding constructs. It is easy to check that the transla-
tions of Figures 3 and 5 are equivalent. In particular, this means

Patterns w ::= x | K w1 . . . wn

(w <- e)v = wv

(x)v = x
(K w1 . . . wn)v = ((w1)v, . . . , (wn)v)

[[w <- e]] = concat (map

(

λx.

case x of
w -> [wv]
other -> []

)

e)

Figure 6. Refutable patterns in generators

that the new definitions of the traditional qualifiers (generator, let,
guard, empty qualifier, and cartesian product) coincide with the tra-
ditional definitions, and hence that the new definition is a conser-
vative extension of the old.

We choose the formulation of Figure 3 partly on aesthetic
grounds, because it gives a direct, compositional translation to
qualifiers themselves rather than only to qualifiers embedded in
a comprehension. Furthermore, for group and order the transla-
tion is somewhat more compact and efficient, because it does not
require the construction of nested comprehensions.

4.6 Refutable patterns in generators

In Haskell, patterns built of variables and tuples are called ir-
refutable, because a match against such a pattern cannot fail;
while other patterns are called refutable. A generator containing
a refutable pattern acts as an implicit filter. For example:

f :: [Maybe Int] -> Int
f xs = sum [x | Just x <- xs]

Here, only the elements of xs that match the pattern (Just x) are
chosen from xs.

Thus far, the syntax in Figure 1 and semantics in Figure 3
permits only irrefutable patterns, a choice we made to reduce clutter
and focus attention on order and group. However, it is easy
to accommodate refutable patterns in generators, as we show in
Figure 6.

5. Laws

The semantics we have given validates a number of laws.
We begin with a number of laws that carry over unchanged from

the usual treatment of comprehensions [Wad92]. It is a significant
feature of the new formulation that it does not violate any of these
laws.

The most significant law is the nesting law (which also appears
as a line in Figure 5).

[e | p, q] = concat [[e | q] | p]

This is easily checked, as the left and right sides yield to the same
term using the translation of Figure 3.

We also have a flattening law.

[e | p, x <- [f | q], r] = [e[x := f] | p, q, r[f := x]]

This is an immediate consequence of nesting and the following
simpler law.

[e | x <- [f | q]] = [e[x := f] | q]

The simpler law is an immediate consequence of the translation and
the map composition law.

map f · map g = map (f · g)

([Wad92] suggests the use of induction over the structure of com-
prehensions to prove the flattening law, but this is not necessary.)

9 2007/6/18

A special case of the flattening law is:

q = qv <- [qv | q]

Among other things, this law can be used to make clear grouping
without using parentheses, as we saw in Section 3.9.

Cartesian product is associative and has the empty qualifier as
unit.

[e | (p, q), r] = [e | p, (q, r)]
[e | p, ()] = [e | p]
[e | (), p] = [e | p]

This is easily checked, using the fact that concat and unit are
natural transformations and form a monad (where unit x = [x]).

map f · concat = concat · map (map f)
map f · unit = unit · f

concat · concat = concat · map concat
concat · unit = id

concat · map unit = id

Another law relates zip of cartesian product to cartesian product
of zip. If xs and ys have the same length, and us and vs have the
same length, then

(x <- xs | y <- ys), (u <- us | v <- vs)
=
(x <- xs, u <- us) | (y <- ys, v <- vs)

The proof is by induction of xs and ys, with lemmas proved by
inducting over us and vs.

We also have some laws specifically applicable to order. Since
the default ordering function is a stable sort, sorting on two keys in
succession is equivalent to sorting on a pair of keys:

order by d, order by e = order by (d, e)

Applying two ordering functions in succession (when there is
no by clause) is equivalent to applying the composition of the two
functions:

order using f, order using g = order using (g · f)

Combining by and using is a bit messier:

order by d using f, order by e using g
=
order by (d, e) using λh. g (snd · h) · f (fst · h)

The using function takes function h that extracts a pair of keys,
runs f passing it the extractor function for the first key, and then
similarly g passing it the extractor function for the second key.

However, analogues of the three above laws do not appear to
hold for group, since a single group changes all bound variables to
lists, while two adjacent groups change all bound variables to lists
of lists.

6. Variations on the theme

Thus far we have concentrated on describing a particular design
in complete detail. However there are many design choices to be
made, and we explore a few of them here, albeit in less detail.

6.1 Concrete syntax

We are unhappy with the use of the keyword order because, with
a user-defined function such as take, no reordering at all may
be involved. One suggestion is to re-use the keyword “then”,
followed immediately by the function to use:

[(the dept, sum salary)
| (name, dept, salary) <- employees
, then sortWith by salary
, then takeWhile by salary < 50
, then take 5]

The “by” clause remains optional, but the ordering function is not.
(Perhaps it would read better to say “using’ instead of “by” in this
context.)

6.2 Binding in group

In our main design, group implicitly re-binds all the in-scope
variables to lists of their previous type. This implicit re-binding
is very convenient in small examples, but it is arguably rather
surprising – it is certainly unique in Haskell’s design – so it might
be worth considering a more verbose but explicit syntax such as:

[(the_dept, namesalary)
| (name, dept, salary) <- employees
, the_dept <- group by dept

where (name,salary) -> namesalary
]

Here, the group form is extended to bind a fresh variable, the_dept,
which is of course takes one value for each group. The where
clause specifies that the namesalary list is constructed by stuffing
all the (name,salary) pairs from a group into a list. In general
one could have an arbitrary expression to the left of the “->”.

One could debate the concrete syntax, but the main design
question is whether the clunkiness of extra syntax justifies the extra
clarity.

6.3 Cubes and hierarchies

Another extension to SQL is the CUBE construct. The main idea is
to support multi-level aggregation. For example, suppose we have
a relation sales that gives the name, colour, size, and cost, of a
number of products. Consider the query

SELECT size, colour, sum(cost)
FROM sales
GROUP BY CUBE(size, colour)

This query shows the total cost of items in the following groups:

• All items with the same size and colour.

• All items with the same size.

• All items with the same colour.

• All items.

The result relation is a table of triples, and NULL is used to indicate
an aggregated attribute. For example, the result records for all items
with the same colour might look like

(NULL, "red", 23), (NULL, "blue", 16), . . .

To support this kind of multi-level aggregation we need one further
generalisation of our notation:

[(atts, sum cost)
| (size, colour, cost) <- sales
, atts <- hgroup by [size,colour] using groupCube]

The construct is introduced by a new keyword hgroup, and the
user-supplied grouping function groupCube has type

groupCube :: (a -> [String])
-> [([Maybe String], [a])]

Here, the key-extractor function returns a list of strings (size and
colour in this case), which groupCube uses to make groups under
various combinations of this list (as above). It differs from the
previous group by construct, because the grouping function must
return a list of pairs: the first component records which subset of
the key list identifies this group, while the second component holds
the members of the group. So the result of the above query might
look like

10 2007/6/18

[([Nothing, Nothing], 302) -- All items
, ([Nothing, Just "red"], 45) -- Red items
, ([Nothing, Just "blue"], 8) -- Blue items
, (Just "big", Nothing), 99) -- Big items
...etc...]

In general, hgroup requires the user-supplied function f to have
type:

f :: ∀a.(a → τ) → [a] → [(φ,[a])]

for some types τ, φ.
Whether this extra generalisation is worth the bother is open to

debate.

6.4 Implicit result concatenation

In a breadth-first search over a tree, one might write this:

concat [[t1,t2] | Node _ t1 t2 <- trees]

or alternatively

[t | Node _ t1 t2 <- trees, t <- [t1,t2]]

Neither is very appealing. A simple possibility, suggested to us
by Koen Claessen, is to allow the programmer to write a comma-
separated list of values before the initial vertical bar of the compre-
hension, thus:

[t1, t2 | Node _ t1 t2 <- trees]

The semantics is given by either of the expressions above. More
precisely:

[e1, . . . , en |q] = concatMap (λqv.[e1, . . . , en]) [[q]]

This proposal is orthogonal to the rest of this paper.

7. Related work

We now consider how we would express the two SQL queries from
the introduction in XQuery and LINQ. Recall the queries are

SELECT name
FROM employees
WHERE salary < 50
ORDER BY salary

and

SELECT dept, SUM(salary)
FROM employees
GROUP BY dept

7.1 XQuery

We assume that the XQuery variable $employees is bound to a
sequence of employee elements, where each employee element
contains a name, dept, and salary element.

In XQuery, we would write the first query above as

<query1>{
for $employee in $employees
where $employee/salary > 50
order by $employee/salary
return $employee/name

}</query1>

XQuery is based on a notion of comprehension (called a FLWOR
expression), which includes an order by clause similar to the one
described here, added precisely in order to make it easy to parallel
the behaviour of SQL. Unlike our extension to Haskell, uses of
order by are limited to sorting, with options for multiple keys
each in ascending or descending order.

We would write the second query as:

<query2>{
for $d in fn:distinct-values($employees/dept)
let $g = $employees[dept = $d]
return
<group>{

$dept,
<sum>{ fn:sum($g/salary) }</sum>

}</group>
}</query2>

This is similar to the technique used for Haskell of writing nested
comprehensions, but slightly smoother because the XPath subset of
XQuery provides compact notation for extracting elements from a
sequence or filtering on the value of an element. XQuery has no
construct that parallels GROUP BY directly.

Two proposals to add grouping constructs to XQuery have been
put forward by others. The first of these [BCC+05] resembles ours
in that the grouping construct changes the sequence of bindings,
but it has explicit constructs to bind values that index groups (such
as dept) and values aggregated within groups (such as salary).
Here is how the running example would look:

<query2>{
for $e in $employees
group by $e/dept into $dept

nest $e/salary into $salaries
return
<group>{

$dept,
<sum>{ fn:sum($salaries) }</sum>

}</group>
}</query2>

The second proposal [Kay06] uses a predicate on adjacent ele-
ments to decide where a break between groups should occur (sim-
ilar to groupBy in the current Haskell library), whereas our con-
struct looks at individual bindings. Neither proposal supports user-
defined functions for grouping or ordering.

7.2 LINQ

Using the LINQ features of C# 3.0, the first query is written as

from e in employees
where e.salary < 50
orderby e.salary
select e.name

As with XQuery, this is easy to write because comprehensions are
extended with an orderby construct that parallels the behaviour of
SQL, and is limited to sorting, again with options for multiple keys
each in ascending or descending order.

We would write the second query as:

from e in employees
group e by e.dept into g
select new { g.Key, g.Sum(e => e.salary) }

This is shorthand for a nested comprehension

from g in
from e in employees
group e by e.dept

select new { g.Key, g.Sum(e => e.salary) }

LINQ can return nested structures, whereas SQL can only return
flat relations. However, the LINQ construct is tied to a specific
grouping function, which returns a specific tuple with two com-
ponents, the key and the group.

The LINQ construct is rather different in structure than the one
we propose here; it introduces a new data structure to represent

11 2007/6/18

groups, and a new construct that invokes the grouping function and
loops over the returned groups; and it is tied to a specific grouping
function.

LINQ queries are general in a way that ours are not: LINQ
queries operate over an arbitrary container type, provided it sup-
ports a particular set of operations (including orderby, groupby
and several others). One reason for this generality is to support
meta-programming, so that a query generates a so-called expres-
sion tree that can (in many cases) be translated to SQL. It is natural
to ask whether our extensions could similarly extend to an arbitrary
monad (or sub-class thereof), a direction we have not yet investi-
gated.

8. Conclusion

List comprehensions are a very modest language construct: they
provide syntactic sugar, but offer no new expressive power. Never-
theless, syntactic sugar can be important and, in the Darwinian pro-
cess of language evolution, list comprehensions have prospered. It
therefore seems productive to consider extensions of this syntactic
sugar that share the modest cost of existing comprehensions while
extending their power.

In this paper we have presented extensions to Haskell list com-
prehensions that parallel the ORDER BY and GROUP BY clauses of
SQL. Constructs that parallel ORDER BY are also found in XQuery,
LINQ, and Links, but not in (unextended) Haskell, CPL, Erlang,
or Kleisli. A construct that parallels GROUP BY is found in LINQ,
and proposed for extensions to XQuery, but does not appear in any
other language so far as we know.

The new constructs proposed here are more general than the
constructs in the other languages, because they work with any func-
tion of a given type, rather than being limited to specific functions.
Parametricity of these functions plays an important role in ensuring
the semantics of such constructs is independent of particular details
of how tuples of bindings are represented.

The grouping construct is also unusual in that it rebinds each
variable in scope, from a single value to a list of values. This
seems close in spirit to the behaviour of GROUP BY in SQL, but
is arguably more uniform. The separate WHERE and HAVING clauses
are subsumed by comprehension guards, and the same construct
supports both aggregation and nested lists.

We have implemented a simple prototype of the translation
given here to confirm its correctness. We plan to implement the
new construct both in the GHC compiler for Haskell and in the
Edinburgh implementation of Links, and look forward to feedback
from their use. Links uses comprehensions to write queries that
access a database, and the compiler converts as much of these as
possible into SQL. The new constructs should allow us to compile
into queries that use SQL GROUP BY and aggregate functions where
appropriate.

Because of the generality of the new constructs, we wonder
whether they might also constructively feed back into the design
of new database programming languages.

Acknowledgements

Many thanks to Erik Meijer, who prodded us to find comprehen-
sion equivalents for ‘order by’ and ‘group by’, and to David Bal-
aban, Ezra Cooper, Gavin Bierman, Sam Lindley, Tom Schrijvers,
Jerome Simeon, and Don Syme for their helpful feedback.

References

[BCC+05] Kevin Beyer, Don Chamberlin, Lath S. Colby, Fatma Özcan,
Hamid Pirahesh, and Yu Xu. Extending XQuery for analytics.
In ACM SIGMOD International Conference on Management
of Data, pages 503–514. ACM Press, June 2005.

[BCF+07] Scott Boag, Don Chameberlin, Mary F. Fernández, Daniela
Florescu, Jonathan Robie, and Jérome Siméon. Xquery
1.0: An xml query language. Technical report, W3C
Recommendation, January 2007.

[BLS+94] P Buneman, L Libkin, D Suciu, V Tannen, and L Wong.
Comprehension syntax. SIGMOD Record, 23(1):87–96,
March 1994.

[CLWY06] Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop.
Links: Web programming without tiers. In Formal Methods
for Components and Objects. Springer Verlag, October 2006.

[Dar77] John Darlington. Program transformation and synthesis:
Present capabilities. Technical Report Report 77/43, Imperial
College of Science and Technology, London, September
1977.

[Kay06] Michael Kay. Positional grouping in XQuery. In Third Inter-
national Workshop on XQuery Implementation, Experiences,
and Perspectives (XIME-P). ACM Press, June 2006.

[MBB06] Erik Meijer, Brian Beckman, and Gavin Bierman. LINQ:
reconciling object, relations and xml in the .NET framework.
In Proceedings of the 2006 ACM SIGMOD International
Conference on Management of Data, page 706. ACM Press,
June 2006.

[Rey83] JC Reynolds. Types, abstraction and parametric polymor-
phism. In REA Mason, editor, Information Processing 83,
pages 513–523. North-Holland, 1983.

[TW89] P Trinder and PL Wadler. Improving list comprehension
database queries. In Fourth IEEE Region 10 Conference
(TENCON), pages 186–192. IEEE, November 1989.

[Wad87] Phil Wadler. List comprehensions. In Simon Peyton Jones,
editor, The Implementation of Functional Programming
Languages, pages 127–138. Prentice Hall, 1987.

[Wad89] PL Wadler. Theorems for free! In MacQueen, editor, Fourth
International Conference on Functional Programming and
Computer Architecture, London. Addison Wesley, 1989.

[Wad92] Philip Wadler. Comprehending monads. Mathematical
Structures in Computer Science, 2:461–493, 1992.

[Won00] Limsoon Wong. Kleisli, a functional query system. Journal
of Functional Programming, 10(1):19–56, January 2000.

12 2007/6/18

