Drinfeld cusp forms and their combinatorics

Gebhard Böckle gebhard.boeckle@uni-due.de

> Department of Mathematics Universität Duisburg-Essen 45117 Essen, Germany

Workshop on Computations with Modular Forms Bristol, August 22, 2008

G. Böckle

Drinfeld modular forms

The Bruhat-Tits tree The Drinfeld upper half plane Drinfeld modular forms

Harmonic cocycles

Definition Basic properties The residue map

How to understand the quotient tree?

References

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

The Bruhat-Tits tree The Drinfeld upper half plane Drinfeld modular forms

Outline

G. Böckle

Drinfeld modular forms

The Bruhat-Tits tree The Drinfeld upper half plane Drinfeld modular forms

Harmonic cocycles

Definition Basic properties The residue map

How to understand the quotient tree?

References

・ロト ・ 日下 ・ 日下 ・ 日下 ・ 今日 ト

The Bruhat-Tits tree The Drinfeld upper half plane Drinfeld modular forms

Harmonic cocycles

Definition Basic properties The residue map

Outline

G. Böckle

Drinfeld modular forms

The Bruhat-Tits tree The Drinfeld upper half plane Drinfeld modular forms

Harmonic cocycles

Definition Basic properties The residue map

How to understand the quotient tree?

References

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

The Bruhat-Tits tree The Drinfeld upper half plane Drinfeld modular forms

Harmonic cocycles

Definition Basic properties The residue map

How to understand the quotient tree?

Outline

G. Böckle

Drinfeld modular forms

The Bruhat-Tits tree The Drinfeld upper half plane Drinfeld modular forms

Harmonic cocycles

Definition Basic properties The residue map

How to understand the quotient tree?

References

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

The Bruhat-Tits tree The Drinfeld upper half plane Drinfeld modular forms

Harmonic cocycles

Definition Basic properties The residue map How to understand the quotient tree? References

Outline

G. Böckle

Drinfeld modular forms

The Bruhat-Tits tree The Drinfeld upper half plane Drinfeld modular forms

Harmonic cocycles

Definition Basic properties The residue map

How to understand the quotient tree?

References

・ロト ・ 画 ・ ・ 画 ・ ・ 画 ・ うらぐ

Basic notation

 \mathbb{F}_q the field of $q = p^n$ elements K_{∞} a local field with residue field \mathbb{F}_q \mathcal{O}_{∞} the ring of integers of K_{∞} π a uniformizer of K_{∞}

G. Böckle

Drinfeld modular forms

The Bruhat-Tits tree

The Drinfeld upper half plane Drinfeld modular forms

Harmonic cocycles

Definition Basic properties The residue map

How to understand the quotient tree?

References

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

The Bruhat-Tits tree

 $K_{\infty}, \mathcal{O}_{\infty}, \pi, \mathbb{F}_{a}$

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

Definition (Bruhat-Tits tree)

$$\begin{split} \mathcal{T} &:= \text{the simplicial complex of dimension 1 with} \\ \text{set of vertices } \operatorname{Vert}(\mathcal{T}) &:= \\ & \text{homothety classes [L] of rank 2 } \mathcal{O}_{\infty}\text{-lattices } \operatorname{L} \subset \operatorname{K}^2_{\infty} \\ \text{set of edges } \operatorname{Edge}(\mathcal{T}) &:= \\ & \text{pairs } ([\operatorname{L}], [\operatorname{L}']) \text{ such that } \pi \operatorname{L} \subsetneq \operatorname{L}' \subsetneq \operatorname{L}. \\ |\mathcal{T}| \text{ the geometric realization of } \mathcal{T} \end{split}$$

G. Böckle

Drinfeld modular forms

The Bruhat-Tits tree

The Drinfeld upper half plane Drinfeld modular forms

Harmonic cocycles

Definition Basic properties The residue map

How to understand the quotient tree?

The Bruhat-Tits tree

 $K_{\infty}, \mathcal{O}_{\infty}, \pi, \mathbb{F}_{\alpha}$

Definition (Bruhat-Tits tree)

$$\begin{split} \mathcal{T} &:= \text{the simplicial complex of dimension 1 with} \\ \text{set of vertices } \operatorname{Vert}(\mathcal{T}) &:= \\ & \text{homothety classes [L] of rank 2 } \mathcal{O}_\infty\text{-lattices } \operatorname{L} \subset \operatorname{K}^2_\infty \\ \text{set of edges } \operatorname{Edge}(\mathcal{T}) &:= \\ & \text{pairs } ([\operatorname{L}], [\operatorname{L}']) \text{ such that } \pi \operatorname{L} \subsetneq \operatorname{L}' \subsetneq \operatorname{L}. \\ |\mathcal{T}| \text{ the geometric realization of } \mathcal{T} \end{split}$$

Lemma

 ${\mathcal T}$ is a q+1-regular tree.

Definition

 $\begin{array}{l} \text{Vertices } \Lambda_i := [\mathcal{O}_\infty \oplus \pi^i \mathcal{O}_\infty], \ i \in \mathbb{Z}. \\ \text{standard vertex } \Lambda_0, \quad \text{standard edge } e_0 := (\Lambda_0, \Lambda_1) \end{array}$

G. Böckle

Drinfeld modular forms

The Bruhat-Tits tree

The Drinfeld upper half plane Drinfeld modular forms

Harmonic cocycles

Definition Basic properties The residue map

How to understand the quotient tree?

References

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへ⊙

Group action

 $K_{\infty}, \mathcal{O}_{\infty}, \pi, \mathbb{F}_{\alpha}$

Consider elements of K^2_{∞} as **column vectors** \Rightarrow have natural left action of $GL_2(K_{\infty})$ on K^2_{∞} .

G. Böckle

Drinfeld modular forms

The Bruhat-Tits tree

The Drinfeld upper half plane Drinfeld modular forms

Harmonic cocycles

Definition Basic properties The residue map

How to understand the quotient tree?

References

・ロト ・ 日下 ・ 日下 ・ 日下 ・ 今日 ト

Group action

а

Consider elements of K_{∞}^2 as **column vectors** \Rightarrow have natural left action of $GL_2(K_{\infty})$ on K_{∞}^2 .

Definition $(GL_2(K_{\infty}))$ -action on \mathcal{T} $GL_2(K_{\infty}) \times \mathcal{T} \to \mathcal{T} : (\gamma, [L]) \mapsto [\gamma L]$

Set
$$\Gamma_{\infty} := \left\{ \left(egin{array}{c} a & b \\ c & d \end{array}
ight) \in GL_2(\mathcal{O}_{\infty}) \mid c \in \pi \mathcal{O}_{\infty}
ight\}.$$

l emma

 $GL_2(K_{\infty})$ acts transitively on $Vert(\mathcal{T})$ and $Edge(\mathcal{T})$. $Vert(\mathcal{T}) = GL_2(K_{\infty})/GL_2(\mathcal{O}_{\infty})K_{\infty}^*$ $Edge(\mathcal{T}) = GL_2(K_{\infty})/\Gamma_{\infty}K_{\infty}^*$

$$K_{\infty}$$
, \mathcal{O}_{∞} , π , \mathbb{F}_{0}

The Bruhat-Tits tree

The Drinfeld upper

G. Böckle

Drinfeld's upper half plane Ω

$$\mathbb{C}_{\infty} := \widehat{K_{\infty}^{alg}}$$

 $\begin{array}{l} \text{Definition (Drinfeld's upper half plane)}\\ \Omega := \mathbb{P}^1(\mathbb{C}_\infty)\smallsetminus \mathbb{P}^1(\mathcal{K}_\infty) \end{array}$

Definition $(GL_2(K_{\infty})\text{-action on }\Omega)$ $GL_2(K_{\infty}) \times \Omega \to \Omega : (\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, z) \mapsto \gamma z = \frac{az+b}{cz+d}$

G. Böckle

Drinfeld modular forms

The Drinfeld upper half plane

Drinfeld modular forms

Harmonic cocycles

Definition Basic properties The residue map

How to understand the quotient tree?

References

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

 $K_{\infty}, \mathcal{O}_{\infty}, \pi, \mathbb{F}_{a}, \mathbb{C}_{\infty}, \Omega$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Let $b_1, \ldots, b_q \in \mathcal{O}_{\infty}$ be representatives of \mathcal{O}_{∞}/π . Proposition (reduction map) $\exists a \text{ (natural) } GL_2(K_{\infty})\text{-equivariant map}$

 $\rho \colon \Omega \to |\mathcal{T}|$ such that

$$egin{aligned} &
ho^{-1}(|\mathbf{e}_0|\smallsetminus\{\Lambda_0,\Lambda_1\})=\{z\in\mathbb{C}_\infty\mid 1<|z|< q\}\ &
ho^{-1}(\Lambda_0)=\{z\in\mathbb{C}_\infty\midigotimes_{i=1,...,q}|z-b_i|=1\} \end{aligned}$$

G. Böckle

Drinfeld modular forms

The Bruhat-Tits tree The Drinfeld upper half plane Drinfeld modular forms

Definition Basic properties The residue map

How to understand the quotient tree?

$$K_\infty$$
, \mathcal{O}_∞ , π, \mathbb{F}_q , \mathbb{C}_∞ , Ω

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Let $b_1, \ldots, b_q \in \mathcal{O}_\infty$ be representatives of \mathcal{O}_∞/π . Proposition (reduction map) $\exists a \text{ (natural) } GL_2(K_\infty)\text{-equivariant map}$

 $\rho \colon \Omega \to |\mathcal{T}|$ such that

$$egin{aligned} &
ho^{-1}(|\mathbf{e}_0|\smallsetminus\{\Lambda_0,\Lambda_1\})=\{z\in\mathbb{C}_\infty\mid 1<|z|< q\}\ &
ho^{-1}(\Lambda_0)=\{z\in\mathbb{C}_\infty\mid egin{aligned} &orall\ i=1,...,q\ &|z-b_i|=1\} \end{aligned}$$

Remarks " Ω is like a tubular neighborhood of T"

G. Böckle

Orinfeld modular forms

The Bruhat-Tits tree The Drinfeld upper half plane Drinfeld modular forms Harmonic cocycles

Definition Basic properties The residue map

How to understand the quotient tree?

$$K_\infty$$
, \mathcal{O}_∞ , π, \mathbb{F}_q , \mathbb{C}_∞ , Ω

Let $b_1, \ldots, b_q \in \mathcal{O}_\infty$ be representatives of \mathcal{O}_∞/π . Proposition (reduction map) $\exists a \text{ (natural) } GL_2(K_\infty)\text{-equivariant map}$

 $\rho \colon \Omega \to |\mathcal{T}|$ such that

$$\rho^{-1}(|\mathbf{e}_0| \smallsetminus \{\Lambda_0, \Lambda_1\}) = \{z \in \mathbb{C}_{\infty} \mid 1 < |z| < q\}$$
$$\rho^{-1}(\Lambda_0) = \{z \in \mathbb{C}_{\infty} \mid \bigvee_{i=1,\dots,q} |z - b_i| = 1\}$$

Remarks " Ω is like a tubular neighborhood of \mathcal{T} " $GL_2(K_{\infty})$ -translates of $\rho^{-1}(|e_0|)$ provide an atlas for Ω .

G. Böckle

Drinfeld modular forms

The Bruhat-Tits tree The Drinfeld upper half plane Drinfeld modular forms Harmonic cocycle

Definition Basic properties The residue map

How to understand the quotient tree?

$$K_\infty$$
, \mathcal{O}_∞ , π, \mathbb{F}_q , \mathbb{C}_∞ , Ω

Let $b_1, \ldots, b_q \in \mathcal{O}_{\infty}$ be representatives of \mathcal{O}_{∞}/π . Proposition (reduction map) $\exists a \text{ (natural) } GL_2(K_{\infty})\text{-equivariant map}$

 $\rho \colon \Omega \to |\mathcal{T}|$ such that

$$egin{aligned} &
ho^{-1}(|\mathbf{e}_0|\smallsetminus\{\Lambda_0,\Lambda_1\})=\{z\in\mathbb{C}_\infty\mid 1<|z|< q\}\ &
ho^{-1}(\Lambda_0)=\{z\in\mathbb{C}_\infty\midigotimes_{i=1,\dots,q}|z-b_i|=1\} \end{aligned}$$

Remarks " Ω is like a tubular neighborhood of \mathcal{T} " $GL_2(K_{\infty})$ -translates of $\rho^{-1}(|e_0|)$ provide an atlas for Ω . On these charts use Laurent series type expansions to define (rigid) analytic functions on Ω .

G. Böckle

Drinfeld modular forms

The Bruhat-Tits tree The Drinfeld upper half plane Drinfeld modular forms Harmonic cocycles

Definition Basic properties The residue map

How to understand the quotient tree?

From now on: $K_{\infty} := \mathbb{F}_q((\frac{1}{T})), \pi := \frac{1}{T}$. For $A := \mathbb{F}_q[T]$ and $K = \operatorname{Frac}(A)$ have

$$GL_2(A) \hookrightarrow GL_2(K) \hookrightarrow GL_2(K_\infty).$$

G. Böckle

Drinfeld modular forms

The Bruhat-Tits tree The Drinfeld upper half plane

Drinfeld modular forms

Harmonic cocycles

Definition Basic properties The residue map

How to understand the quotient tree?

References

・ロト ・ 通 ト ・ 画 ト ・ 画 ト ・ 日 ト

From now on:
$$\mathcal{K}_{\infty} := \mathbb{F}_q((\frac{1}{T})), \ \pi := \frac{1}{T}$$
.
For $\mathcal{A} := \mathbb{F}_q[T]$ and $\mathcal{K} = \operatorname{Frac}(\mathcal{A})$ have

 $GL_2(A) \hookrightarrow GL_2(K) \hookrightarrow GL_2(K_\infty).$

For $\Gamma \subset GL_2(A)$ a congruence subgroup:

Definition (Drinfeld modular form (Goss))

A Drinfeld modular form of weight k (and trivial type) for Γ is a rigid analytic function

$$f: \Omega \to \mathbb{C}_{\infty}$$

such that (a) $f\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}z\right) = (cz+d)^k f(z)$ for all $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$. (b) f has a Laurent series expansion at all cusps with vanishing principal part. G. Böckle

Drinfeld modular forms

The Bruhat-Tits tree The Drinfeld upper half plane

Drinfeld modular forms

Harmonic cocycles

Definition Basic properties The residue map

How to understand the quotient tree?

Results

One defines cusp forms (in the obvious way). Have Hecke operators for prime ideals $0 \neq \mathfrak{p} \subset \mathbb{F}_q[\mathcal{T}]$ No known analog of a Petersson inner product.

Let f be a Hecke eigenform with eigenvalues $a_{p}(f)$.

Theorem (Goss) The $a_{\mathfrak{p}}(f)$ are integral $K_f := K(\{a_{\mathfrak{p}}(f)\}_{\mathfrak{p}})$ is finite over K.

G. Böckle

Drinfeld modular forms

The Bruhat-Tits tree The Drinfeld upper half plane

Drinfeld modular forms

Harmonic cocycles

Definition Basic properties The residue map

How to understand the quotient tree?

References

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Results

One defines cusp forms (in the obvious way). Have Hecke operators for prime ideals $0 \neq \mathfrak{p} \subset \mathbb{F}_q[\mathcal{T}]$ No known analog of a Petersson inner product.

Let f be a Hecke eigenform with eigenvalues $a_{p}(f)$.

Theorem (Goss) The $a_p(f)$ are integral $K_f := K(\{a_p(f)\}_p)$ is finite over K.

Theorem (B.)

There is a strictly compatible system

$$\left(\rho_{f,\lambda} \colon \mathsf{Gal}(\overline{K}/K) \to \mathsf{GL}_1(\widehat{K_f}^{\lambda}) \right)_{\lambda \text{ finite}}$$

▲ロ ▶ ▲周 ▶ ▲ ヨ ▶ ▲ ヨ ▶ → ヨ → の Q @

such that $\rho_{f,\lambda}(Frob_{\mathfrak{p}}) = a_{\mathfrak{p}}(f)$ for almost all p. The sequence $(a_{\mathfrak{p}}(f))_{\mathfrak{p}}$ is given by a Hecke character.

G. Böckle

Drinfeld modular forms

The Bruhat-Tits tree The Drinfeld upper half plane

Drinfeld modular forms

Harmonic cocycles

Definition Basic properties The residue map

How to understand the quotient tree?

Questions

There is no multiplicity one result!

Does multiplicity one hold for fixed weight?

Does it hold in weight 2

Does it hold in weight 2 and for $\Gamma_0(\mathfrak{p})$ with \mathfrak{p} prime?

 \rightsquigarrow Possible implications for uniform boundedness of torsion points of Drinfeld modules of rank 2 over K.

G. Böckle

Drinfeld modular forms

The Bruhat-Tits tree The Drinfeld upper half plane

Drinfeld modular forms

Harmonic cocycles

Definition Basic properties The residue map

How to understand the quotient tree?

References

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Questions

There is no multiplicity one result!

Does multiplicity one hold for fixed weight?

- Does it hold in weight 2
- Does it hold in weight 2 and for $\Gamma_0(\mathfrak{p})$ with \mathfrak{p} prime?
- \rightsquigarrow Possible implications for uniform boundedness of torsion points of Drinfeld modules of rank 2 over K.

There is no Ramanujan-Petersson conjecture

But each eigenvalue systems seems to have fixed weight. What is the distribution of weights?

G. Böckle

Drinfeld modular forms

The Bruhat-Tits tree The Drinfeld upper half plane

Drinfeld modular forms

Harmonic cocycles

Definition Basic properties The residue map

How to understand the quotient tree?

Questions

There is no multiplicity one result!

Does multiplicity one hold for fixed weight?

Does it hold in weight 2

Does it hold in weight 2 and for $\Gamma_0(\mathfrak{p})$ with \mathfrak{p} prime?

 \rightsquigarrow Possible implications for uniform boundedness of torsion points of Drinfeld modules of rank 2 over K.

There is no Ramanujan-Petersson conjecture But each eigenvalue systems seems to have fixed weight. What is the distribution of weights?

There may be p not dividing the level N of f such that

 $\rho_{f,\lambda}(\operatorname{Frob}_{\mathfrak{p}}) \neq a_{\mathfrak{p}}(f)$

(because of non-ordinariness of modular curves of level Nq) What happens at these p?

G. Böckle

Drinfeld modular forms

The Bruhat-Tits tree The Drinfeld upper half plane

Drinfeld modular forms

Harmonic cocycles

Definition Basic properties The residue map

How to understand the quotient tree?

Harmonic cocycles

 $\mathcal{T}, Edge(\mathcal{T}), \Gamma$

How to compute Drinfeld modular forms?.

Let *M* be a $K[GL_2(A)]$ -module with dim_K(*M*) finite.

G. Böckle

Drinfeld modular forms

The Bruhat-Tits tree The Drinfeld upper half plane Drinfeld modular forms

Harmonic cocycles

Definition Basic propertie

The residue map

How to understand the quotient tree?

References

・ロト ・ 日下 ・ 日下 ・ 日下 ・ 今日 ト

Harmonic cocycles

 \mathcal{T} , Edge(\mathcal{T}), Γ

How to compute Drinfeld modular forms?.

Let *M* be a $K[GL_2(A)]$ -module with dim_K(*M*) finite.

Definition

The *K*-vector space $C_{har}(\Gamma, M)$ of *M*-valued Γ -invariant harmonic cocycles is the set of maps

$$c: Edge(\mathcal{T}) \rightarrow M: e \mapsto c(e),$$

such that:

- 1. For all edges e one has c(-e) = -c(e).
- 2. For all vertices v one has $\sum_{e \to v} c(e) = 0$, where the sum is over all edges e ending at v.
- 3. For all $\gamma \in \Gamma$ and $e \in Edge(\mathcal{T})$ one has $c(\gamma e) = \gamma c(e)$.

G. Böckle

Drinfeld modular forms

The Bruhat-Tits tree The Drinfeld upper half plane Drinfeld modular forms

Harmonic cocycles

Definition

Basic properties The residue map

How to understand the quotient tree?

Basic properties

 $\mathcal{T}, Edge(\mathcal{T}), \Gamma$

Proposition (automatic cuspidality; Teitelbaum)

Given M there exists a finite subset Z of $\Gamma \setminus T$ such that any $c \in C_{har}(\Gamma, M)$ vanishes on all edges e not in a class of Z.

G. Böckle

Drinfeld modular forms

The Bruhat-Tits tree The Drinfeld upper half plane Drinfeld modular forms

larmonic cocycles

Definition

Basic properties The residue map

How to understand the quotient tree?

Basic properties

\mathcal{T} , Edge(\mathcal{T}), Γ

Proposition (automatic cuspidality; Teitelbaum)

Given M there exists a finite subset Z of $\Gamma \setminus T$ such that any $c \in C_{har}(\Gamma, M)$ vanishes on all edges e not in a class of Z.

Definition

A simplex
$$t \in Vert(\mathcal{T}) \cup Edge(\mathcal{T})$$
 is Γ -stable iff $Stab_{\Gamma}(t) = \{1\}.$

Proposition

There are only finitely many Γ -stable orbits of simplices.

Theorem (Teitelbaum)

Suppose Γ is p'-torsion free. Then:

- Any Γ-invariant harmonic cocycle is determined by its values on the Γ-stable orbits of edges.
- The only relations are those coming from Γ-stable vertices.

G. Böckle

Drinfeld modular forms

The Bruhat-Tits tree The Drinfeld upper half plane Drinfeld modular forms

larmonic cocycles

Definition

Basic properties The residue map

How to understand the quotient tree?

Remark:

The space $C_{har}(\Gamma, M)$ has an interpretation in terms of relative group homology. Let $\Gamma_{\nu} \subset \Gamma$ be the stabilizers of a set of representatives for the cusps. Then:

 $C_{har}(\Gamma, M) \cong H_1(\Gamma, \Gamma_{\nu}, M).$

G. Böckle

Drinfeld modular forms

The Bruhat-Tits tree The Drinfeld upper half plane Drinfeld modular forms

Harmonic cocycles

Definition

Basic properties The residue map

How to understand the quotient tree?

References

The residue map

 \mathcal{T} , $Edge(\mathcal{T})$, Γ , $C_{har}(\Gamma, M)$

Recall:

A Drinfeld modular form f is a rigid analytic function on Ω .

 Ω is a tubular neighborhood of \mathcal{T} via ρ .

G. Böckle

Drinfeld modular forms

The Bruhat-Tits tree The Drinfeld upper half plane Drinfeld modular forms

Harmonic cocycles

Definition Basic properties The residue map

How to understand the quotient tree?

References

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ■ ● ● ●

The residue map

 \mathcal{T} , $Edge(\mathcal{T})$, Γ , $C_{har}(\Gamma, M)$

Recall:

A Drinfeld modular form f is a rigid analytic function on Ω .

 Ω is a tubular neighborhood of \mathcal{T} via ρ .

 ρ^{-1} of the inner part of an edge e is an annulus A(e). For f of weight 2 define

$$\operatorname{\mathsf{Res}}_2$$
: $Edge(\mathcal{T}) \to \mathbb{C}_\infty$: $e \mapsto \operatorname{\mathsf{Res}}_{\mathcal{A}(e)}(fdz)$.

G. Böckle

Drinfeld modular forms

The Bruhat-Tits tree The Drinfeld upper half plane Drinfeld modular forms

Harmonic cocycles

Definition Basic properties The residue map

How to understand the quotient tree?

The residue map

 \mathcal{T} , Edge(\mathcal{T}), Γ , $C_{har}(\Gamma, M)$

Recall:

A Drinfeld modular form f is a rigid analytic function on Ω . Ω is a tubular neighborhood of \mathcal{T} via ρ . ρ^{-1} of the inner part of an edge e is an annulus A(e).

For f of weight 2 define

$$\operatorname{\mathsf{Res}}_2$$
: $Edge(\mathcal{T}) \to \mathbb{C}_\infty$: $e \mapsto \operatorname{\mathsf{Res}}_{\mathcal{A}(e)}(fdz)$.

Theorem (Teitelbaum)

Res₂ defines an isomorphism from the \mathbb{C}_{∞} vector space of Drinfeld cusp forms of weight 2 and level Γ to $C_{har}(\Gamma, K) \otimes_K \mathbb{C}_{\infty}$.

An analogous theorem holds in weight k with $M \approx Sym^{k-2}$.

G. Böckle

Drinfeld modular forms

The Bruhat-Tits tree The Drinfeld upper half plane Drinfeld modular forms

Harmonic cocycles

Definition Basic properties The residue map

How to understand the quotient tree?

On the proof of Teitelbaum's theorem: It suffices to prove it for $\Gamma = \Gamma(N)$ with $N \in \mathbb{F}_q[T] \setminus \mathbb{F}_q$. *Injectivity:* Using a π -adic measure theory, Teitelbaum constructs an explicit section for

$$\mathsf{Res}_2\colon S_2(\Gamma(N))\to C_{har}(\Gamma,\mathbb{C}_\infty).$$

G. Böckle

Drinfeld modular forms

The Bruhat-Tits tree The Drinfeld upper half plane Drinfeld modular forms

Harmonic cocycles

Definition Basic properties The residue map

How to understand the quotient tree?

References

On the proof of Teitelbaum's theorem: It suffices to prove it for $\Gamma = \Gamma(N)$ with $N \in \mathbb{F}_q[T] \setminus \mathbb{F}_q$. *Injectivity:* Using a π -adic measure theory, Teitelbaum constructs an explicit section for

$$\mathsf{Res}_2\colon S_2(\Gamma(N))\to C_{har}(\Gamma,\mathbb{C}_\infty).$$

Surjectivity: Compute dim $S_2(\Gamma(N))$ via Riemann-Roch and a canonical line bundle on $\Gamma(N)\backslash\Omega$. Express dim $C_{har}(\Gamma(N), \mathbb{C}_{\infty})$ as the number of stable orbits of edges minus the number of stable orbits of vertices.. Show that the dimensions are equal.

G. Böckle

Drinfeld modular forms

The Bruhat-Tits tree The Drinfeld upper half plane Drinfeld modular forms

Harmonic cocycles

Definition Basic properties The residue map

How to understand the quotient tree?

How to understand the quotient tree?

Proposition

The quotient tree $GL_2(\mathbb{F}_q[\mathcal{T}]) \setminus \mathcal{T}$ is represented by the half line with vertices $\{\Lambda_i\}_{i \geq 0}$.

There are no $GL_2(\mathbb{F}_q[\mathcal{T}])$ -stable simplices of \mathcal{T} . For $i \ge 1$, the stabilizer of Λ_{i+1} is strictly larger than that of Λ_i .

G. Böckle

Drinfeld modular forms

The Bruhat-Tits tree The Drinfeld upper half plane Drinfeld modular forms

Harmonic cocycles

Definition Basic properties The residue map

How to understand the quotient tree?

References

How to understand the quotient tree?

Proposition

The quotient tree $GL_2(\mathbb{F}_q[\mathcal{T}]) \setminus \mathcal{T}$ is represented by the half line with vertices $\{\Lambda_i\}_{i \geq 0}$.

There are no $GL_2(\mathbb{F}_q[\mathcal{T}])$ -stable simplices of \mathcal{T} . For $i \ge 1$, the stabilizer of Λ_{i+1} is strictly larger than that of Λ_i .

For general Γ:

Consider $\Gamma \backslash \mathcal{T}$ as a finite 'covering' of the above half line.

The stabilizers of simplices of the 'cover' have a similar monotonicity property as those of $GL_2(\mathbb{F}_q[\mathcal{T}]) \setminus \mathcal{T}$.

Stable simplices can only be found above Λ_i for small *i* (depending on Γ).

Using the above idea, one can show all 'basic properties' on harmonic cocycles we quoted.

G. Böckle

Drinfeld modular forms

The Bruhat-Tits tree The Drinfeld upper half plane Drinfeld modular forms

Harmonic cocycles

Definition Basic properties The residue map

How to understand the quotient tree?

References

E.-U. Gekeler and U. Nonnengardt, *Fundamental domains of some arithmetic groups over function fields*, Internat. J. Math. **6** (1995), 689–708.

J.-P. Serre, Trees

J. Teitelbaum, *The Poisson Kernel for Drinfeld Modular Curves*, JAMS **4** (1991), No. 3, pp. 491-511.

G. Böckle

Drinfeld modular forms

The Bruhat-Tits tree The Drinfeld upper half plane Drinfeld modular forms

Harmonic cocycles

Definition Basic properties The residue map

How to understand the quotient tree?

References

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで