

Dégradation Progressive et Irréversible des Données

Nicolas Anciaux*, Luc Bouganim*, Harold van Heerde ***, Philippe Pucheral*,**, Peter M.G. Apers***

* INRIA Rocquencourt
Le Chesnay, France

<Fname.Lname>@inria.fr

** PRiSM Laboratory
University of Versailles, France

<Fname.Lname>@prism.uvsq.fr

*** CTIT
University of Twente, The Netherlands

{h.j.w.vanheerde,apers}@ewi.utwente.nl

RESUME

Notre activité quotidienne laisse des traces digitales dans un nombre croissant de bases de données (sites

Web commerciaux, fournisseurs de service Internet, moteurs de recherche, etc.). Ces traces sont souvent

exposées à des divulgations accidentelles, résultats de négligence, de piratage ou d’interrogation abusive

encouragée par des chartes de confidentialité peu précises. Personne n'est à l'abri car une situation

particulière (la recherche d'un emploi, une demande de crédit) peut rendre un historique, a priori

quelconque, soudainement intéressant. Par définition, le contrôle d'accès ne peut empêcher ce type de

divulgation, ce qui a motivé l'intégration du principe de conservation limitée des données dans les

législations protégeant les données personnelles. Ce principe vise à effacer physiquement les données des

bases de données après une période de temps prédéfini. Toutefois, ce principe est difficile à mettre en

œuvre, ce qui conduit souvent à conserver des informations sensibles pendant des années. Dans cet article,

nous proposons un modèle de dégradation des données dans lequel les données sensibles sont soumises à

une dégradation progressive et irréversible depuis leur collecte (état précis), en passant par des états

intermédiaires dégradés mais partiellement exploitables, jusqu'à leur disparition totale lorsqu'elles

deviennent inutiles. L’avantage de la dégradation de données est double: (i) en réduisant la quantité de

données précises, l'impact de la divulgation d'un historique (dégradé) est considérablement réduit et (ii) la

dégradation des données en conformité avec les besoins des applications offre un nouveau compromis

entre fonctionnalité et préservation de l'intimité. Nous analysons ensuite l’impact de ce modèle sur les

techniques de base des SGBD (stockage, indexation et gestion de transactions) et proposons des solutions

adaptées.

MOTS CLES

Modèle de rétention, dégradation des données, confidentialité des bases de données.

1. INTRODUCTION

People give personal data all the time to

commercial web sites, search engines, web

browsers, ISPs and credit-card companies.

Personal digital trails end up in databases

somewhere, where they can be analyzed to serve

new purposes (e.g., behavioural targeting). More

insidiously and continuously, cell phones, GPS

devices, RFID tags and sensors are giving even

more accurate information about our daily life

(location, journey, consumption habits, hobbies,

relatives). If individuals could be tempted to fulfil

Vannevar Bush's Memex vision by recording their

complete life [22], there is an unprecedented threat

on privacy if others try to do so.

Personal digital trails are difficult to protect in

practice. As any data, they are exposed to

accidental disclosures resulting from negligence or

piracy. To cite a few, the personal details of 25

million UK citizens have been recently lost

inadvertently [29] and some of the data published

by AOL about Web search queries of 657,000

Americans have been deanonymized [17].

Regarding piracy, even the most defended servers

(including those of Pentagon [27], FBI [28] [11]

and NASA [11]) are successfully attacked. But

more, personal digital trails are often weakly

protected by obscure and loose privacy policies

which are presumed accepted when exercising a

given service. This fosters ill-intentioned

scrutinization and abusive usages justified by

business interests, governmental pressures and

inquisitiveness among people. Not only criminals

and terrorists are threatened. Everyone may

experience a particular event (e.g., accident,

divorce, job or credit application) which suddenly

makes her digital trail of utmost interest for

someone else. Companies like Intelius or

ChoicePoint make scrutinization their business

while others like ReputationDefender provide a

lucrative service to destroy the sensitive part of

personal digital trails subject to scrutinization.

In this paper, we call trail disclosure the leakage

of data pertaining to a personal digital trail and

resulting from negligence, attack or abusive

scrutinization or usage. By definition, a trail

disclosure cannot be tackled by any security

mechanism because its occurrence assumes that all

security mechanisms have been bypassed or that

the access control policy has been defined too

weakly. Limiting the data retention period is a

means by which the impact of trail disclosure can

be reduced. Promoted by most legislations

protecting personal data [13] [23], the limited data

retention principle consists in attaching a lifetime

to a data compliant with its acquisition purpose,

after which it must be withdrawn from the system.

The shorter the retention period is, the smaller the

total amount of data needlessly exposed to

disclosure. Beyond the protection of personal data,

the limited data retention principle is also a

cornerstone of the ISO/IEC 27002:2005

recommendation for protecting enterprise

information systems.

The limited data retention principle is however

difficult to put in practice. The first difficulty

comes from the determination of the right

retention period for each data item. Depending on

the data category and the country, minimal

retention periods can be fixed for law enforcement

or legal processes purposes (e.g., banking

information in UK cannot be destroyed before 7

years). In this case, the retention limit is set to this

same value for privacy preservation purpose, but

such limits are usually large. For the large amount

of data not covered by law, the retention limit is

supposed to reflect the best compromise between

privacy preservation and application purposes

reach. In practice, the same data item is likely to

serve different purposes, leading selecting the

largest retention limit compatible with all

purposes, as suggested in [2]. More, the purposes

exposed in most privacy policies are fuzzy enough

to defend very long retention limits (years or

decades), denaturing the initial principle. As a

consequence, retention limits are seen by civil

rights organizations as a deceitful justification for

long term storage of personal data by companies

 [14]. The retention problem has become so

important and the civil pressure so high that

practices start changing. For instance, Google

announced that cookies will expire after two years

instead of being retained up to 2038 as before and

search engines like Ask and Ixquick advertize

retention limits expressed in terms of days. The

second difficulty related to limited data retention

is its effective implementation. As pointed out in

 [25], no existing database system can guarantee

that data cannot be recovered after a regular

delete. Indeed, every trace of a deleted data must

be physically cleaned up in the data store, the

indexes and the logs, a technical issue still open

today.

The approach proposed in this paper opens up a

new alternative to reason about and implement

limited data retention. It is based on the

assumption that long lasting purposes can often be

satisfied with a less accurate, and therefore less

sensitive, version of the data [21]. For example,

online companies record accurate data about the

client purchases in order to process the

transactions and the delivery. Then these records

are kept for years in databases to focus advertising

actions and increase profits. This recording is

valuable for the client too because she can benefit

from recommendations and special offers related

to her purchase history. However, the purchase

category is usually enough to process

recommendations and offers (e.g., recording

Book/Religion/Buddhism for a purchase in a

bookshop is as informative as the exact record for

this purpose) and the category could in turn

become less informative over time (e.g.,

Book/Religion) without penalty because user

preferences evolve as well. Equivalent privacy

benefits can be foreseen by degrading attributes of

many types of recorded events. For example, the

exact location of a driver acquired by a navigation

system needs to be maintained during a short

period for guiding purpose and then could be

degraded at a lower accuracy (e.g., city) to plan

and optimize next trips. An accurate web history

could be retained for the duration of a work task

and then visited sites could be degraded to their

topic classification to help forming communities

of users sharing the same interest.

As exemplified above, the objective of the

proposed approach is to progressively degrade the

data after a given time period so that (1) the

intermediate states are informative enough to serve

application purposes and (2) the accurate state

cannot be recovered by anyone after this period,

not even by the server1. To the best of our

knowledge, this paper is the first attempt to

implement the essence of the limited data retention

principle, that is limiting the retention of any

information to the period strictly necessary to

accomplish the purpose for which it has been

collected. Hence, if the same information is

collected to serve different purposes, degraded

states of this information and their respective

retention limits are defined according to each

application purpose.

The expected benefit of our data degradation

model is twofold:

• Increased privacy wrt trail disclosure: no

information is exposed to disclosure longer and in a

state of higher accuracy than strictly necessary to

accomplish the purpose motivating its retention. To

this respect, and contrary to current practices, data

degradation implements a strict interpretation of the

limited data retention principle.

• Preservation of application reach: compared to

data anonymization, data degradation keeps the

identity of the users intact, allowing for user-

oriented purposes. The intermediate states of a

degraded information are defined according to

the purposes the user opts-in rather than to a

current data distribution in the database.

As exemplified above, data degradation attempts

reducing retention limits to their minimum,

leading to a dramatic reduction of the total amount

of data needlessly exposed to trail disclosure. An

important question is whether data degradation can

be reasonably implemented in a DBMS.

The contribution of this paper is twofold:

• We propose a simple and effective data

degradation model, providing a clean and

intuitive semantics to SQL queries involving

degraded data.

• We identify technical challenges introduced by

this model in terms of data storage, indexation

1 Data degradation can be seen as footsteps in the sand fading away when

time passes by, only leaving vague traces of the original footprint.

and transaction management, and propose

preliminary solutions.

The remainder of this paper is organized as

follows: Section 2 positions data degradation in

relation to related works and gives an intuitive

representation of the expected privacy benefit.

Section 3 introduces the data degradation model

and gives definitions used throughout this paper.

Section 4 identifies technical challenges raised by

our model. Section 5 details the impact of data

degradation on core database technology and

proposes preliminary solutions. Section 6

discusses open issues, gives hints for

implementing data degradation in a database

server and finally discusses briefly performance

issues. Section 7 concludes.

2. DATA DEGRADATION POSITIONING

2.1 Related Work

Existing works on data privacy and security which

are related to the problem tackled in this paper can

be grouped in four classes. They are quickly

described below and put in perspective with

limited data retention.

Access & usage control: Access control models

like DAC (Discretionary Access Control) and

RBAC (Role-Based Access Control) are part of

the SQL standard and are widely used in the

database context to protect sensitive data against

unauthorized accesses. More recently, efforts have

been put in increasing privacy by providing the

means to let donors themselves express their

privacy requirements, and to control how data can

be accessed and used by service providers. The

platform for privacy preservation [12] applies the

well known need-to-know and consent policies to

web sites, allowing encoding privacy policies into

machine readable XML [12]. Web sites describe

their practices and any P3P compliant browser can

be parameterized to reject policies hurting the

privacy of the owner. P3P itself only describes

policies and does not enforce them, making it little

more than a standardized complement to privacy

laws [15]. Techniques like the privacy aware

database (PawS) goes a step further, letting the

system automatically interpret and apply the

policies to the data [18]. The work on Hippocratic

databases [2] has been inspired by the axiom that

databases should be responsible for the privacy

preservation of the data they manage. The

architecture of Hippocratic DBMS is based on 10

guiding principles derived from privacy laws,

including the Limited retention principle more

deeply discussed in next section.

The access & usage control approach is based on

the assumption that the control is never bypassed.

Thus, while contributing to the protection of data

privacy, this approach does not answer the same

problem as limited data retention, that is limiting

the impact of trail disclosure. However, both

approaches are complementary, considering that

access & usage control remains necessary to

regulate the use of mandatory information.

Server-based protection: In addition to access &

usage control, security measures like database

encryption, database audit and intrusion detection

systems (IDS) are often in place at the server. The

increase in security brought by database

encryption is limited when decryption occurs at

the server [7] [16] and encrypting a large portion of

the database may bring important overheads [24].

IDS [9] and database audit [24] and are both based

on a constant monitoring of the system. IDS use a

system of rules, generally based on attack scenario

signatures, to generate alerts when abnormal

behaviour is detected.

While all those techniques limit the risks of

attacks, they do not prevent them totally and are

obviously ineffective with respect to other sources

of trail disclosure (e.g., negligence, weak policies,

governmental pressure). Conversely, IDS are very

effective to detect repetitive attacks. Combined

with data retention, IDS will thus make it very hard

for an attacker to obtain a large consecutive history

of accurate data by continuously spying the

database.

Client-based protection: When the database server

cannot be fully and permanently trusted, an

alternative is to rely on the donor herself, making

her responsible for protecting her own data. In the

p4p framework [1], the donor keeps control about

which information to release to service providers.

P4P targets at the ‘paranoid’ users who does not

trust the collecting organizations, in contrast to the

users of P3P frameworks. Other client-based

approaches advocate the encryption/decryption of

the data at the client device [7] [16] to make the

system robust against server attacks.

Both approaches are not general, forcing all

updates and queries on the database to go through

the client, thus putting strong constraints on how

applications are developed and deployed. Limited

data retention does not put these restrictions on

applications. Data can still be stored at the server

side and still meets the targeted application needs

while the definition of retention periods allows

controlling the privacy risk.

Data anonymization: Anonymization is good

practice when datasets have to be made public

without revealing personal sensitive data, for

example, when used for disclosing datasets for

research purposes. Datasets can then be

anonymized such that the privacy sensitive data

cannot be linked to there owners anymore. k-

Anonymity [26] is based on the idea of masking

(parts of) the (quasi) identifier of a partly privacy

sensitive tuple, such that the privacy part of the

tuple will be hidden between k-1 potential

candidate identifiers within the same dataset. For

example, the zip-code, date of birth and gender

may uniquely identify an individual and reveal its

corresponding sensitive data. By masking the date

of birth, the dataset should contain at least k

occurrences of the same <zip-code, gender>

combination.

While k-anonymisation shares some similarities

with our data degradation model, both pursue

different objectives. In practice, k-anonymisation

could result in a strictly k-anonymous database

with the cost of loosing much usability, where

other purposes than statistics computations cannot

be satisfied. In addition, correctly anonymizing the

data is a hard problem [20], especially when

considering incremental data sets or when

background knowledge is taken into account

 [19] [17], as exemplified by AOL scandal [17].

In contrast, limited data retention is performed on

an individual base and is particularly useful when

data needs to be accurate for some time to make

well defined services possible. Moreover, limited

data retention can keep the identifier of the donor

intact; hence, user-oriented services can still

exploit the information to the benefit of the donor.

2.2 Degradation vs retention

Time

Information

quantity on

server

1st, 2nd and 3rd degradation step

Retention limit

DD

LR

IR

t0 t1 t2 t3

Figure 1. Data degradation impact.

Limiting data retention thus remains the ultimate

barrier to trail disclosure. But to the best of our

knowledge, this paper is the first to concretely and

accurately address the implementation of this

principle. [2] suggests including limited data

retention in the design of Hippocratic databases

but leaves it for future works. Moreover, the

approach suggested in [2] is different since a data

item that is likely to serve different purposes sees

its retention limit extended to the duration required

by the longest lasting purpose. We refer hereafter

to this principle by the term lax limited data

retention, or lax retention for short, to distinguish

it from the strict retention implemented by data

degradation. For a given information serving

different purposes, data degradation fixes the level

of accuracy and the retention limit strictly needed

by each purpose, thereby organizing the lifecycle

of this information from its acquisition up to its

final destruction. Doing this, the amount of

excessive information exposed to trail disclosure

decreases over time much rapidly than with lax

retention.

 Figure 1 gives an intuitive representation of the

privacy benefit provided by data degradation.

Curve IR (Infinite Retention) plots the total

amount of information gathered in a traditional

database over time assuming a constant tuple

insertion rate. Curve LR (Lax Retention) shows

that the amount of information kept available

online, and then exposed to disclosure, remains

constant once the retention limit has been reached

(at t3) instead of increasing linearly. Indeed, after

this threshold, the tuple insertion and deletion rates

are equal. Curve DD (Data Degradation) shows

that the insertion rate in terms of “quantity” of

information starts decreasing once the first

degradation step is reached (at t0). Actually, the

number of tuples acquired by time unit is the same

as with IR and LR but the accuracy of tuples

acquired at time t0 starts degrading at time t1 and

the degradation rate equals the insertion rate. The

slope of DD decreases again after t2 (second

degradation step) up to become null at time t3 (as

for LR, deletion and insertion rates are equal after

t3). The integral of each curve can be interpreted as

the total amount of information exposed to trail

disclosure at any time. Though informal, this

figure gives a clear intuition about the benefit

provided by data degradation with respect to trail

disclosure.

3. LCP DEGRADATION MODEL

3.1 Degradation policy and tuple states

In our data degradation model, called Life-Cycle

Policy (LCP) model, data undergoes a progressive

degradation from a precise state at data collection

time to intermediate less accurate states, to

elimination from the database. We capture the

degradation of each piece of information (typically

an attribute) by a Generalization Tree (GT). A

generalization tree prescribes, given a domain

generalization hierarchy of the corresponding

attribute, the levels of accuracy the attribute can

take during its life time.

For simplicity we chose here to use a crisp

generalization tree (as defined more precisely

below), although techniques for fuzzy

generalization hierarchies exists and could be

applicable to our degradation model [3].

Definition: Generalization Tree (GT)

A generalization tree is a rooted tree where:

• The leaves of the tree contain the most accurate

values of the domain.

• The parents contain the value of the child node

after one degradation step. Hence, a path to an

ancestor in the GT expresses all forms a value

can take in its domain.

• The root of the GT contains the null value.

What “more accurate” means depends on the

domain, but for example if the domain is location

then node n may contain the value Los Angeles

and the parent of n may contain California.

Throughout this paper we will assume that a GT is

defined for each domain of each degradable

attribute di and is denoted GTdomain(di). The parent

value of value v of domain D is obtained using the

function GTD.Parent(v). In practice, a GT can be

implemented in different ways. Let us consider

first a domain where all domain values are finite

and identified (e.g., domain Location). The

corresponding GT levels might correspond to data

type extension, e.g.,: {address} → {city} →

{province} → {country} → Ø. If the domain of

values is infinite, each level of the GT could be

represented as a range and the degradation steps

could be implemented by means of functions, e.g.,:

Range100(s) = round(s,100) → Range1000(s) =

round(Range100(s), 1000) → Range5000(s) =

round(Range1000(s),5000) → Ø, where

round(x,y) is a function mapping a Salary value x

to a set of intervals of accuracy y€.

Whatever the form of the GT, we assume that the

degradation states match predefined application

purposes. To this extent, data degradation pursues

an orthogonal objective to data anonymization.

A Life-Cycle Policy (LCP) governs the

degradation process by fixing how attribute values

navigate from the GT leaves up to the root. While

we may consider complex LCPs (see Section 6.1),

we make the following simplifying assumptions:

(1) LCP degradations are triggered by time, (2)

LCP policies are defined on an attribute basis and

(3) LCP policies apply to all tuples of the same

table uniformly (rather than being user dependent).

Typically, LCP policies may be defined by federal

or national privacy agencies and imposed to

database service providers or suggested by the

service providers themselves to attract privacy

conscious clients.

= 1 day

Address City Region Country

d 1

0

∅

d 1

1
d 1

2
d 1

3

∆ 1

1
= 1 h. ∆ 1

2 ∆ 1

3
= 1 month∆ 1

0
= 10 min.

d 1

f

Figure 2. An example of an attribute’s LCP.

Definition: Life-Cycle Policy (LCP)

 A Life-Cycle Policy for an attribute is modeled by

a Deterministic Finite Automaton as a set of

attribute states (taken from the attribute domain

GT) denoting the level of accuracy of the

corresponding attribute, a set of transitions

between those states and the time delay after

which these transitions are triggered. More

precisely:

• The initial state of an attribute d, denoted by d
0
,

is the value of this attribute acquired at insertion

time of this tuple

• A transition d
j
 → d

j+1
 is triggered after a time

delay ∆ j
 called attribute state duration.

• A transition d
j
 → d

j+1
 has the following effect:

d
j+1→GTdomain(di).Parent(d

j
)

• The final state, denoted by d
f
, is the empty state

corresponding to the root of GT, meaning that

the value has been physically erased from the

database.

LCP policies are defined per degradable attribute.

A tuple is a composition of stable attributes,

denoted by si, which do not participate in the

degradation process and degradable attributes,

denoted by di, which participate in the degradation

process, each through its own LCP. A tuple

carrying multiple degradable attributes will be

subject to multiple degradation steps. This leads to

define the notion of tuple state as follows.

Definition: Tuple State

The combination of LCPs of all degradable

attributes of a tuple makes that, at each

independent attribute transition, the tuple as a

whole reaches a new tuple state t
k
, until all

attributes have reached there final state. As

pictured in Figure 3, the life cycle of a tuple can

thus be seen as a set of transitions between states

derived from the combination of each individual

attributes’ LCP. More precisely:

• The initial state of a tuple t, denoted by t
0
, is

defined by ∀ i, t0
.di = di

0
.

• An attribute transition t.di
j
 → t.di

j+1
 results in a

tuple state transition t
k
 → t

k+1

• t
k
.di denotes the state of attribute di during the

time period where t is in state t
k
.

• ∆t
k
 denotes the duration of a tuple state t

k

• ∆Ψk
 denotes the computability period of a tuple

state t
k
, representing the period (starting from the

tuple insertion in state t
0
) during which state t

k

can be computed, i.e., during which every

attribute is as accurate as or more accurate than

in state k: Ψk
 = Σj=0 to k(∆t

j
).

Old tuples

ST0

ST1

ST2

ST3

ST4

ST5

Recent tuples

Ψ0

Ψ1

Ψ2

Ψ3

Ψ4

Ψ5

s1

ST7

ST6

Ψ6

d2
0

d2
1

∅

d3
1

d3
0

d1
2

d1
0

d1
1

∅

∅S
e
t

o
f

tu
p

le
 s

ta
te

s

s1

1

∆t0 ∆t1 ∆t2 ∆t3 ∆t4 ∆t5

d1
0

d2
0

d3
0

∆1
0 ∆1

1

∆2
0

∆1
2

∆2
1

∆3
1∆3

0

t0

d1
1 d1

2

d2

d3
1

∆t6

t1 t2 t3 t4 t5 t6

Ø

Ø

Ø

Ø

Attributes LCPs

Tuple LCP

Figure 3. Relationships between attribute

states, tuple states and set of tuple states.

Definition: Set of Tuple States (ST)

 A set of tuple states, denoted by ST
i
, is the set of

all tuples t in state t
i
. Hence, all tuples in a set of

tuple state ST share the same levels of accuracy for

all their attributes.

3.2 Impact on the Query Language

As introduced earlier, the LCP degradation model

has been designed such that the degradation states

match identified application purposes. This

information is captured in each GT. Thus, we do

the natural assumption that applications are GT

aware and express query predicates according to

the level of each GT they need to accomplish their

purpose.

Our objective is to modify the SQL syntax as little

as possible while providing a clear semantics for

both selection and update queries in this context.

For the sake of simplicity, we consider below

queries expressed over a single relational table.

The basic principle is, for a given application

purpose, to declare the levels of accuracy required

for each degradable attribute of interest through a

specific statement of the form:

DECLARE PURPOSE MYPURPOSE

SET ACCURACY LEVEL Lj FOR R.di, ..

Lj refers here to the j
th

 level of GT.domain(di).

Based on this principle of defining purposes, the

semantics of SQL queries is captured by the

following definitions.

Definition: Domain of a purpose

Let A be a set of <d, L> pairs capturing the

accuracy level of all degradable attributes of

interest for a purpose P. The domain of a purpose

PA={<di,Lj>}, denoted by D(PA), is the union of

all sets of tuple states containing tuples having an

accuracy level equal to or greater than the

requested one for all their degradable attributes.

More formally:

(){ }U
k

i

i

kiA STttfPD
0

)(
=

→ ∈= where is a function

degrading tuples t in ST
i
to ST

k
for i ≤ k

kif →

Definition: Database view of a purpose

The database view of a purpose PA, denoted by

V(PA), corresponds to the projection of all tuples

belonging to the domain of a purpose, over the

degraded attributes of interest with the requested

accuracy. This means that attribute values of

tuples belonging to D(PA) are degraded in V(PA) if

their accuracy is higher than the one expected by

the purpose.

Once a purpose P has been declared, queries can be

expressed with no change on the SQL syntax. The

set of tuples considered by a Select statement

related to PA is simply V(PA). Let us illustrate this

with the following example given a table

Person(name, location, salary, …).

DECLARE PURPOSE STAT SET ACCURACY

LEVEL COUNTRY FOR PERSON.LOCATION,

RANGE1000 FOR PERSON.SALARY

SELECT * FROM PERSON WHERE LOCATION

LIKE”%FRANCE%” AND SALARY = ‘2000-3000’

V(Stat) will contain all tuples from the PERSON

table for which both attributes location and salary

have at least the accuracy Country and

Range1000. All other tuples are discarded. Before

evaluating a predicate or projecting a tuple on a

degraded attribute, the value of this attribute is

automatically degraded up to the requested level

of accuracy (thanks to the GTs) if required.

The semantics of update queries is as follows:

delete query semantics is unchanged compared to

a traditional database, except for the selection

predicates evaluated over V(PA). Hence, the delete

semantics is similar to the deletion through SQL

views. When a tuple must be deleted, both stable

and degradable attributes will be deleted. We

made the assumption that insertions of new

elements are granted only in the most accurate

state (ST
0
). Finally, we make the assumption that

updates of degradable attributes are not granted

after the tuple creation has been committed. On the

other hand, updates of stable attributes are

managed as in a traditional database.

The primary objective of this section is

introducing a simple and intuitive language to

manipulate a database implementing the

degradation model defined in Section 3.1. More

sophisticated semantics could be devised to allow

direct insertions and updates into ST
i
 with i>0.

More sophisticated query semantics could also be

devised, taking advantage of previous works

conducted in fuzzy databases [8] and probabilistic

databases [5]. For instance, queries could consider

tuples outside the domain of a purpose as defined

above (i.e., tuples having an accuracy level less

than expected by the query purpose) and deliver

probabilistic results. We left such studies for

future work.

3.3 Impact on transaction semantics

User transaction inserting tuples with degradable

attributes generates effects (i.e., database updates)

all along the lifetime of the degradation process,

that is from the transaction commit up to the time

where all inserted tuples have reached a final LCP

state for all their degradable attributes. This

significantly impacts the transaction semantics

since a transaction commit implicitly binds a

contract for future updates. Conceptually, a

transaction T inserting new tuples can be split into

a main transaction T
0
 modifying ST

0
 followed by a

succession of degradation subtransactions T
k
, each

T
k
 degrading the state generated by T

k-1
 after a

time interval fixed by the LCP. Thus degradation

subtransactions work on the behalf of their main

transaction. We could do a parallel with nested

transactions, sagas or other advanced transaction

models but the comparison stops here. Indeed, the

peculiarities of degradation subtransactions are

that they implement a part of an already

committed transaction, then their own commit is

mandatory and must respect time constraints.

Transactions which do not insert new tuples in ST
0

(i.e., reader transactions, writer transactions

performing only deletes and/or updating only

stable attributes) are called regular transactions.

We revisit the definition of the usual ACID

properties in this light.

∆-Atomicity: a regular transaction is atomic in the

usual sense meaning that either all or none of its

effects are integrated in the database. Let T
0
 be a

main transaction, T
0
 is said to be ∆-atomic,

meaning: (1) T
0
 is atomic with respect to all its

effects in ST
0
 and (2) k>0, all T

k
 effects must be

integrated in ST
k
 in any situation. ∆-Atomicity

assumes that no reason other than a failure can

cause an abort of T
k
 and that the recovery process

will enforce atomicity even in this case.

Consistency: consistency has the usual meaning

that no integrity constraints are violated. ∆-

Atomicity precludes aborts of degradation

subtransactions due to a runtime violation of

integrity. Hence, integrity constraints must be

checked by the main transaction for all subsequent

updates generated by the degradation process. To

enforce this property, we make the assumption that

integrity constraints are compiled into each GT so

that each degradation step is certified consistent a

priori.

Isolation: conflicts may occur between regular

transactions, main transactions and degradation

subtransactions. Regular and main transactions can

use traditional SQL isolation levels to protect their

execution properly and get the expected view of

the database. Degradation subtransactions need

simply to be protected against concurrent deletes

generated by uncommitted regular and main

transactions in the same ST.

∆ -Durability: the effects of regular transactions

are durable in the usual sense. The effects of main

transactions are said ∆-Durable. ∆-Durability

means that, for each tuple t inserted by a

committed main transaction, the history t
0
<t

1
<

…<t
i
<t

f
 is guaranteed in spite of any subsequent

failures, where:

t
f
 denotes the empty state produced by a tuple

deletion.

∀k, the states t
k
 and t

k+1
 are exclusive meaning that

after ∆t
k
, t

k
 is atomically replaced by t

k+1
 and

cannot be recovered.

Degradation subtransactions have no transactional

properties on their own, other than a requirement

for a degraded form of isolation. However, they

play an important role in the enforcement of the ∆-

ACID properties of the main transactions.

Notably, they must enforce a timeliness property

underlying ∆ -Durability. Timeliness is more

precisely defined as follows.

δ-Timeliness: To enforce ∆-Durability, a

degradation subtransaction T
k
 is assumed to

degrade the state generated by T
k-1

 after a time

delay equal to ∆t
k
. The time delay is initialized at

T
k-1

 commit. Respecting this time delay strictly

(e.g., in the second) would incur severe

performance penalty with no foreseeable benefit in

practice. Thus, we introduce a slightly weaker

property called δ-Timeliness where δ is a time

tolerance associated to the degradation process.

Under this property, ∆-Durability guarantees state

changes within a time window (∆ ± δ).

4. TECHNICAL CHALLENGES

Whenever an extension is proposed to a database

model, and whatever the merits of this extension

is, the first and legitimate question which comes in

mind is how complex will the technology be to

support it. Can existing DBMSs be extended with

no impact on the kernel, should a few well

identified core database techniques be revisited or

is a complete redesign of the DBMS mandatory?

Identifying the exact impact of making a DBMS

data-degradation aware leads to three more precise

questions.

How to enforce ∆-Durability and ∆-Atomicity over

degradable data? As stated in Section 3.3, updates

over stable data must be atomic and durable, as

usual. The novelty is thus in the management of

degradable attributes. ∆-Durability enforces that

the i
th

 state of a tuple remains durable during ∆t
i

and can in no way be recovered after this period.

As pointed out in [25], traditional DBMSs cannot

guarantee the non-recoverability of deleted data

due to different forms of unintended retention in

the data space, the indexes and the logs. Two

candidate techniques can be used to tackle this

issue in our context. The first one is overwriting

the data with its degraded value at each

degradation step, using a dummy value when the

data reaches the final state of its LCP. The second

one is precomputing all degraded versions of a

data at insertion time and storing them encrypted

with a different key (along with an identification

of this key in plaintext). At degradation time the

corresponding key(s) will be destroyed, making

the data undecryptable. These two techniques

exhibit opposite behaviors in terms of access

efficiency (depending on whether the data must be

decrypted) and degradation efficiency. The storage

of degradable attributes, indexes and logs have to

be revisited in this light. The performance problem

is particularly acute considering that each tuple

inserted in the database undergoes as many

degradations as tuple states. The second impact of

∆-Durability and ∆-Atomicity is on the recovery

protocol itself.

How to speed up queries involving degradable

attributes? Traditional DBMS have been designed

to speed up either OLTP or OLAP applications. In

OLTP workloads, insertions are massive, queries

are simple and usually highly selective, and

transaction throughput is the main concern. This

leads to the construction of relatively few indexes

on the most selective attributes to get the best

trade-off between selection performance and

insertion/update/deletion cost. In OLAP workloads

conversely, insertions are done off-line, queries

are complex and the data set is very large. This

leads to multiple indexes to speed up even low

selectivity queries thanks to bitmap-like indexes.

Data degradation can be useful in both contexts.

However, data degradation changes the workload

characteristics in the sense that OLTP queries

become less selective when applied to degradable

attributes and OLAP must take care of updates

incurred by degradation. This introduces the need

for indexing techniques supporting efficiently

degradations. Query optimization may also impact

tuple storage and index management because

queries apply to a purpose view potentially built

from several sets of tuple states of different

accuracies.

How to guarantee δ-Timeliness? Timeliness is a

fundamental property of a degradation model and

the δ-tolerance is introduced for the sole purpose

of performance. We believe that δ should remain

application dependent, but our intuition suggests a

direct relationship between Ψ and δ (i.e., the

shorter the computability period Ψk
 of a tuple state

t
k
, the smaller the tolerance δk

 to degrade it). For

this reason, and for the sake of simplicity, we

consider in the following that δ is directly

proportional to Ψ, that is δk
=ρΨk

, where ρ is a

constant for the system (e.g., ρ = 1%). Whatever

the degradation strategy, ensuring δ-Timeliness

forces degradation subtransactions to be executed

and completed in the time window (∆ ± δ).

Implementing degradation subtransactions in a

traditional DBMS by means of normal transactions

may lead to conflicts, then to deadline misses and

even to deadlocks. On the other hand, degradation

subtransactions cannot run without any isolation

control, forcing a new synchronization protocol to

be designed.

Next section focuses on technical issues related to

the three questions above. Alternatives regarding

the degradation process and its synchronization,

the storage model, the indexing model and the

logging and recovery management will be

discussed in the next sections. For the sake of

simplicity, we focus the discussion on the

degradable part of the database, as if a vertical

partitioning was made between stable and

degradable attributes
2
.

5. IMPACT OF DATA DEGRADATION ON

CORE DATABASE TECHNIQUES

As stated in Section 4, classical transactional

protocols can be used to synchronize the

read/write activity of regular and main transactions

and deliver the desired isolation level [6] between

them. The novelty introduced by the LCP model is

that degradation subtransactions change the

database state steadily and may also generate

conflicts. Solving these conflicts by executing

degradation subtransactions in the scope of

standard transactions has been shown a poor

alternative both in terms of blocking and deadlock

probability and in terms of performance (there is n

times more such degradation subtransactions than

main transactions where n is the number of tuple

states).

To decrease the total degradation cost, the idea is

taking advantage of the time tolerance brought by

δ-Timeliness to group a set of degradation

subtransactions into a single large degradation

step. At first glance, this solution seems counter-

productive by increasing the duration of the

degradation step and thereby the conflict

probability. In fact, the benefit is high considering

that: (1) the number of execution threads is

divided by the grouping factor, (2) the I/O

generated in the data space, index space and log

space can be grouped and produce sequential I/O

and (3) the guarantee of success of degradation

subtransactions can be exploited to avoid most

conflicts. Point 1 is self-explanatory; point 2 will

be more deeply discussed in Sections 5.2 to 5.4 so

that this section focuses on point 3.

5.1

Avoiding subtransactions conflicts

We propose a Least Effort Degradation process

where the degradation is performed at the coarsest

granularity authorized by the δ tolerance (i.e., the

laziest interpretation of Timeliness). Let us

consider one set of tuple state ST
k
 with a

2 Such partitioning could make sense in practice, with the benefit to keep

standard behaviour and performance on the stable part of the database.

degradation tolerance δk
. For ST

k
, a degradation

step DS will be triggered at every δk
 time interval.

The n
th

 DS triggered will enforces the effects of all

degradation subtransactions T
k
 planned during the

interval [Ψk
+nδk

, Ψk
+(n+1)δk

[. Tuples, index

entries and log records have to be synchronized to

make each set of tuple state consistent. This is

exactly what a degradation subtransaction

guarantees. Hence, a Degradation Agenda DA
k
 is

used to record the degradations to be performed in

every files participating in ST
k
. DA

k
 is a queue

filled by main transaction commits and consumed

by degradation steps. To know which records are

actually relevant to a degradation step in a given

file, we make the simplifying assumption that

every record is time-stamped with the commit date

of the main transaction having inserted it (better

solutions dependent of the file organization will be

discussed next).

Let us now consider how a transaction T (regular

or main) working on a database view involving the

sets of tuple states ST
0
 to ST

k
 must be

synchronized with a degradation step DS. The first

observation is that only a degradation of the oldest

tuples, i.e., those in ST
k
, may change the database

view of T. Indeed, DS is done on behalf of ∆-

atomic degradation subtransactions (commit is

guaranteed). Hence, the value delivered to T of a

tuple t in ST
i
 or in ST

i+1
 (with i<k) is guaranteed to

be identical after its projection on state k. Thus T

and DS do not need to be synchronized on ST
0
 ..

ST
k-1

. The second important remark is that

synchronization is still not necessary if T selects

an isolation level lower or equal to the SQL Read

Committed level. Indeed, DS cannot generate dirty

reads since DS effects are done on behalf of ∆-

atomic degradation subtransactions.

Hence, synchronization is necessary only with

isolation levels higher than Read Committed and

when DS degrades ST
k
. We propose a protocol

where locks are requested on time intervals. When

the n
th

 DS is triggered, it requests an exclusive

lock on the interval [nδk
, (n+1)δk

[since it will

degrade all data time-stamped within this interval.

Similarly, T must request a shared lock on the

intervals the accessed data belong to. If a conflict

occurs and DS is blocked, it will remain blocked at

most until its deadline δk
 is met

3
. At this time the

blocking transaction is aborted to enforce ∆-

atomicity and δ-Timeliness of all degradation

subtransactions. This situation is rather unlikely

considering that δk
 is supposed to be much larger

than a transaction duration. If a conflict occurs and

T should be blocked, it is useless for T to wait

since the accessed data will leave T’s database

view.

In addition to the performance benefit brought by

Least Effort Degradation, the synchronization

protocol presented above exhibits the following

interesting features: (i) it is independent of the way

data, index and logs are managed, assuming they

are time-stamped; (ii) it minimizes the impact on

main and regular transactions, never blocking

them and never aborting transactions shorter than

δk
.

5.2

Storage model for degradable attributes

The storage model selected for the degradable

attributes must cope with two contradictory

objectives: (1) minimizing the cost of

implementing an unrecoverable degradation and

(2) optimizing queries. The second objective

disqualifies degradation by encryption since this

would incur a decryption every time a degradable

attribute participates in a query and since this

would make it difficult to index encrypted

attributes. Partial solutions exist for the latter point

 [16] but the loss of index accuracy is usually high,

making these solutions not relevant in contexts

other than privacy preservation. The remaining

solution, that is overwriting attributes at

degradation time, can be implemented in various

ways: shall we store degradable attributes

altogether, separately, ordered by degradation

date, can the degradation be prepared by a

precomputing phase as suggested for degradation

by encryption? There are actually two main

dimensions dictating the storage model:

3 We do the assumption that the time spent to physically perform the

degradation is insignificant with respect to δ and can be neglected.

Clustered vs. Fragmented: Clustered means that

all degradable attributes of the same tuple are

stored together while Fragmented means that

degradable attributes are vertically partitioned.

The benefit of clustering is optimizing the

execution of queries involving several degradable

attributes. The benefit of fragmentation is

minimizing the quantity of data to be degraded at

each tuple state change.

Lazy vs. Eager: Lazy means that the degradation

overwrites a data item at the time of a state change

according to the δ-Timeliness. Eager means that

the degradation is precomputed, leading to store

all states of the same data item at insertion time

and to destroy them one by one at degradation

time. The benefit of Lazy is avoiding data

duplication among states while the benefit of

Eager is implementing degradation by deletions

rather than by updates, assuming that deletions

could be physically performed more efficiently

than updates
4
.

Both dimensions can be combined leading to four

possible storage models: Clustered-Lazy Storage

(CLS), Clustered-Eager Storage (CES),

Fragmented-Lazy Storage (FLS) and Fragmented-

Eager Storage (FES). Figure 4 illustrates these

four alternatives and show how the files images

evolve over time in each model.

Whatever the data format in a file (single attributes

or group of attributes depending on the

Clustered/Fragmented option) and the number of

files impacted when inserting new tuples

(depending on the Lazy/Eager option), there is a

high benefit of ordering a file's items according to

the data degradation date. Following this principle,

degradation can be performed in a set-oriented

way taking advantage of sequential I/O. Also,

since data items share the same degradation delay,

ordering the file on the degradation date is

equivalent to respecting the commit ordering.

However, taking full advantage of sequential I/O

4 Deletes are less costly than updates by definition since they do not need to

read the existing value. Deletes can be further optimized by organizing the

file in a circular way such that new insertions naturally erase old values. We

do not discuss this optimization further since it apply only to specific

situations (i.e., a constant throughput is required).

requires ad-hoc buffering and the degradation

policies detailed below.

L
a

z
y

Fragmented

E
a

g
e

r

Clustered

d2
0

d1
1

d1
2

d2
1

d1
0

d1
0

d2
0

d1
0

d2
1

d1
1

d2
1

d1
2

d2
1

d1
2

d1
0

d1
1

d1
2

d2
0

d2
1

d1
0

d2
0

d1
0

d2
1

d1
1

d2
1

d1
2

d2
1

d1
2

L
a

z
y

Fragmented

E
a

g
e

r

Clustered

d2
0d2
0

d1
1d1
1

d1
2d1
2

d2
1d2
1

d1
0d1
0

d1
0d1
0

d2
0d2
0

d1
0d1
0

d2
1d2
1

d1
1d1
1

d2
1d2
1

d1
2d1
2

d2
1d2
1

d1
2d1
2

d1
0d1
0

d1
1d1
1

d1
2

d1
2

d2
0d2
0

d2
1d2
1

d1
0d1
0

d2
0d2
0

d1
0d1
0

d2
1d2
1

d1
1d1
1

d2
1d2
1

d1
2d1
2

d2
1d2
1

d1
2d1
2

Figure 4. Storage model alternatives.

Whatever the storage model, an LCP generating k

tuple states leads always to manage k data files

and induces always k deletions or degradations

until reaching the tuple final state (see Figure 4).

In the following, we denote by f
k
 the data file

containing the tuple state ST
k
 so that, degrading

physically file f
i
 is logically equivalent to

degrading ST
i
.

Insertions: Inserted tuples are buffered in an

Uncommitted Inserts Buffer (UIB) in RAM until

transaction commit. Buffering uncommitted tuples

is necessary to guarantee a correct ordering in the

file in case of transaction abort. At commit time,

tuples move from the UIB buffer to Insert Buffers

associated with each file
5
, potentially suffering

degradations (e.g, in CES/FES models). When an

Insert Buffer is full, it is flushed to disk,

generating sequential I/Os.

Degradation Agenda: As already mentioned DA
k

records the degradations to be performed in every

files participating in ST
k
, the data file f

k
 being one

of them. Since degradation is performed at δk

granularity (Least Effort Degradation) and since f
k

is ordered on the degradation date, DA
k
 cardinality

can be limited to Ψk
/δk

 + 1 entries, thus allowing it

to be kept in RAM. Each DA
k
 entry simply stores

the offset of the most recent data stored in f
k
 that

must be degraded/deleted by the corresponding

degradation step. More precisely, the nth instance

5.3

5 Insert buffers can be shared by several files (e.g., with CES, one insert

buffer can be use for performing all the inserts in the different files).

of a degradation step DS refers to DA
k
[n] to

retrieve the offset of the last data item inserted in f
k

by the last main transaction committed in the

interval [Ψk
+nδk

, Ψk
+(n+1)δk

[. Note that

registering offsets in DA makes time-stamping the

data useless.

Degradation buffers: For CLS and FLS, a

degradation buffer is used as follows. When the

n
th

 DS is triggered, the data stored in the range

]DA
k
[n-1], DA

k
[n]] are loaded in the degradation

buffer, then degraded, written to their destination

file, and the range]DA
k
[n-1], DA

k
[n]] is physically

erased in f
k
. All these operations can be done by

sequential I/O. Obviously, a data range]DA
k
[n-1],

DA
k
[n]] is likely not to be aligned to disk page

frontiers (this is particularly true for ranges

smaller than a page). To avoid repetitive I/O of a

same page in that case, a page-aligned superset of

the range is read in the degradation buffer and

degraded data are also produced on a page basis
6
.

Unaligned data ranges introduce a requirement for

a buffer even for CES and FES, but in that case,

the buffer can be fairly small (up to one I/O page).

Indexing Model

The distinguishing characteristics of indexes over

degradable attributes are that the same attribute

may be considered with different accuracy levels

and that indexes must be degradable as well.

Let us consider first the multi-accuracy problem.

Mixing key values of different accuracy levels in

the same index will increase its size and then

decrease its performance with no benefit at query

time. So we suggest that each index contain keys

related to a single accuracy level. The second

point is that an index built over attribute state di
k

must index all the tuples containing this attribute

state to avoid maintaining one index per tuple state

and to avoid scanning several indexes to evaluate a

single predicate. The third point is whether there is

a benefit to continue indexing attributes entering a

low accurate state. Indeed, given the nature of

degradation, the lower the accuracy, the lower the

6 This introduces a slight complexity in the recovery process since the

database state on disk is no longer consistent wrt the degradation steps.

selectivity of the index. We believe that indexing

highly degraded attributes (i.e. creating a multi-

dimensional index) may make sense to benefit

from combined selectivities of several non-

selective predicates.

Let us now consider the index degradation

problem, starting the study by traditional B+Trees.

While B+Trees scale gracefully in terms of

number of indexing elements, their tree-like

structure makes them badly adapted to

degradation, precluding any locality of updates

and then generating random I/O. Encryption could

be considered as a solution. Assuming that index

keys themselves are not sensitive and remain in

clear text, the references to the indexed tuples

could be encrypted using degradable encryption

keys, following a principle similar to the one

described in Section 4. The Least Effort

Degradation mechanism suggests using the same

key for all references to be degraded by the same

degradation step. Additional information is added

to the Degradation Agenda of the index file in

order to destroy the adequate key at degradation

time. To prevent information disclosure which

could occur by joining different indexes applied to

the same data file on their encrypted references,

distinct encryption keys must be used by

degradation step and by index. Encryption keys

are stored in an unordered array and are referenced

by the index entries. The garbage collection

problem, that is eliminating the index entries

corresponding to degraded data, is more acute than

on the data files simply because stale index entries

augment the size of the index and decrease its

performance. We suggest cleaning up index nodes

lazily at the time of the next index node update.

All node entries are then scanned to try to decrypt

their reference. If the decryption does not success

(a constant marker is associated with each

reference to make this test possible), this means

that the decryption key has been degraded and the

index entry can be removed.

Low cardinality domains can be indexed thanks to

bitmaps as usual. Bitmaps are sequential data

structures and thus support insertion and

degradation gracefully. Medium cardinality

domains can be indexed by Value-List indexes

 [10]. This more sophisticated bitmap encoding

introduces an interesting trade-off between the

number of bitmaps to be maintained and updated

at tuple insertion time and the number of bitmaps

to be read at lookup time. However, this strategy

remains inoperative for large domains.

To deal with high domain cardinality (i.e.,

accurate levels of the GT) in an insert/erase

intensive context, we propose an alternative to

encrypted B+Trees and Value-List indexes called

Hash Sequential Lists (HSL). Roughly speaking,

HSL are hash buckets containing sequential lists

(i.e., ordered by insertion date) of <value, pointer>

where value is the value of the indexed attribute

and pointer a reference to the tuple having this

value. When a tuple is created, a new pair <value,

pointer> is simply inserted into the bucket

determined by the hash function, with no

additional computation. For exact match queries, a

single bucket is fully scanned to find all the tuples

matching the predicate. To enable range queries,

Range Sequential Lists (RSL) can be designed

using a range partitioning function.

Note that the buffering and degradation strategies

discussed in Section 5.2 apply to HSL, RSL and

bitmaps as well since they are all sequential data

structures.

5.4 Logging and Recovery Management

Logging techniques are traditionally used to

enforce atomicity and durability while permitting

classical buffer management optimizations like

writing in the database file before a transaction

commit (Steal strategy), after a transaction commit

(No Force strategy) as well as optimizing the

recovery process in case of failure (Checkpoint

and fast recovery techniques). Our goal is to keep,

whenever possible, these interesting optimizations

on the degradable part of the database. Note that

logging and recovery for stable data are assumed

to be ensured classically.

5.4.1 Undo Log

Degradation subtransactions are guaranteed to

never rollback even in case of failure (see the

recovery process described below). Thus, the undo

log is used to ensure the atomicity of main and/or

regular transactions only. Since updates are not

allowed on degradable attributes and inserts are

buffered in RAM (in the UIB) until transaction

commits (thus enforcing No Steal), the sole

operation that needs to be undone is DELETE. To

avoid requiring a degradation of the undo log we

propose to log only the transaction id and the

references of the deleted tuple rather than before

images. In case of a rollback, the deleted tuple can

be recovered from the redo log (see below) which

still contains an image of this tuple in the correct

accuracy (∆-Durability).

5.4.2 Redo Log

The redo log includes (i) the images of tuples

inserted by main transactions; (ii) the references to

tuples deleted by regular or main transactions; and

(iii) the transaction begin and commit statements.

Time-stamping the commit statements allows to

replay, if necessary, degradation subtransactions

and to rebuild data and index files (see below). We

suggest encrypting the images of inserted tuples

following the principle described in Section 4

since the redo log is not subject to queries. This

enables fast degradation without any access to the

redo log (encryption keys are simply erased). The

overhead of managing a redo log compliantly with

∆-durability induces thus a negligible encryption

overhead [25], and one I/O for key overwriting each

time interval δ for each attribute state.

5.4.3 Recovery

Let us first consider a cold recovery process

rebuilding entirely the database state using the

redo log file. Since the redo log includes the

complete history of main and regular transactions,

along with commit timestamps and key references,

this history can be replayed in the same order

leading to rebuild the data files, the index files and

the Degradation Agenda. However, since some

date keys have potentially been erased, insertions

corresponding to erased keys are ignored, leading

to recover the database in the same state as it was

just before the system failure. Thus, before

returning to a normal usage, the database must

perform all necessary degradations to make the

database state compliant with the LCP policy,

considering the current date. This can be done by

applying the degradation planned in the

Degradation Agenda. For a warm recovery after a

system failure, additional information is required

to synchronize the log content with the data files

and index files content. This information is

precisely the one contained in the Degradation

Agenda which must then be logged, similarly to

traditional checkpoint information.

6. OPEN ISSUES

This section reviews the choices made so far for

the model and discusses other alternatives and the

interest of considering them in future works. It

discusses different alternatives to implement a data

degradation enabled DBMS. Finally, it shows a

rough estimate of the performance of the storage

and indexing techniques proposed in this paper. A

real performance study is premature in this work.

Thus, the objective is more to anticipate potential

bottlenecks.

6.1 Discussion about the model

The data degradation model proposed in Section 3

is based on Life-Cycle Policies where (1) state

transitions are fired at predetermined time

intervals and (2) all tuples populating the database

are uniformly ruled by the same LCP. This model

inherits this from the limited data retention

principle, today well accepted. Time degradation

reflects well the fact that the value of an

information decreases over time (in terms of

usability, not in terms of privacy). Uniform LCP

have the benefit of simplicity and reflects the fact

that LCP should be preferably defined by civil

rights organizations or agencies rather than by

individuals for a better protection. However, other

forms of data degradation make sense and could

be the target of future work.

Event-based degradation. State transitions could

be caused by events like those traditionally

captured by database triggers. For example, an

online book shop could degrade the delivery

address of a customer order (e.g., down to city)

straight after the order status is turned to

“delivered” in the database.

Value-based LCP. In the same spirit, state

transitions could be conditioned by predicates

applied to the data to be degraded. For example,

web searches containing illness related keywords

could be considered as more sensitive than others

and thus being degrading more quickly.

User-defined LCP. Users do not have the same

perception of their privacy and do not attach either

the same value to the services which can be

offered to them in return for their data. Hence,

letting paranoid users defining their own LCP

makes sense. However, the observation of user’s

practice shows that few people actually (try to)

understand and use configurable privacy

protection tools [17] with a final negative impact

on protection.

Whatever the form of the degradation, the

foundation of the model presented in Section 3

remains valid (though slight adaptations are

required). A query still works on a database view

containing the projection of all tuples belonging to

the domain of purpose of interest, over the

degraded attributes of interest with the requested

accuracy. Similarly, the transaction semantics still

guarantees that the effects of a transaction are

made atomic and durable in the LCP sense (i.e., a

LCP automaton continues its execution after a

commit as long as the related data is alive, even in

case of crash, and previous states can never be

recovered after a transition has been fired). The

form of the degradation simply impacts which

tuples are actually degraded and when. This may

introduce however new technical challenges

because degradation steps cannot always be

managed in a set-oriented way.

6.2

6.3

Discussion about implementation

An important question is whether data degradation

could be developed on top of an existing DBMS

without modification in the kernel or must be

tightly integrated within the DBMS kernel.

The first option seems to us not realistic for two

main reasons: First, physical deletion is not

supported by existing DBMS. Miklau [25]

proposes a set of solutions to tackle this issue, like

(1) overwriting deleted data in the table and index

area before linking them in the free list and (2)

encrypting the log, two techniques to be integrated

in the DBMS kernel. Second, this option would

lead to bad performance since traditional database

techniques: (1) do not try to optimize deletes and

updates since they are considered as rare; (2) are

designed to favour either OLTP like queries

(minimal indexation of few selective attributes to

maintain a low insertion cost) or OLAP like

queries (maximal indexation on non selective

attributes – insertion cost is not a concern); and (3)

may lead to enforce a stronger, useless and thus

too costly transaction semantics (the protocol

proposed in Section 5.1 allows avoiding conflicts

between degradation subtransactions and regular

and main transactions). Finally, this option would

incur unclean hooks to enforce ∆-Durability.

We thus suggest to integrate data degradation into

existing DBMSs either by ad-hoc modifications of

traditional DBMSs kernels (as [25] does for

handling physical deletions), or by developing

plugs-in for traditional DBMSs.

Performance Estimates

The objective of this section is not to provide a

detailed performance analysis but rather to identify

potential bottlenecks and get a rough idea of the

performance impact of the candidate storage and

indexing techniques suggested in this paper. This

preliminary study will help making design choices

and focus our effort in developing the most

accurate techniques.

To this end, we use a simple simulation, allowing

us to change easily parameters and to simulate

steady state performance across those parameter

settings. After reaching a stable state, we count I/O

requests generated during an experimentation

period sufficiently large to observe degradation of

low accuracy data. Then, we compute the

corresponding disk time consumption according to

the disk parameters. The results are obtained

considering a single database table composed of

three degradable attributes called d1, d2, and d3

regulated by the LCP described in Figure 2. Table

1 gives the simulation parameters (Disk, LCP, and

experiment dependant parameters).

Table 1. Parameters of the simulation.

Parameters Value

 Exp. duration (sec.) 1800

Disk Page size (KB) 4

 Disk Latency (ms) 10

 Transfer rate (MB/s) 50

Data Attribute size (B) 10

files Pointer size (B) 4

 Insert buffer size (KB) 16

LCP Transition time delay for d1: ∆1
0, ∆1

1, ∆1
2 (h) 0.5, 4, 24

 Transition time delay for d2: ∆2
0, ∆2

1 (h) 2, 8

 Transition time delay for d3: ∆3
0, ∆3

1 (h) 3, 12

 LCP precision ρ 1%

Indexes BTree node size (KB) 4

 HSL buffers size (KB) 4

Varying parameters Fig. 7 – Fig. 8

RAM size (KB) 64 – 256 KB/index

Inserts per sec. (Ips) 20 – varying

Queries per sec. (Qps) 0 – varying

Storage model varying – clustered

Feeding strategy varying – eager

Indexes No – varying

Figure 5 shows the overhead of degradation

considering the four storage models introduced in

Section 5.2 with a constant insert rate. This

overhead is computed as the ratio between the disk

time consumption of each storage model with

degradation and their counterpart7 without

degradation, i.e., sequential raw data files with

accurate attribute values (note that indexes are not

considered here). Figure 5 leads to two remarks.

First, Eager degradation performs better than

Lazy. Lazy avoids some redundancy but increases

disk accesses: at degradation time, Lazy induces

reading, erasing, writing back degraded data,

while Eager requires only erasing. With the

fragmented storage model, each degradation step

involves a small quantity of data (typically less

than a page), leading to the introduction of a delete

buffer and thus similar costs for Eager and Lazy.

Second, Fragmented is twice as efficient as

Clustered since Fragmented generates fewer disk

read/write operations at insert and degradation

time. However, the impact of vertical partitioning

on query performance (tuple reconstruction) might

7 The Clustered (resp. Fragmented) storage without degradation stores

inserted tuples in a single sequential file (resp. in 3 sequential files) without

applying any degradation operation. They obtain the same results because

insertion into file(s) is buffered in both cases, and queries are not considered

in this experiment (which would introduce a difference since data is not

organized on disk in the same way). As a side effect, in Figure 5, we can

compare fragmented versus clustered ratios.

render this approach unattractive for some

applications.

0

5

10

15

20

Eager Lazy Eager Lazy

Clustered Fragmented

P
e
rf

o
rm

a
n
c
e
 r

a
tio

degrade

insert

Figure 5. Storage degradation overhead.

To determine a good indexation scheme for each

attribute’s accuracy, we compare the B-tree with

encrypted pointers denoted by BTree and Hash

Sequential Lists denoted by HSL. We consider an

index build on d1
1
. Queries8 consist in equi-

selections on d1
1
 evaluated using the index. Figure

6 plots the performance of both strategies for

different query rate (Qps is 10, 20, 30, 40) with an

increasing rate of inserts per second. Two main

conclusions can be raised from this figure. First,

HSL scales better at a high insert rate since it is

based on sequential insert/degrade operations.

BTree is more sensitive to insert rate increase

(random I/Os). Second, HSL suffers a higher

penalty while increasing the query load. This

Figure shows clearly that each indexing technique

has its own area of interest in term of insert/query

workloads. Mainly, HSL behaves better at high

insert/low query ratios, while BTree is better at the

opposite load point (low insert/high query ratios).

0

200

400

600

800

1000

1200

1400

1600

0 10 20 30 40

Insert per sec. (Ips)

D
is

k
 t
im

e
 c

o
n
s
u
m

p
tio

n
 (

s
e
c
.)

BTree

Qps=40

Qps=40

Qps=30

Qps=20

Qps=10

Qps=30

Qps=20

Qps=10

HSL

Figure 6. Index access time consumption.

Experiments on the simulator have also allowed

delivering the following interesting remarks:

8 We only considered the index lookup costs first tuples are not always

accessed, and second to avoid interfering with the data cache behaviour.

• Redo Log cost is almost not impacted by

degradation. While degradation increases the

redo log footprint (roughly by a factor of the

number of attribute states), the number of I/O

requests can be kept constant but not their length,

allocating a larger redo buffer.

• Increases of LCP precision have small impact on

performance. Increasing the LCP precision

induces more frequent degradations, but on less

data. Delete buffers are then used to minimize

overheads for sequential structures (raw data

files and HSL). We observe the convergence of

Lazy and Eager strategies for raw data. HSL

remains unchanged, a delete buffer per Hash

bucket being required anyway. Regarding

BTrees and redo logs, a larger number of keys

must be managed, though remaining relatively

small (e.g., ρ=0.1% leads to manage 1000 keys).

• Each index has its area of interest. While we did

not implement the value list indexes [10],

experiments with Btree, HSL and classical

bitmap indexes show that the important

parameters are (i) the size s of the time window

covered by the index, (ii) the insertion rate i, (iii)

the query rate q, and (iv) the number d of distinct

values. Considering HSL and Btree, HSL

improves when either s or q decrease and i

increases while Btree improves when s or q

increases, i decreases. Both are independent of d.

When d is rather small, bitmap becomes

interesting. This suggests for a given database

workload and LCP: use HSL for small time

window (probably for the most accurate attribute

states i.e., the bottom levels of the GT), then

Btrees for large time window (probably for

average accuracy attribute state, i.e., medium

levels of the GT) and finally, Bitmap for highly

generalized attribute states, i.e., upper levels of

the GT.

7. CONCLUSION

Data degradation is still an unexplored area and

we believe it should deserve a stronger interest for

the new opportunities it opens in terms of data

protection. Applications to the safeguard of

personal data are obvious, in particular within

automated data monitoring environments, but

corporate, administrative or military applications

can be targeted as well. Data degradation provides

guarantees orthogonal and complementary to those

brought by traditional security services like access

control, intrusion detection systems, etc. The

benefits of a progressive and irreversible data

degradation is twofold: (i) by reducing the amount

of online accurate data, the privacy offence

resulting from a trail disclosure is drastically

reduced and (ii) degrading the data in line with the

application purposes offers a new compromise

between privacy preservation and application

reach. More, by degrading the data repeatedly,

attacks are forced to be repeated as well and

become more easily detectable.

To the best of our knowledge, this paper is the first

to propose a degradation model for databases. An

intuitive semantics has been defined for this

model. A first analysis of the impact of this model

over the storage, indexation and transaction

management has been conducted, and new

techniques have been proposed. This must be

considered as a first step towards the definition of

more sophisticated and accurate solutions we plan

to experiment.

8. REFERENCES

[1] Aggarwal, G., Bawa, M., Ganesan, P.,

Garcia-Molina, H., Kenthapadi, K., Mishra,

N., Motwani, R., Srivastava, U., Thomas, D.,

Widom, J., Xu, Y. Vision Paper: Enabling

Privacy for the Paranoids. In VLDB, 2004.

[2] Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.

Hippocratic databases. In VLDB, 2002.

[3] Angryk R.A., Petry F.E. Mining Multi-Level

Associations with Fuzzy Hierarchies. In

Fuzzy Systems, 2005

[4] AOL search data scandal.

http://en.wikipedia.org/wiki/AOL_search_

data_scandal, 2006.

[5] Barbara D., Garcia-Molina H., Porter D. A

probabilistic relational data model. In Int.

Conf. on Extending Database Technology,

1990.

[6] Berenson, H., Bernstein, P.A., Gray, J.,

Melton, J., O'Neil, E.J., O'Neil, P.E. A

Critique of ANSI SQL Isolation Levels. In

SIGMOD, 1995.

[7] Bouganim, L., Pucheral, P. Chip-Secured

Data Access: Confidential Data on Untrusted

Servers. In VLDB, 2002.

[8] Buckles B. P., Petry F. E. Fuzzy databases in

the new era. In ACM Symposium on

Applied Computing, 1995.

[9] Cavusoglu, H., Mishra, B., Raghunathan, S.

The value of intrusion detection systems in

information technology security architecture.

Info. Sys. Research, 16, 1 (Mar. 2005).

[10] Chan, C. Y., Ioannidis, Y. E. An Efficient

Bitmap Encoding Scheme for Selection

Queries. In SIGMOD, 1999.

[11] Computer World. NASA sites hacked. Dec.

2003.

http://www.computerworld.com/securitytopi

cs/security/cybercrime/story/0,10801,88348,

00.html

[12] Cranor L., Langheinrich M., Marchiori M.,

Presler-Marshall M., and Reagle J. The

Platform for Privacy Preferences 1.0

(P3P1.0) Specification. W3C Recom., 2002.

[13] Directive 95/46/EC of the European

Parliament and of the Council of 24 October

1995 on the protection of individuals with

regard to the processing of personal data and

on the free movement of such data, 1995.

http://ec.europa.eu/

justice_home/fsj/privacy/law/index_en.htm

[14] EDRI. Telecommunication data retention.

2007.

http://www.edri.org/issues/privacy/datareten

tion

[15] Grimm, R., Rossnagel, A. Can p3p help to

protect privacy worldwide? In ACM

workshops on Multimedia, 2000.

[16] Hacigumus H., Iyer B. R., Li C., Mehrotra S.

Executing SQL over encrypted data in the

database service-provider model. In

SIGMOD, 2002.

[17] Hillyard, D., Gauen, M. Issues around the

protection or revelation of personal

information. Knowledge, Technology, and

Policy, 20, 2 (July 2007).

[18] Langheinrich, M. A privacy awareness

system for ubiquitous computing

environments. In Ubiquitous Computing,

2002.

[19] Machanavajjhala, A., Gehrke, J., Kifer, D.,

Venkitasubramaniam, M. L-diversity:

Privacy beyond k-anonymity. In ICDE,

2006.

[20] Meyerson, A., Williams, R. On the

complexity of optimal k-anonymity. In

PODS, 2004.

[21] Mills, E. Google adding search privacy

protections. news.com,

http://news.com.com/2100-1038_3-

6167333.html

[22] MyLifeBits Project.

http://research.microsoft.com/barc/mediapre

sence/MyLifeBits.aspx

[23] Organisation for Economic Co-operation and

Development (OECD), OECD Guidelines on

the Protection of Privacy and Transborder

Flows of Personal Data, 23rd Sept., 1980.

http://www.it.ojp.gov/documents/OECD_FI

Ps.pdf

[24] Oracle Corp. Oracle Database, Advanced

Security Administrator’s Guide, 10g Release

2 (10.2). Oracle doc. B14268-02, 2005.

[25] Stahlberg, P., Miklau, G., Levine, B.N.

Threats to privacy in the forensic analysis of

database systems. In SIGMOD, 2007.

[26] Sweeney, L. K-anonymity: A model for

protecting privacy. Int. Journal on

Uncertainty Fuzziness and Knowledge-based

Systems, 10, 5 (Oct. 2002).

[27] The Financial Times. Chinese military

hacked into Pentagon. Sept. 2007.

http://www.ft.com/cms/s/0/9dba9ba2-5a3b-

11dc-9bcd-0000779fd2ac.html

[28] The Washington Post. Consultant Breached

FBI's Computers. July 2007.

http://www.washingtonpost.com/wp-

dyn/content/article/2006/07/05/AR20060705

01489_pf.html

[29] UK government loses personal data on 25

million citizens. http://www.edri.org/

edrigram/number5.22/personal-data-lost-uk

