
 

Dégradation Progressive et Irréversible des Données 
 

Nicolas Anciaux*, Luc Bouganim*, Harold van Heerde ***, Philippe Pucheral*,**, Peter M.G. Apers*** 

* INRIA Rocquencourt  
Le Chesnay, France 

<Fname.Lname>@inria.fr 

** PRiSM Laboratory  
University of Versailles, France 

<Fname.Lname>@prism.uvsq.fr

*** CTIT  
University of Twente, The Netherlands  

{h.j.w.vanheerde,apers}@ewi.utwente.nl
 

 

 

RESUME 

Notre activité quotidienne laisse des traces digitales dans un nombre croissant de bases de données (sites 

Web commerciaux, fournisseurs de service Internet, moteurs de recherche, etc.). Ces traces sont souvent 

exposées à des divulgations accidentelles, résultats de négligence, de piratage ou d’interrogation abusive 

encouragée par des chartes de confidentialité peu précises. Personne n'est à l'abri car une situation 

particulière (la recherche d'un emploi, une demande de crédit) peut rendre un historique, a priori 

quelconque, soudainement intéressant. Par définition, le contrôle d'accès ne peut empêcher ce type de 

divulgation, ce qui a motivé l'intégration du principe de conservation limitée des données dans les 

législations protégeant les données personnelles. Ce principe vise à effacer physiquement les données des 

bases de données après une période de temps prédéfini. Toutefois, ce principe est difficile à mettre en 

œuvre, ce qui conduit souvent à conserver des informations sensibles pendant des années. Dans cet article, 

nous proposons un modèle de dégradation des données dans lequel les données sensibles sont soumises à 

une dégradation progressive et irréversible depuis leur collecte (état précis), en passant par des états 

intermédiaires dégradés mais partiellement exploitables, jusqu'à leur disparition totale lorsqu'elles 

deviennent inutiles. L’avantage de la dégradation de données est double: (i) en réduisant la quantité de 

données précises, l'impact de la divulgation d'un historique (dégradé) est considérablement réduit et (ii) la 

dégradation des données en conformité avec les besoins des applications offre un nouveau compromis 

entre fonctionnalité et préservation de l'intimité. Nous analysons ensuite l’impact de ce modèle sur les 

techniques de base des SGBD (stockage, indexation et gestion de transactions) et proposons des solutions 

adaptées. 
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1. INTRODUCTION 

People give personal data all the time to 

commercial web sites, search engines, web 

browsers, ISPs and credit-card companies. 

Personal digital trails end up in databases 

somewhere, where they can be analyzed to serve 

new purposes (e.g., behavioural targeting). More 

insidiously and continuously, cell phones, GPS 

devices, RFID tags and sensors are giving even 

more accurate information about our daily life 

(location, journey, consumption habits, hobbies, 

relatives). If individuals could be tempted to fulfil 

Vannevar Bush's Memex vision by recording their 

complete life  [22], there is an unprecedented threat 

on privacy if others try to do so. 

Personal digital trails are difficult to protect in 

practice. As any data, they are exposed to 

accidental disclosures resulting from negligence or 

piracy. To cite a few, the personal details of 25 

million UK citizens have been recently lost 

inadvertently  [29] and some of the data published 

by AOL about Web search queries of 657,000 

Americans have been deanonymized  [17]. 

Regarding piracy, even the most defended servers 

(including those of Pentagon  [27], FBI  [28] [11] 

and NASA  [11]) are successfully attacked. But 

more, personal digital trails are often weakly 

protected by obscure and loose privacy policies 

which are presumed accepted when exercising a 

given service. This fosters ill-intentioned 

scrutinization and abusive usages justified by 

business interests, governmental pressures and 

inquisitiveness among people. Not only criminals 

and terrorists are threatened. Everyone may 

experience a particular event (e.g., accident, 

divorce, job or credit application) which suddenly 

makes her digital trail of utmost interest for 

someone else. Companies like Intelius or 

ChoicePoint make scrutinization their business 

while others like ReputationDefender provide a 

lucrative service to destroy the sensitive part of 

personal digital trails subject to scrutinization. 

In this paper, we call trail disclosure the leakage 

of data pertaining to a personal digital trail and 

resulting from negligence, attack or abusive 

scrutinization or usage. By definition, a trail 

disclosure cannot be tackled by any security 

mechanism because its occurrence assumes that all 

security mechanisms have been bypassed or that 

the access control policy has been defined too 

weakly. Limiting the data retention period is a 

means by which the impact of trail disclosure can 

be reduced. Promoted by most legislations 

protecting personal data  [13] [23], the limited data 

retention principle consists in attaching a lifetime 

to a data compliant with its acquisition purpose, 

after which it must be withdrawn from the system. 

The shorter the retention period is, the smaller the 

total amount of data needlessly exposed to 

disclosure. Beyond the protection of personal data, 

the limited data retention principle is also a 

cornerstone of the ISO/IEC 27002:2005 

recommendation for protecting enterprise 

information systems. 

The limited data retention principle is however 

difficult to put in practice. The first difficulty 

comes from the determination of the right 

retention period for each data item. Depending on 

the data category and the country, minimal 

retention periods can be fixed for law enforcement 

or legal processes purposes (e.g., banking 

information in UK cannot be destroyed before 7 

years). In this case, the retention limit is set to this 

same value for privacy preservation purpose, but 

such limits are usually large. For the large amount 

of data not covered by law, the retention limit is 

supposed to reflect the best compromise between 

privacy preservation and application purposes 

reach. In practice, the same data item is likely to 

serve different purposes, leading selecting the 

largest retention limit compatible with all 

purposes, as suggested in  [2]. More, the purposes 

exposed in most privacy policies are fuzzy enough 

to defend very long retention limits (years or 

decades), denaturing the initial principle. As a 

consequence, retention limits are seen by civil 

rights organizations as a deceitful justification for 

long term storage of personal data by companies 

 [14]. The retention problem has become so 

important and the civil pressure so high that 

practices start changing. For instance, Google 

announced that cookies will expire after two years 

instead of being retained up to 2038 as before and 



search engines like Ask and Ixquick advertize 

retention limits expressed in terms of days. The 

second difficulty related to limited data retention 

is its effective implementation. As pointed out in 

 [25], no existing database system can guarantee 

that data cannot be recovered after a regular 

delete. Indeed, every trace of a deleted data must 

be physically cleaned up in the data store, the 

indexes and the logs, a technical issue still open 

today. 

The approach proposed in this paper opens up a 

new alternative to reason about and implement 

limited data retention. It is based on the 

assumption that long lasting purposes can often be 

satisfied with a less accurate, and therefore less 

sensitive, version of the data  [21]. For example, 

online companies record accurate data about the 

client purchases in order to process the 

transactions and the delivery. Then these records 

are kept for years in databases to focus advertising 

actions and increase profits. This recording is 

valuable for the client too because she can benefit 

from recommendations and special offers related 

to her purchase history. However, the purchase 

category is usually enough to process 

recommendations and offers (e.g., recording 

Book/Religion/Buddhism for a purchase in a 

bookshop is as informative as the exact record for 

this purpose) and the category could in turn 

become less informative over time (e.g., 

Book/Religion) without penalty because user 

preferences evolve as well. Equivalent privacy 

benefits can be foreseen by degrading attributes of 

many types of recorded events. For example, the 

exact location of a driver acquired by a navigation 

system needs to be maintained during a short 

period for guiding purpose and then could be 

degraded at a lower accuracy (e.g., city) to plan 

and optimize next trips. An accurate web history 

could be retained for the duration of a work task 

and then visited sites could be degraded to their 

topic classification to help forming communities 

of users sharing the same interest.  

As exemplified above, the objective of the 

proposed approach is to progressively degrade the 

data after a given time period so that (1) the 

intermediate states are informative enough to serve 

application purposes and (2) the accurate state 

cannot be recovered by anyone after this period, 

not even by the server1. To the best of our 

knowledge, this paper is the first attempt to 

implement the essence of the limited data retention 

principle, that is limiting the retention of any 

information to the period strictly necessary to 

accomplish the purpose for which it has been 

collected. Hence, if the same information is 

collected to serve different purposes, degraded 

states of this information and their respective 

retention limits are defined according to each 

application purpose. 

The expected benefit of our data degradation 

model is twofold: 

• Increased privacy wrt trail disclosure: no 

information is exposed to disclosure longer and in a 

state of higher accuracy than strictly necessary to 

accomplish the purpose motivating its retention. To 

this respect, and contrary to current practices, data 

degradation implements a strict interpretation of the 

limited data retention principle.  

• Preservation of application reach: compared to 

data anonymization, data degradation keeps the 

identity of the users intact, allowing for user-

oriented purposes. The intermediate states of a 

degraded information are defined according to 

the purposes the user opts-in rather than to a 

current data distribution in the database. 

As exemplified above, data degradation attempts 

reducing retention limits to their minimum, 

leading to a dramatic reduction of the total amount 

of data needlessly exposed to trail disclosure. An 

important question is whether data degradation can 

be reasonably implemented in a DBMS.  

The contribution of this paper is twofold:   

• We propose a simple and effective data 

degradation model, providing a clean and 

intuitive semantics to SQL queries involving 

degraded data. 

• We identify technical challenges introduced by 

this model in terms of data storage, indexation 

                                                 

1 Data degradation can be seen as footsteps in the sand fading away when 

time passes by, only leaving vague traces of the original footprint. 



and transaction management, and propose 

preliminary solutions. 

The remainder of this paper is organized as 

follows: Section 2 positions data degradation in 

relation to related works and gives an intuitive 

representation of the expected privacy benefit. 

Section 3 introduces the data degradation model 

and gives definitions used throughout this paper. 

Section 4 identifies technical challenges raised by 

our model. Section 5 details the impact of data 

degradation on core database technology and 

proposes preliminary solutions. Section 6 

discusses open issues, gives hints for 

implementing data degradation in a database 

server and finally discusses briefly performance 

issues. Section 7 concludes. 

2. DATA DEGRADATION POSITIONING 

2.1 Related Work 

Existing works on data privacy and security which 

are related to the problem tackled in this paper can 

be grouped in four classes. They are quickly 

described below and put in perspective with 

limited data retention. 

Access & usage control: Access control models 

like DAC (Discretionary Access Control) and 

RBAC (Role-Based Access Control) are part of 

the SQL standard and are widely used in the 

database context to protect sensitive data against 

unauthorized accesses. More recently, efforts have 

been put in increasing privacy by providing the 

means to let donors themselves express their 

privacy requirements, and to control how data can 

be accessed and used by service providers. The 

platform for privacy preservation  [12] applies the 

well known need-to-know and consent policies to 

web sites, allowing encoding privacy policies into 

machine readable XML  [12]. Web sites describe 

their practices and any P3P compliant browser can 

be parameterized to reject policies hurting the 

privacy of the owner. P3P itself only describes 

policies and does not enforce them, making it little 

more than a standardized complement to privacy 

laws  [15]. Techniques like the privacy aware 

database (PawS) goes a step further, letting the 

system automatically interpret and apply the 

policies to the data  [18]. The work on Hippocratic 

databases  [2] has been inspired by the axiom that 

databases should be responsible for the privacy 

preservation of the data they manage. The 

architecture of Hippocratic DBMS is based on 10 

guiding principles derived from privacy laws, 

including the Limited retention principle more 

deeply discussed in next section.  

The access & usage control approach is based on 

the assumption that the control is never bypassed. 

Thus, while contributing to the protection of data 

privacy, this approach does not answer the same 

problem as limited data retention, that is limiting 

the impact of trail disclosure. However, both 

approaches are complementary, considering that 

access & usage control remains necessary to 

regulate the use of mandatory information. 

Server-based protection: In addition to access & 

usage control, security measures like database 

encryption, database audit and intrusion detection 

systems (IDS) are often in place at the server. The 

increase in security brought by database 

encryption is limited when decryption occurs at 

the server  [7] [16] and encrypting a large portion of 

the database may bring important overheads  [24]. 

IDS  [9] and database audit  [24] and are both based 

on a constant monitoring of the system. IDS use a 

system of rules, generally based on attack scenario 

signatures, to generate alerts when abnormal 

behaviour is detected.  

While all those techniques limit the risks of 

attacks, they do not prevent them totally and are 

obviously ineffective with respect to other sources 

of trail disclosure (e.g., negligence, weak policies, 

governmental pressure). Conversely, IDS are very 

effective to detect repetitive attacks. Combined 

with data retention, IDS will thus make it very hard 

for an attacker to obtain a large consecutive history 

of accurate data by continuously spying the 

database. 

Client-based protection: When the database server 

cannot be fully and permanently trusted, an 

alternative is to rely on the donor herself, making 

her responsible for protecting her own data. In the 

p4p framework  [1], the donor keeps control about 

which information to release to service providers. 



P4P targets at the ‘paranoid’ users who does not 

trust the collecting organizations, in contrast to the 

users of P3P frameworks. Other client-based 

approaches advocate the encryption/decryption of 

the data at the client device  [7] [16] to make the 

system robust against server attacks.  

Both approaches are not general, forcing all 

updates and queries on the database to go through 

the client, thus putting strong constraints on how 

applications are developed and deployed. Limited 

data retention does not put these restrictions on 

applications. Data can still be stored at the server 

side and still meets the targeted application needs 

while the definition of retention periods allows 

controlling the privacy risk.  

Data anonymization: Anonymization is good 

practice when datasets have to be made public 

without revealing personal sensitive data, for 

example, when used for disclosing datasets for 

research purposes. Datasets can then be 

anonymized such that the privacy sensitive data 

cannot be linked to there owners anymore. k-

Anonymity  [26] is based on the idea of masking 

(parts of) the (quasi) identifier of a partly privacy 

sensitive tuple, such that the privacy part of the 

tuple will be hidden between k-1 potential 

candidate identifiers within the same dataset. For 

example, the zip-code, date of birth and gender 

may uniquely identify an individual and reveal its 

corresponding sensitive data. By masking the date 

of birth, the dataset should contain at least k 

occurrences of the same <zip-code, gender> 

combination.   

While k-anonymisation shares some similarities 

with our data degradation model, both pursue 

different objectives. In practice, k-anonymisation 

could result in a strictly k-anonymous database 

with the cost of loosing much usability, where 

other purposes than statistics computations cannot 

be satisfied. In addition, correctly anonymizing the 

data is a hard problem  [20], especially when 

considering incremental data sets or when 

background knowledge is taken into account 

 [19] [17], as exemplified by AOL scandal  [17].  

In contrast, limited data retention is performed on 

an individual base and is particularly useful when 

data needs to be accurate for some time to make 

well defined services possible. Moreover, limited 

data retention can keep the identifier of the donor 

intact; hence, user-oriented services can still 

exploit the information to the benefit of the donor.  

2.2 Degradation vs retention 

Time

Information 

quantity on 

server

1st, 2nd and 3rd degradation step

Retention limit

DD

LR

IR

t0 t1 t2 t3  

Figure 1. Data degradation impact. 

Limiting data retention thus remains the ultimate 

barrier to trail disclosure. But to the best of our 

knowledge, this paper is the first to concretely and 

accurately address the implementation of this 

principle.  [2] suggests including limited data 

retention in the design of Hippocratic databases 

but leaves it for future works. Moreover, the 

approach suggested in  [2] is different since a data 

item that is likely to serve different purposes sees 

its retention limit extended to the duration required 

by the longest lasting purpose. We refer hereafter 

to this principle by the term lax limited data 

retention, or lax retention for short, to distinguish 

it from the strict retention implemented by data 

degradation. For a given information serving 

different purposes, data degradation fixes the level 

of accuracy and the retention limit strictly needed 

by each purpose, thereby organizing the lifecycle 

of this information from its acquisition up to its 

final destruction. Doing this, the amount of 

excessive information exposed to trail disclosure 

decreases over time much rapidly than with lax 

retention.  

 Figure 1 gives an intuitive representation of the 

privacy benefit provided by data degradation. 

Curve IR (Infinite Retention) plots the total 

amount of information gathered in a traditional 

database over time assuming a constant tuple 



insertion rate. Curve LR (Lax Retention) shows 

that the amount of information kept available 

online, and then exposed to disclosure, remains 

constant once the retention limit has been reached 

(at t3) instead of increasing linearly. Indeed, after 

this threshold, the tuple insertion and deletion rates 

are equal. Curve DD (Data Degradation) shows 

that the insertion rate in terms of “quantity” of 

information starts decreasing once the first 

degradation step is reached (at t0). Actually, the 

number of tuples acquired by time unit is the same 

as with IR and LR but the accuracy of tuples 

acquired at time t0 starts degrading at time t1 and 

the degradation rate equals the insertion rate. The 

slope of DD decreases again after t2 (second 

degradation step) up to become null at time t3 (as 

for LR, deletion and insertion rates are equal after 

t3). The integral of each curve can be interpreted as 

the total amount of information exposed to trail 

disclosure at any time. Though informal, this 

figure gives a clear intuition about the benefit 

provided by data degradation with respect to trail 

disclosure. 

3. LCP DEGRADATION MODEL 

3.1 Degradation policy and tuple states 

In our data degradation model, called Life-Cycle 

Policy (LCP) model, data undergoes a progressive 

degradation from a precise state at data collection 

time to intermediate less accurate states, to 

elimination from the database. We capture the 

degradation of each piece of information (typically 

an attribute) by a Generalization Tree (GT). A 

generalization tree prescribes, given a domain 

generalization hierarchy of the corresponding 

attribute, the levels of accuracy the attribute can 

take during its life time. 

For simplicity we chose here to use a crisp 

generalization tree (as defined more precisely 

below), although techniques for fuzzy 

generalization hierarchies exists and could be 

applicable to our degradation model  [3].  

Definition: Generalization Tree (GT) 

A generalization tree is a rooted tree where: 

• The leaves of the tree contain the most accurate 

values of the domain. 

• The parents contain the value of the child node 

after one degradation step. Hence, a path to an 

ancestor in the GT expresses all forms a value 

can take in its domain.   

• The root of the GT contains the null value. 

What “more accurate” means depends on the 

domain, but for example if the domain is location 

then node n may contain the value Los Angeles 

and the parent of n may contain California. 

Throughout this paper we will assume that a GT is 

defined for each domain of each degradable 

attribute di and is denoted GTdomain(di). The parent 

value of value v of domain D is obtained using the 

function GTD.Parent(v). In practice, a GT can be 

implemented in different ways. Let us consider 

first a domain where all domain values are finite 

and identified (e.g., domain Location). The 

corresponding GT levels might correspond to data 

type extension, e.g.,: {address} → {city} → 

{province} → {country} → Ø. If the domain of 

values is infinite, each level of the GT could be 

represented as a range and the degradation steps 

could be implemented by means of functions, e.g.,: 

Range100(s) = round(s,100) → Range1000(s) = 

round(Range100(s), 1000) → Range5000(s) = 

round(Range1000(s),5000) → Ø, where 

round(x,y) is a function mapping a Salary value x 

to a set of intervals of accuracy y€.  

Whatever the form of the GT, we assume that the 

degradation states match predefined application 

purposes. To this extent, data degradation pursues 

an orthogonal objective to data anonymization.    

A Life-Cycle Policy (LCP) governs the 

degradation process by fixing how attribute values 

navigate from the GT leaves up to the root. While 

we may consider complex LCPs (see Section 6.1), 

we make the following simplifying assumptions: 

(1) LCP degradations are triggered by time, (2) 

LCP policies are defined on an attribute basis and 

(3) LCP policies apply to all tuples of the same 

table uniformly (rather than being user dependent). 

Typically, LCP policies may be defined by federal 

or national privacy agencies and imposed to 

database service providers or suggested by the 

service providers themselves to attract privacy 

conscious clients. 
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Figure 2. An example of an attribute’s LCP. 

 

Definition: Life-Cycle Policy (LCP)  

 A Life-Cycle Policy for an attribute is modeled by 

a Deterministic Finite Automaton as a set of 

attribute states (taken from the attribute domain 

GT) denoting the level of accuracy of the 

corresponding attribute, a set of transitions 

between those states and the time delay after 

which these transitions are triggered. More 

precisely: 

• The initial state of an attribute d, denoted by d
0
, 

is the value of this attribute acquired at insertion 

time of this tuple 

• A transition d
j
 → d

j+1
 is triggered after a time 

delay ∆ j
 called attribute state duration. 

• A transition d
j
 → d

j+1
 has the following effect: 

d
j+1→GTdomain(di).Parent(d

j
)  

• The final state, denoted by d
f
, is the empty state 

corresponding to the root of GT, meaning that 

the value has been physically erased from the 

database.  

LCP policies are defined per degradable attribute. 

A tuple is a composition of stable attributes, 

denoted by si, which do not participate in the 

degradation process and degradable attributes, 

denoted by di, which participate in the degradation 

process, each through its own LCP. A tuple 

carrying multiple degradable attributes will be 

subject to multiple degradation steps. This leads to 

define the notion of tuple state as follows. 

Definition: Tuple State  

The combination of LCPs of all degradable 

attributes of a tuple makes that, at each 

independent attribute transition, the tuple as a 

whole reaches a new tuple state t
k
, until all 

attributes have reached there final state. As 

pictured in  Figure 3, the life cycle of a tuple can 

thus be seen as a set of transitions between states 

derived from the combination of each individual 

attributes’ LCP. More precisely: 

• The initial state of a tuple t, denoted by t
0
, is 

defined by ∀ i, t0
.di = di

0
. 

• An attribute transition t.di
j
 → t.di

j+1
 results in a 

tuple state transition t
k
 → t

k+1
 

• t
k
.di denotes the state of attribute di during the 

time period where t is in state t
k
. 

• ∆t
k
 denotes the duration of a tuple state t

k
 

• ∆Ψk
 denotes the computability period of a tuple 

state t
k
, representing the period (starting from the 

tuple insertion in state t
0
) during which state t

k
 

can be computed, i.e., during which every 

attribute is as accurate as or more accurate than 

in state k: Ψk
 = Σj=0 to k(∆t

j
). 
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Figure 3.  Relationships between attribute 

states, tuple states and set of tuple states.   

 

Definition: Set of Tuple States (ST) 

 A set of tuple states, denoted by ST
i
, is the set of 

all tuples t in state t
i
. Hence, all tuples in a set of 

tuple state ST share the same levels of accuracy for 

all their attributes.  

3.2 Impact on the Query Language 

As introduced earlier, the LCP degradation model 

has been designed such that the degradation states 

match identified application purposes. This 

information is captured in each GT. Thus, we do 

the natural assumption that applications are GT 

aware and express query predicates according to 

the level of each GT they need to accomplish their 

purpose.  

Our objective is to modify the SQL syntax as little 

as possible while providing a clear semantics for 

both selection and update queries in this context. 



For the sake of simplicity, we consider below 

queries expressed over a single relational table. 

The basic principle is, for a given application 

purpose, to declare the levels of accuracy required 

for each degradable attribute of interest through a 

specific statement of the form: 

DECLARE PURPOSE MYPURPOSE 

SET ACCURACY LEVEL Lj FOR R.di, ..  

Lj refers here to the j
th

 level of GT.domain(di). 

Based on this principle of defining purposes, the 

semantics of SQL queries is captured by the 

following definitions. 

Definition: Domain of a purpose 

Let A be a set of <d, L> pairs capturing the 

accuracy level of all degradable attributes of 

interest for a purpose P. The domain of a purpose 

PA={<di,Lj>}, denoted by D(PA), is the union of 

all sets of tuple states containing tuples having an 

accuracy level equal to or greater than the 

requested one for all their degradable attributes.  

More formally:  

( ){ }U
k

i

i

kiA STttfPD
0

)(
=

→ ∈=  where  is a function 

degrading tuples t in ST
i 
to ST

k 
for i ≤ k 

kif →

Definition: Database view of a purpose 

The database view of a purpose PA, denoted by 

V(PA), corresponds to the projection of all tuples 

belonging to the domain of a purpose, over the 

degraded attributes of interest with the requested 

accuracy. This means that attribute values of 

tuples belonging to D(PA) are degraded in V(PA) if 

their accuracy is higher than the one expected by 

the purpose.  

Once a purpose P has been declared, queries can be 

expressed with no change on the SQL syntax. The 

set of tuples considered by a Select statement 

related to PA is simply V(PA). Let us illustrate this 

with the following example given a table 

Person(name, location,  salary, …).  

DECLARE PURPOSE STAT SET ACCURACY 

LEVEL COUNTRY FOR PERSON.LOCATION, 

RANGE1000 FOR PERSON.SALARY 

SELECT * FROM PERSON WHERE LOCATION 

LIKE”%FRANCE%” AND SALARY = ‘2000-3000’ 

V(Stat) will contain all tuples from the PERSON 

table for which both attributes location and salary 

have at least the accuracy Country and 

Range1000. All other tuples are discarded. Before 

evaluating a predicate or projecting a tuple on a 

degraded attribute, the value of this attribute is 

automatically degraded up to the requested level 

of accuracy (thanks to the GTs) if required.  

The semantics of update queries is as follows: 

delete query semantics is unchanged compared to 

a traditional database, except for the selection 

predicates evaluated over V(PA). Hence, the delete 

semantics is similar to the deletion through SQL 

views. When a tuple must be deleted, both stable 

and degradable attributes will be deleted. We 

made the assumption that insertions of new 

elements are granted only in the most accurate 

state (ST
0
). Finally, we make the assumption that 

updates of degradable attributes are not granted 

after the tuple creation has been committed. On the 

other hand, updates of stable attributes are 

managed as in a traditional database.  

The primary objective of this section is 

introducing a simple and intuitive language to 

manipulate a database implementing the 

degradation model defined in Section 3.1. More 

sophisticated semantics could be devised to allow 

direct insertions and updates into ST
i
 with i>0. 

More sophisticated query semantics could also be 

devised, taking advantage of previous works 

conducted in fuzzy databases  [8] and probabilistic 

databases  [5]. For instance, queries could consider 

tuples outside the domain of a purpose as defined 

above (i.e., tuples having an accuracy level less 

than expected by the query purpose) and deliver 

probabilistic results. We left such studies for 

future work. 

3.3 Impact on transaction semantics 

User transaction inserting tuples with degradable 

attributes generates effects (i.e., database updates) 

all along the lifetime of the degradation process, 

that is from the transaction commit up to the time 

where all inserted tuples have reached a final LCP 

state for all their degradable attributes. This 

significantly impacts the transaction semantics 

since a transaction commit implicitly binds a 



contract for future updates. Conceptually, a 

transaction T inserting new tuples can be split into 

a main transaction T
0
 modifying ST

0
 followed by a 

succession of degradation subtransactions T
k
, each 

T
k
 degrading the state generated by T

k-1
 after a 

time interval fixed by the LCP. Thus degradation 

subtransactions work on the behalf of their main 

transaction. We could do a parallel with nested 

transactions, sagas or other advanced transaction 

models but the comparison stops here. Indeed, the 

peculiarities of degradation subtransactions are 

that they implement a part of an already 

committed transaction, then their own commit is 

mandatory and must respect time constraints. 

Transactions which do not insert new tuples in ST
0
 

(i.e., reader transactions, writer transactions 

performing only deletes and/or updating only 

stable attributes) are called regular transactions. 

We revisit the definition of the usual ACID 

properties in this light.  

∆-Atomicity: a regular transaction is atomic in the 

usual sense meaning that either all or none of its 

effects are integrated in the database. Let T
0
 be a 

main transaction, T
0
 is said to be ∆-atomic, 

meaning: (1) T
0
 is atomic with respect to all its 

effects in ST
0
 and (2)  k>0, all T

k
 effects must be 

integrated in ST
k
 in any situation.  ∆-Atomicity 

assumes that no reason other than a failure can 

cause an abort of T
k
 and that the recovery process 

will enforce atomicity even in this case.  

Consistency: consistency has the usual meaning 

that no integrity constraints are violated. ∆-

Atomicity precludes aborts of degradation 

subtransactions due to a runtime violation of 

integrity. Hence, integrity constraints must be 

checked by the main transaction for all subsequent 

updates generated by the degradation process. To 

enforce this property, we make the assumption that 

integrity constraints are compiled into each GT so 

that each degradation step is certified consistent a 

priori. 

Isolation: conflicts may occur between regular 

transactions, main transactions and degradation 

subtransactions. Regular and main transactions can 

use traditional SQL isolation levels to protect their 

execution properly and get the expected view of 

the database. Degradation subtransactions need 

simply to be protected against concurrent deletes 

generated by uncommitted regular and main 

transactions in the same ST.  

∆ -Durability: the effects of regular transactions 

are durable in the usual sense. The effects of main 

transactions are said ∆-Durable. ∆-Durability 

means that, for each tuple t inserted by a 

committed main transaction, the history t
0
<t

1
< 

…<t
i
<t

f
 is guaranteed in spite of any subsequent 

failures, where: 

t
f
 denotes the empty state produced by a tuple 

deletion. 

∀k, the states t
k
 and t

k+1
 are exclusive meaning that 

after ∆t
k
, t

k
 is atomically replaced by t

k+1
 and 

cannot be recovered. 

Degradation subtransactions have no transactional 

properties on their own, other than a requirement 

for a degraded form of isolation. However, they 

play an important role in the enforcement of the ∆-

ACID properties of the main transactions. 

Notably, they must enforce a timeliness property 

underlying ∆ -Durability. Timeliness is more 

precisely defined as follows. 

δ-Timeliness: To enforce ∆-Durability, a 

degradation subtransaction T
k
 is assumed to 

degrade the state generated by T
k-1

 after a time 

delay equal to ∆t
k
. The time delay is initialized at 

T
k-1

 commit. Respecting this time delay strictly 

(e.g., in the second) would incur severe 

performance penalty with no foreseeable benefit in 

practice.  Thus, we introduce a slightly weaker 

property called δ-Timeliness where δ is a time 

tolerance associated to the degradation process. 

Under this property, ∆-Durability guarantees state 

changes within a time window (∆ ± δ). 

4. TECHNICAL CHALLENGES 

Whenever an extension is proposed to a database 

model, and whatever the merits of this extension 

is, the first and legitimate question which comes in 

mind is how complex will the technology be to 

support it. Can existing DBMSs be extended with 

no impact on the kernel, should a few well 

identified core database techniques be revisited or 

is a complete redesign of the DBMS mandatory? 



Identifying the exact impact of making a DBMS 

data-degradation aware leads to three more precise 

questions. 

How to enforce ∆-Durability and ∆-Atomicity over 

degradable data? As stated in Section 3.3, updates 

over stable data must be atomic and durable, as 

usual. The novelty is thus in the management of 

degradable attributes. ∆-Durability enforces that 

the i
th

 state of a tuple remains durable during ∆t
i
 

and can in no way be recovered after this period. 

As pointed out in  [25], traditional DBMSs cannot 

guarantee the non-recoverability of deleted data 

due to different forms of unintended retention in 

the data space, the indexes and the logs. Two 

candidate techniques can be used to tackle this 

issue in our context. The first one is overwriting 

the data with its degraded value at each 

degradation step, using a dummy value when the 

data reaches the final state of its LCP. The second 

one is precomputing all degraded versions of a 

data at insertion time and storing them encrypted 

with a different key (along with an identification 

of this key in plaintext). At degradation time the 

corresponding key(s) will be destroyed, making 

the data undecryptable. These two techniques 

exhibit opposite behaviors in terms of access 

efficiency (depending on whether the data must be 

decrypted) and degradation efficiency. The storage 

of degradable attributes, indexes and logs have to 

be revisited in this light. The performance problem 

is particularly acute considering that each tuple 

inserted in the database undergoes as many 

degradations as tuple states. The second impact of 

∆-Durability and ∆-Atomicity is on the recovery 

protocol itself.  

How to speed up queries involving degradable 

attributes? Traditional DBMS have been designed 

to speed up either OLTP or OLAP applications. In 

OLTP workloads, insertions are massive, queries 

are simple and usually highly selective, and 

transaction throughput is the main concern. This 

leads to the construction of relatively few indexes 

on the most selective attributes to get the best 

trade-off between selection performance and 

insertion/update/deletion cost. In OLAP workloads 

conversely, insertions are done off-line, queries 

are complex and the data set is very large. This 

leads to multiple indexes to speed up even low 

selectivity queries thanks to bitmap-like indexes. 

Data degradation can be useful in both contexts. 

However, data degradation changes the workload 

characteristics in the sense that OLTP queries 

become less selective when applied to degradable 

attributes and OLAP must take care of updates 

incurred by degradation. This introduces the need 

for indexing techniques supporting efficiently 

degradations. Query optimization may also impact 

tuple storage and index management because 

queries apply to a purpose view potentially built 

from several sets of tuple states of different 

accuracies. 

How to guarantee δ-Timeliness? Timeliness is a 

fundamental property of a degradation model and 

the δ-tolerance is introduced for the sole purpose 

of performance. We believe that δ should remain 

application dependent, but our intuition suggests a 

direct relationship between Ψ and δ (i.e., the 

shorter the computability period Ψk
 of a tuple state 

t
k
, the smaller the tolerance δk

 to degrade it). For 

this reason, and for the sake of simplicity, we 

consider in the following that δ is directly 

proportional to Ψ, that is δk
=ρΨk

, where ρ is a 

constant for the system  (e.g., ρ = 1%). Whatever 

the degradation strategy, ensuring δ-Timeliness 

forces degradation subtransactions to be executed 

and completed in the time window (∆ ± δ). 

Implementing degradation subtransactions in a 

traditional DBMS by means of normal transactions 

may lead to conflicts, then to deadline misses and 

even to deadlocks. On the other hand, degradation 

subtransactions cannot run without any isolation 

control, forcing a new synchronization protocol to 

be designed.  

Next section focuses on technical issues related to 

the three questions above. Alternatives regarding 

the degradation process and its synchronization, 

the storage model, the indexing model and the 

logging and recovery management will be 

discussed in the next sections. For the sake of 

simplicity, we focus the discussion on the 

degradable part of the database, as if a vertical 



partitioning was made between stable and 

degradable attributes
2
. 

5. IMPACT OF DATA DEGRADATION ON 

CORE DATABASE TECHNIQUES 

As stated in Section 4, classical transactional 

protocols can be used to synchronize the 

read/write activity of regular and main transactions 

and deliver the desired isolation level  [6] between 

them. The novelty introduced by the LCP model is 

that degradation subtransactions change the 

database state steadily and may also generate 

conflicts. Solving these conflicts by executing 

degradation subtransactions in the scope of 

standard transactions has been shown a poor 

alternative both in terms of blocking and deadlock 

probability and in terms of performance (there is n 

times more such degradation subtransactions than 

main transactions where n is the number of tuple 

states).  

To decrease the total degradation cost, the idea is 

taking advantage of the time tolerance brought by 

δ-Timeliness to group a set of degradation 

subtransactions into a single large degradation 

step. At first glance, this solution seems counter-

productive by increasing the duration of the 

degradation step and thereby the conflict 

probability. In fact, the benefit is high considering 

that: (1) the number of execution threads is 

divided by the grouping factor, (2) the I/O 

generated in the data space, index space and log 

space can be grouped and produce sequential I/O 

and (3) the guarantee of success of degradation 

subtransactions can be exploited to avoid most 

conflicts. Point 1 is self-explanatory; point 2 will 

be more deeply discussed in Sections 5.2 to 5.4 so 

that this section focuses on point 3. 

5.1 

                                                

Avoiding subtransactions conflicts 

We propose a Least Effort Degradation process 

where the degradation is performed at the coarsest 

granularity authorized by the δ tolerance (i.e., the 

laziest interpretation of Timeliness). Let us 

consider one set of tuple state ST
k
 with a 

 
2 Such partitioning could make sense in practice, with the benefit to keep 

standard behaviour and performance on the stable part of the database. 

degradation tolerance δk
. For ST

k
, a degradation 

step DS will be triggered at every δk
 time interval. 

The n
th

 DS triggered will enforces the effects of all 

degradation subtransactions T
k
 planned during the 

interval [Ψk
+nδk

, Ψk
+(n+1)δk

[.  Tuples, index 

entries and log records have to be synchronized to 

make each set of tuple state consistent. This is 

exactly what a degradation subtransaction 

guarantees. Hence, a Degradation Agenda DA
k
 is 

used to record the degradations to be performed in 

every files participating in ST
k
. DA

k
 is a queue 

filled by main transaction commits and consumed 

by degradation steps. To know which records are 

actually relevant to a degradation step in a given 

file, we make the simplifying assumption that 

every record is time-stamped with the commit date 

of the main transaction having inserted it (better 

solutions dependent of the file organization will be 

discussed next). 

Let us now consider how a transaction T (regular 

or main) working on a database view involving the 

sets of tuple states ST
0
 to ST

k
 must be 

synchronized with a degradation step DS. The first 

observation is that only a degradation of the oldest 

tuples, i.e., those in ST
k
, may change the database 

view of T. Indeed, DS is done on behalf of ∆-

atomic degradation subtransactions (commit is 

guaranteed). Hence, the value delivered to T of a 

tuple t in ST
i
 or in ST

i+1
 (with i<k) is guaranteed to 

be identical after its projection on state k. Thus T 

and DS do not need to be synchronized on ST
0
 .. 

ST
k-1

. The second important remark is that 

synchronization is still not necessary if T selects 

an isolation level lower or equal to the SQL Read 

Committed level. Indeed, DS cannot generate dirty 

reads since DS effects are done on behalf of ∆-

atomic degradation subtransactions.  

Hence, synchronization is necessary only with 

isolation levels higher than Read Committed and 

when DS degrades ST
k
. We propose a protocol 

where locks are requested on time intervals. When 

the n
th

 DS is triggered, it requests an exclusive 

lock on the interval [nδk
, (n+1)δk

[ since it will 

degrade all data time-stamped within this interval. 

Similarly, T must request a shared lock on the 

intervals the accessed data belong to. If a conflict 



occurs and DS is blocked, it will remain blocked at 

most until its deadline δk
 is met

3
. At this time the 

blocking transaction is aborted to enforce ∆-

atomicity and δ-Timeliness of all degradation 

subtransactions. This situation is rather unlikely 

considering that δk
 is supposed to be much larger 

than a transaction duration. If a conflict occurs and 

T should be blocked, it is useless for T to wait 

since the accessed data will leave T’s database 

view. 

In addition to the performance benefit brought by 

Least Effort Degradation, the synchronization 

protocol presented above exhibits the following 

interesting features: (i) it is independent of the way 

data, index and logs are managed, assuming they 

are time-stamped; (ii) it minimizes the impact on 

main and regular transactions, never blocking 

them and never aborting transactions shorter than 

δk
.  

5.2 

                                                

Storage model for degradable attributes 

The storage model selected for the degradable 

attributes must cope with two contradictory 

objectives: (1) minimizing the cost of 

implementing an unrecoverable degradation and 

(2) optimizing queries. The second objective 

disqualifies degradation by encryption since this 

would incur a decryption every time a degradable 

attribute participates in a query and since this 

would make it difficult to index encrypted 

attributes. Partial solutions exist for the latter point 

 [16] but the loss of index accuracy is usually high, 

making these solutions not relevant in contexts 

other than privacy preservation. The remaining 

solution, that is overwriting attributes at 

degradation time, can be implemented in various 

ways: shall we store degradable attributes 

altogether, separately, ordered by degradation 

date, can the degradation be prepared by a 

precomputing phase as suggested for degradation 

by encryption? There are actually two main 

dimensions dictating the storage model: 

 

                                                

3 We do the assumption that the time spent to physically perform the 

degradation is insignificant with respect to δ and can be neglected. 

Clustered vs. Fragmented: Clustered means that 

all degradable attributes of the same tuple are 

stored together while Fragmented means that 

degradable attributes are vertically partitioned. 

The benefit of clustering is optimizing the 

execution of queries involving several degradable 

attributes. The benefit of fragmentation is 

minimizing the quantity of data to be degraded at 

each tuple state change. 

Lazy vs. Eager: Lazy means that the degradation 

overwrites a data item at the time of a state change 

according to the δ-Timeliness. Eager means that 

the degradation is precomputed, leading to store 

all states of the same data item at insertion time 

and to destroy them one by one at degradation 

time. The benefit of Lazy is avoiding data 

duplication among states while the benefit of 

Eager is implementing degradation by deletions 

rather than by updates, assuming that deletions 

could be physically performed more efficiently 

than updates
4
. 

Both dimensions can be combined leading to four 

possible storage models: Clustered-Lazy Storage 

(CLS), Clustered-Eager Storage (CES), 

Fragmented-Lazy Storage (FLS) and Fragmented-

Eager Storage (FES).  Figure 4 illustrates these 

four alternatives and show how the files images 

evolve over time in each model.  

Whatever the data format in a file (single attributes 

or group of attributes depending on the 

Clustered/Fragmented option) and the number of 

files impacted when inserting new tuples 

(depending on the Lazy/Eager option), there is a 

high benefit of ordering a file's items according to 

the data degradation date. Following this principle, 

degradation can be performed in a set-oriented 

way taking advantage of sequential I/O. Also, 

since data items share the same degradation delay, 

ordering the file on the degradation date is 

equivalent to respecting the commit ordering. 

However, taking full advantage of sequential I/O 

 
4 Deletes are less costly than updates by definition since they do not need to 

read the existing value. Deletes can be further optimized by organizing the 

file in a circular way such that new insertions naturally erase old values. We 

do not discuss this optimization further since it apply only to specific 

situations (i.e., a constant throughput is required). 



requires ad-hoc buffering and the degradation 

policies detailed below. 
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Figure 4. Storage model alternatives. 

Whatever the storage model, an LCP generating k 

tuple states leads always to manage k data files 

and induces always k deletions or degradations 

until reaching the tuple final state (see  Figure 4). 

In the following, we denote by f
k
 the data file 

containing the tuple state ST
k
 so that, degrading 

physically file f
i
 is logically equivalent to 

degrading ST
i
. 

Insertions: Inserted tuples are buffered in an 

Uncommitted Inserts Buffer (UIB) in RAM until 

transaction commit. Buffering uncommitted tuples 

is necessary to guarantee a correct ordering in the 

file in case of transaction abort. At commit time, 

tuples move from the UIB buffer to Insert Buffers 

associated with each file
5
, potentially suffering 

degradations (e.g, in CES/FES models). When an 

Insert Buffer is full, it is flushed to disk, 

generating sequential I/Os.  

Degradation Agenda: As already mentioned DA
k
 

records the degradations to be performed in every 

files participating in ST
k
, the data file f

k
 being one 

of them. Since degradation is performed at δk
 

granularity (Least Effort Degradation) and since f
k
 

is ordered on the degradation date, DA
k
 cardinality 

can be limited to Ψk
/δk

 + 1 entries, thus allowing it 

to be kept in RAM. Each DA
k
 entry simply stores 

the offset of the most recent data stored in f
k
 that 

must be degraded/deleted by the corresponding 

degradation step. More precisely, the nth instance 
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5 Insert buffers can be shared by several files (e.g., with CES, one insert 

buffer can be use for performing all the inserts in the different files). 

of a degradation step DS refers to DA
k
[n] to 

retrieve the offset of the last data item inserted in f
k
 

by the last main transaction committed in the 

interval [Ψk
+nδk

, Ψk
+(n+1)δk

[. Note that 

registering offsets in DA makes time-stamping the 

data useless. 

Degradation buffers: For CLS and FLS, a 

degradation buffer is used as follows. When the 

n
th

 DS is triggered, the data stored in the range 

]DA
k
[n-1], DA

k
[n]] are loaded in the degradation 

buffer, then degraded, written to their destination 

file, and the range ]DA
k
[n-1], DA

k
[n]] is physically 

erased in f
k
. All these operations can be done by 

sequential I/O. Obviously, a data range ]DA
k
[n-1], 

DA
k
[n]] is likely not to be aligned to disk page 

frontiers (this is particularly true for ranges 

smaller than a page). To avoid repetitive I/O of a 

same page in that case, a page-aligned superset of 

the range is read in the degradation buffer and 

degraded data are also produced on a page basis
6
. 

Unaligned data ranges introduce a requirement for 

a buffer even for CES and FES, but in that case, 

the buffer can be fairly small (up to one I/O page). 

Indexing Model 

The distinguishing characteristics of indexes over 

degradable attributes are that the same attribute 

may be considered with different accuracy levels 

and that indexes must be degradable as well.  

Let us consider first the multi-accuracy problem. 

Mixing key values of different accuracy levels in 

the same index will increase its size and then 

decrease its performance with no benefit at query 

time. So we suggest that each index contain keys 

related to a single accuracy level. The second 

point is that an index built over attribute state di
k
 

must index all the tuples containing this attribute 

state to avoid maintaining one index per tuple state 

and to avoid scanning several indexes to evaluate a 

single predicate. The third point is whether there is 

a benefit to continue indexing attributes entering a 

low accurate state. Indeed, given the nature of 

degradation, the lower the accuracy, the lower the 

 
6 This introduces a slight complexity in the recovery process since the 

database state on disk is no longer consistent wrt the degradation steps.  



selectivity of the index. We believe that indexing 

highly degraded attributes (i.e. creating a multi-

dimensional index) may make sense to benefit 

from combined selectivities of several non-

selective predicates.  

Let us now consider the index degradation 

problem, starting the study by traditional B+Trees. 

While B+Trees scale gracefully in terms of 

number of indexing elements, their tree-like 

structure makes them badly adapted to 

degradation, precluding any locality of updates 

and then generating random I/O. Encryption could 

be considered as a solution. Assuming that index 

keys themselves are not sensitive and remain in 

clear text, the references to the indexed tuples 

could be encrypted using degradable encryption 

keys, following a principle similar to the one 

described in Section 4. The Least Effort 

Degradation mechanism suggests using the same 

key for all references to be degraded by the same 

degradation step. Additional information is added 

to the Degradation Agenda of the index file in 

order to destroy the adequate key at degradation 

time. To prevent information disclosure which 

could occur by joining different indexes applied to 

the same data file on their encrypted references, 

distinct encryption keys must be used by 

degradation step and by index. Encryption keys 

are stored in an unordered array and are referenced 

by the index entries. The garbage collection 

problem, that is eliminating the index entries 

corresponding to degraded data, is more acute than 

on the data files simply because stale index entries 

augment the size of the index and decrease its 

performance. We suggest cleaning up index nodes 

lazily at the time of the next index node update. 

All node entries are then scanned to try to decrypt 

their reference. If the decryption does not success 

(a constant marker is associated with each 

reference to make this test possible), this means 

that the decryption key has been degraded and the 

index entry can be removed. 

Low cardinality domains can be indexed thanks to 

bitmaps as usual. Bitmaps are sequential data 

structures and thus support insertion and 

degradation gracefully. Medium cardinality 

domains can be indexed by Value-List indexes 

 [10]. This more sophisticated bitmap encoding 

introduces an interesting trade-off between the 

number of bitmaps to be maintained and updated 

at tuple insertion time and the number of bitmaps 

to be read at lookup time. However, this strategy 

remains inoperative for large domains. 

To deal with high domain cardinality (i.e., 

accurate levels of the GT) in an insert/erase 

intensive context, we propose an alternative to 

encrypted B+Trees and Value-List indexes called 

Hash Sequential Lists (HSL). Roughly speaking, 

HSL are hash buckets containing sequential lists 

(i.e., ordered by insertion date) of <value, pointer> 

where value is the value of the indexed attribute 

and pointer a reference to the tuple having this 

value. When a tuple is created, a new pair <value, 

pointer> is simply inserted into the bucket 

determined by the hash function, with no 

additional computation. For exact match queries, a 

single bucket is fully scanned to find all the tuples 

matching the predicate. To enable range queries, 

Range Sequential Lists (RSL) can be designed 

using a range partitioning function. 

Note that the buffering and degradation strategies 

discussed in Section 5.2 apply to HSL, RSL and 

bitmaps as well since they are all sequential data 

structures. 

5.4 Logging and Recovery Management 

Logging techniques are traditionally used to 

enforce atomicity and durability while permitting 

classical buffer management optimizations like 

writing in the database file before a transaction 

commit (Steal strategy), after a transaction commit 

(No Force strategy) as well as optimizing the 

recovery process in case of failure (Checkpoint 

and fast recovery techniques). Our goal is to keep, 

whenever possible, these interesting optimizations 

on the degradable part of the database. Note that 

logging and recovery for stable data are assumed 

to be ensured classically. 

5.4.1 Undo Log 

Degradation subtransactions are guaranteed to 

never rollback even in case of failure (see the 

recovery process described below). Thus, the undo 



log is used to ensure the atomicity of main and/or 

regular transactions only. Since updates are not 

allowed on degradable attributes and inserts are 

buffered in RAM (in the UIB) until transaction 

commits (thus enforcing No Steal), the sole 

operation that needs to be undone is DELETE. To 

avoid requiring a degradation of the undo log we 

propose to log only the transaction id and the 

references of the deleted tuple rather than before 

images. In case of a rollback, the deleted tuple can 

be recovered from the redo log (see below) which 

still contains an image of this tuple in the correct 

accuracy (∆-Durability). 

5.4.2 Redo Log 

The redo log includes (i) the images of tuples 

inserted by main transactions; (ii) the references to 

tuples deleted by regular or main transactions; and 

(iii) the transaction begin and commit statements. 

Time-stamping the commit statements allows to 

replay, if necessary, degradation subtransactions 

and to rebuild data and index files (see below). We 

suggest encrypting the images of inserted tuples 

following the principle described in Section 4 

since the redo log is not subject to queries. This 

enables fast degradation without any access to the 

redo log (encryption keys are simply erased). The 

overhead of managing a redo log compliantly with 

∆-durability induces thus a negligible encryption 

overhead  [25], and one I/O for key overwriting each 

time interval δ for each attribute state. 

5.4.3 Recovery  

Let us first consider a cold recovery process 

rebuilding entirely the database state using the 

redo log file. Since the redo log includes the 

complete history of main and regular transactions, 

along with commit timestamps and key references, 

this history can be replayed in the same order 

leading to rebuild the data files, the index files and 

the Degradation Agenda. However, since some 

date keys have potentially been erased, insertions 

corresponding to erased keys are ignored, leading 

to recover the database in the same state as it was 

just before the system failure. Thus, before 

returning to a normal usage, the database must 

perform all necessary degradations to make the 

database state compliant with the LCP policy, 

considering the current date. This can be done by 

applying the degradation planned in the 

Degradation Agenda. For a warm recovery after a 

system failure, additional information is required 

to synchronize the log content with the data files 

and index files content. This information is 

precisely the one contained in the Degradation 

Agenda which must then be logged, similarly to 

traditional checkpoint information. 

6. OPEN ISSUES 

This section reviews the choices made so far for 

the model and discusses other alternatives and the 

interest of considering them in future works. It 

discusses different alternatives to implement a data 

degradation enabled DBMS. Finally, it shows a 

rough estimate of the performance of the storage 

and indexing techniques proposed in this paper. A 

real performance study is premature in this work. 

Thus, the objective is more to anticipate potential 

bottlenecks. 

6.1 Discussion about the model 

The data degradation model proposed in Section 3 

is based on Life-Cycle Policies where (1) state 

transitions are fired at predetermined time 

intervals and (2) all tuples populating the database 

are uniformly ruled by the same LCP. This model 

inherits this from the limited data retention 

principle, today well accepted. Time degradation 

reflects well the fact that the value of an 

information decreases over time (in terms of 

usability, not in terms of privacy). Uniform LCP 

have the benefit of simplicity and reflects the fact 

that LCP should be preferably defined by civil 

rights organizations or agencies rather than by 

individuals for a better protection. However, other 

forms of data degradation make sense and could 

be the target of future work. 

Event-based degradation. State transitions could 

be caused by events like those traditionally 

captured by database triggers. For example, an 

online book shop could degrade the delivery 

address of a customer order (e.g., down to city) 

straight after the order status is turned to 

“delivered” in the database. 



Value-based LCP. In the same spirit, state 

transitions could be conditioned by predicates 

applied to the data to be degraded. For example, 

web searches containing illness related keywords 

could be considered as more sensitive than others 

and thus being degrading more quickly. 

User-defined LCP. Users do not have the same 

perception of their privacy and do not attach either 

the same value to the services which can be 

offered to them in return for their data. Hence, 

letting paranoid users defining their own LCP 

makes sense. However, the observation of user’s 

practice shows that few people actually (try to) 

understand and use configurable privacy 

protection tools  [17]  with a final negative impact 

on protection. 

Whatever the form of the degradation, the 

foundation of the model presented in Section 3 

remains valid (though slight adaptations are 

required). A query still works on a database view 

containing the projection of all tuples belonging to 

the domain of purpose of interest, over the 

degraded attributes of interest with the requested 

accuracy. Similarly, the transaction semantics still 

guarantees that the effects of a transaction are 

made atomic and durable in the LCP sense (i.e., a 

LCP automaton continues its execution after a 

commit as long as the related data is alive, even in 

case of crash, and previous states can never be 

recovered after a transition has been fired). The 

form of the degradation simply impacts which 

tuples are actually degraded and when. This may 

introduce however new technical challenges 

because degradation steps cannot always be 

managed in a set-oriented way.  

6.2 

6.3 

Discussion about implementation 

An important question is whether data degradation 

could be developed on top of an existing DBMS 

without modification in the kernel or must be 

tightly integrated within the DBMS kernel. 

The first option seems to us not realistic for two 

main reasons: First, physical deletion is not 

supported by existing DBMS. Miklau  [25] 

proposes a set of solutions to tackle this issue, like 

(1) overwriting deleted data in the table and index 

area before linking them in the free list and (2) 

encrypting the log, two techniques to be integrated 

in the DBMS kernel. Second, this option would 

lead to bad performance since traditional database 

techniques: (1) do not try to optimize deletes and 

updates since they are considered as rare; (2)  are 

designed to favour either OLTP like queries 

(minimal indexation of few selective attributes to 

maintain a low insertion cost) or OLAP like 

queries (maximal indexation on non selective 

attributes – insertion cost is not a concern); and (3) 

may lead to enforce a stronger, useless and thus 

too costly transaction semantics (the protocol 

proposed in Section 5.1 allows avoiding conflicts 

between degradation subtransactions and regular 

and main transactions). Finally, this option would 

incur unclean hooks to enforce ∆-Durability. 

We thus suggest to integrate data degradation into 

existing DBMSs either by ad-hoc modifications of 

traditional DBMSs kernels (as  [25] does for 

handling physical deletions), or by developing 

plugs-in for traditional DBMSs.  

Performance Estimates 

The objective of this section is not to provide a 

detailed performance analysis but rather to identify 

potential bottlenecks and get a rough idea of the 

performance impact of the candidate storage and 

indexing techniques suggested in this paper. This 

preliminary study will help making design choices 

and focus our effort in developing the most 

accurate techniques. 

To this end, we use a simple simulation, allowing 

us to change easily parameters and to simulate 

steady state performance across those parameter 

settings. After reaching a stable state, we count I/O 

requests generated during an experimentation 

period sufficiently large to observe degradation of 

low accuracy data. Then, we compute the 

corresponding disk time consumption according to 

the disk parameters. The results are obtained 

considering a single database table composed of 

three degradable attributes called d1, d2, and d3 

regulated by the LCP described in Figure 2. Table 

1 gives the simulation parameters (Disk, LCP, and 

experiment dependant parameters).  



Table 1. Parameters of the simulation. 

Parameters  Value 

 Exp. duration (sec.) 1800 

Disk Page size (KB) 4 

 Disk Latency (ms) 10 

 Transfer rate (MB/s) 50 

Data  Attribute size (B) 10 

files Pointer size (B) 4 

 Insert buffer size (KB) 16 

LCP Transition time delay for d1: ∆1
0, ∆1

1, ∆1
2 (h) 0.5, 4, 24

 Transition time delay for d2: ∆2
0, ∆2

1 (h) 2, 8 

 Transition time delay for d3: ∆3
0, ∆3

1 (h) 3, 12 

 LCP precision ρ 1% 

Indexes BTree node size (KB) 4 

 HSL buffers size (KB) 4 

Varying parameters Fig. 7  –  Fig. 8 

RAM size (KB) 64  –  256 KB/index 

Inserts per sec. (Ips) 20  –  varying 

Queries per sec. (Qps) 0  –  varying 

Storage model varying  –  clustered 

Feeding strategy varying  – eager 

Indexes No  –  varying 
 

Figure 5 shows the overhead of degradation 

considering the four storage models introduced in 

Section 5.2 with a constant insert rate. This 

overhead is computed as the ratio between the disk 

time consumption of each storage model with 

degradation and their counterpart7 without 

degradation, i.e., sequential raw data files with 

accurate attribute values (note that indexes are not 

considered here). Figure 5 leads to two remarks. 

First, Eager degradation performs better than 

Lazy. Lazy avoids some redundancy but increases 

disk accesses: at degradation time, Lazy induces 

reading, erasing, writing back degraded data, 

while Eager requires only erasing. With the 

fragmented storage model, each degradation step 

involves a small quantity of data (typically less 

than a page), leading to the introduction of a delete 

buffer and thus similar costs for Eager and Lazy. 

Second, Fragmented is twice as efficient as 

Clustered since Fragmented generates fewer disk 

read/write operations at insert and degradation 

time. However, the impact of vertical partitioning 

on query performance (tuple reconstruction) might 

                                                 
7 The Clustered (resp. Fragmented) storage without degradation stores 

inserted tuples in a single sequential file (resp. in 3 sequential files) without 

applying any degradation operation. They obtain the same results because 

insertion into file(s) is buffered in both cases, and queries are not considered 

in this experiment (which would introduce a difference since data is not 

organized on disk in the same way). As a side effect, in Figure 5, we can 

compare fragmented versus clustered ratios. 

render this approach unattractive for some 

applications. 
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Figure 5. Storage degradation overhead. 

To determine a good indexation scheme for each 

attribute’s accuracy, we compare the B-tree with 

encrypted pointers denoted by BTree and Hash 

Sequential Lists denoted by HSL. We consider an 

index build on d1
1
. Queries8 consist in equi-

selections on d1
1
 evaluated using the index. Figure 

6 plots the performance of both strategies for 

different query rate (Qps is 10, 20, 30, 40) with an 

increasing rate of inserts per second. Two main 

conclusions can be raised from this figure. First, 

HSL scales better at a high insert rate since it is 

based on sequential insert/degrade operations. 

BTree is more sensitive to insert rate increase 

(random I/Os). Second, HSL suffers a higher 

penalty while increasing the query load. This 

Figure shows clearly that each indexing technique 

has its own area of interest in term of insert/query 

workloads. Mainly, HSL behaves better at high 

insert/low query ratios, while BTree is better at the 

opposite load point (low insert/high query ratios).  
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Figure 6. Index access time consumption. 

Experiments on the simulator have also allowed 

delivering the following interesting remarks: 

                                                 
8 We only considered the index lookup costs first tuples are not always 

accessed, and second to avoid interfering with the data cache behaviour. 



• Redo Log cost is almost not impacted by 

degradation. While degradation increases the 

redo log footprint (roughly by a factor of the 

number of attribute states), the number of I/O 

requests can be kept constant but not their length, 

allocating a larger redo buffer. 

• Increases of LCP precision have small impact on 

performance. Increasing the LCP precision 

induces more frequent degradations, but on less 

data. Delete buffers are then used to minimize 

overheads for sequential structures (raw data 

files and HSL). We observe the convergence of 

Lazy and Eager strategies for raw data. HSL 

remains unchanged, a delete buffer per Hash 

bucket being required anyway. Regarding 

BTrees and redo logs, a larger number of keys 

must be managed, though remaining relatively 

small (e.g., ρ=0.1% leads to manage 1000 keys). 

• Each index has its area of interest. While we did 

not implement the value list indexes  [10], 

experiments with Btree, HSL and classical 

bitmap indexes show that the important 

parameters are (i) the size s of the time window 

covered by the index, (ii) the insertion rate i, (iii) 

the query rate q, and (iv) the number d of distinct 

values. Considering HSL and Btree, HSL 

improves when either s or q decrease and i 

increases while Btree improves when s or q 

increases, i decreases. Both are independent of d. 

When d is rather small, bitmap becomes 

interesting. This suggests for a given database 

workload and LCP: use HSL for small time 

window (probably for the most accurate attribute 

states i.e., the bottom levels of the GT), then 

Btrees for large time window (probably for 

average accuracy attribute state, i.e., medium 

levels of the GT) and finally, Bitmap for highly 

generalized attribute states, i.e., upper levels of 

the GT. 

7. CONCLUSION 

Data degradation is still an unexplored area and 

we believe it should deserve a stronger interest for 

the new opportunities it opens in terms of data 

protection. Applications to the safeguard of 

personal data are obvious, in particular within 

automated data monitoring environments, but 

corporate, administrative or military applications 

can be targeted as well.  Data degradation provides 

guarantees orthogonal and complementary to those 

brought by traditional security services like access 

control, intrusion detection systems, etc. The 

benefits of a progressive and irreversible data 

degradation is twofold: (i) by reducing the amount 

of online accurate data, the privacy offence 

resulting from a trail disclosure is drastically 

reduced and (ii) degrading the data in line with the 

application purposes offers a new compromise 

between privacy preservation and application 

reach. More, by degrading the data repeatedly, 

attacks are forced to be repeated as well and 

become more easily detectable. 

To the best of our knowledge, this paper is the first 

to propose a degradation model for databases. An 

intuitive semantics has been defined for this 

model. A first analysis of the impact of this model 

over the storage, indexation and transaction 

management has been conducted, and new 

techniques have been proposed. This must be 

considered as a first step towards the definition of 

more sophisticated and accurate solutions we plan 

to experiment. 
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