
Generating Power of Lazy SemanticsJerzy KarczmarczukDept. of Computer Science, University of Caen, Francee-mail: (karczma@info.unicaen.fr)AbstractWe discuss the use of the lazy evaluation scheme as coding tool in somealgebraic manipulations. We show | on several examples | how to pro-cess the in�nite power series or other open-ended data structures withco-recurrent algorithms, which simplify enormously the coding of recur-rence relations or solving equations in the power series domain. Theimportant point is not the \in�nite" length of the data, but the fact thatthe algorithms use open recursion, and the user never thinks about thetruncation.1 IntroductionThis article develops some applications of the functional lazy evaluation schemesto symbolic calculus. Neither the idea of non-strict semantics, nor its applica-tion to generate in�nite, open structures such as power series, are new, see forexample [1, 2], some books on functional programming ([3, 4]), etc. The lazyevaluation (or call by need is a protocol which delays the evaluation of the ar-guments of a function: while evaluating f(x) the code for f is entered, but iff doesn't need x, nothing wrong happens, even if we demanded to calculatef(1=a) where a = 0. The code for 1=a is compiled to a thunk or a promise, butperhaps never executed. The function f receives a promise to deliver 1=a whenneeded. The thunk is evaluated when the code of f uses it.The domain of lazy evaluation is very well known, constitutes one of thebases of the modern functional programming, and a priori it has nothing to dowith algebraic manipulation, although it is obviously used therein [2, 5]. How-ever, the super�cial analogy between an algebraic formula with some symbolicindeterminates, and a function body waiting to be evaluated, is quite explicit.Perhaps, paradoxically, this is one of the reasons why almost the totality ofthe computer algebra code | both user and implementor packages | is strict,the lazy objects are usually encapsulated in speci�c domains treated by special-ized algorithms, such as the series packages in Maple ([5]) or Axiom ([2]). Thepossibility to operate upon symbolic formul� apparently makes it less fashion-able for the computer algebra community to manipulate the computations suchas thunks, higher-order functions etc.In this paper we present a partial and heterogeneous, but coherent approachto the lazy evaluation as a coding tool, restricted to some typical problems insymbolic computations. In general the subject is enormous: the lazy semanticsis very intensively used elsewhere, e. g. in the functional I/O, parsing, all kind1



of monadic approach to the computation semantics, nondeterminism, etc. Topresent the examples we shall not use any computer algebra system, but we willshow some examples in the style of a lazy polymorphic programming languageGofer([6]), a dialect of Haskell ([7]). Our aim is not to suggest that something canbe done, but how. We will omit the discussion of the polymorphic overloadingof standard arithmetic operators permitting to write u � v where u and v arelists, see for example [8]. The examples in the text have been edited in orderto simplify the notation (some conversions required by the Haskell typecheckerhave been omitted), and the layout has been embellished, but they are workingprograms.It seems important to clarify and to underline that the main idea behind thediscussed application of the lazy evaluation is not necessarily the possibility tohandle in�nite structures, but the following:� The possibility to code e�ectively the �xed point de�nitions: � = g(�),where � is just a data structure, and not a recursive function (see [9]).The in�nite list of 1 might be coded asones = 1 : oneswhere the colon is the in�x \cons" operator | the list constructor. For auseful and not so trivial example see the equation (1).� The ability to apply e�ectively the co-recursion, or the extrapolating re-cursion. While \standard" recursion descends on, and analyses the data,the co-recursion creates the data.The proof techniques of some co-recurrent identities are a little unorthodox[10, 11], as the standard induction might have nothing to induct on. Take forexample the de�nition of a sequence of iterates:[x; f(x); f(f (x)); f(f (f (x))); : : :],(very useful for the lazy approach to the iterative equation solvers, see for exam-ple the �rst program of the section 3), and the de�nition of the map functional,which applies a function to all the elements of a list:iterate f x = x : iterate f (f x)map f (a:aq) = f a : map f aqWe can prove that iterate f (f x) = map f (iterate f x) in the followingway:iterate f (f x)= f x : iterate f (f (f x))= f x : map f (iterate f (f x)) { Ex hypothesi!= map f (x : iterate f (f x)) = map f (iterate f x)Note the right-to-left reduction. Such \bootstrap" is esssential in the co-in-ductive proofs, and we shall see that it has an enormous generative power aswell. See the section (3) for a non-trivial usage of iterate. In principle itis not necessary to have the unlimited data de�nitions, without terminatingclauses. We don't even need such academic examples as above: a typical co-recursion case, known to almost all readers, and not demanding any kind of lazyevaluation, is the construction of a transitive closure, for example the 
ood-�lling algorithm in graphics. In order to paint a region starting from the pixel2



(x; y) either do nothing if the pixel is already painted, or paint it, and do thesame to all the neighbours. It is obviously an extrapolating recursion scheme,which is guaranteed to progress, but terminates eventually only because theuniverse is �nite.Of course, with lazy streams it is easy to create potentially in�nite datastructures such as series, continuous fractions, etc. not necessarily in the con-text of computer algebra [12], or to construct the non-deterministic algorithms,but there are more universal arguments for the lazy functional programming:thanks to the deferred evaluation and higher order functions it is easier to for-mulate some quite orthodox algorithms in a static, declarative manner, withoutpolluting them with countless for/while loops and other imperative constructs,which hide sometimes the clarity of the underlying strategy.One serious warning seems appropriate here: while standard recursive schemesconsume (reversibly) the system stack while storing the contexts of the recursivecalls, the lazy constructions, such as iterate, or ones �ll-up the dynamic heapof the system with anonymous functional closures created ad hoc. This is time-consuming and requires a very good memory management, adapted to laziness.The lazy adds-on to a strict language, such as the macros delay or cons-streamin Scheme are not very e�cient [1].2 Power series generation and manipulationIn our approach an univariate power series U(x) = u0 + u1x + u2x2 + u3x3 : : :will be represented by the lazy list [u0; u1; : : :]. The series coe�cients mayin principle belong to any algebraic domain. An e�ective and simple codingof an arbitrary algorithm dealing with such series is not entirely trivial. Thealgorithms are usually dominated by the administration of the truncation trivia.In fact, if one implements the algorithms discussed in [13] or [14] using indexedvectors, one sees mainly summing loops and the evaluation of the bounds ofthese loops, which becomes quite boring. Here the addition and the subtractionterm by term is given by the \zip" functional. From now on we change thelayout of our programs, to suggest visually their mathematical 
avour:u+ v = zipWith (+) u v;wherezipWith op (a : a) (b : b) = op a b : zipWith op a bBut the multiplication and the division are equally short:(u0 : u) � v@(v0 : v) = (u0 � v0) : (u0 � v + u � v)(u0 : u)=v@(v0 : v) = (w0 : w) wherew0= u0=v0w = (u� w0 � v)=v(where the construct u@A is a way to inform the compiler that the parameteris called u and has the structure A.)The di�erentiation and integration are obvious:integ c u = c : zipWith (=) u [1 : :] 3



di� (u0 : u) = zipWith (�) u [1 : :]where [1 : :] denotes the in�nite sequence 1, 2, 3, 4,. . . The integration is a lazyoperation, permitting the construction of self-referring objects. It takes sometime to master this technique and to appreciate the fact that the de�nition:W = Const+R f(W ) is not just a speci�cation, or an equation, but an algorithm.It su�ces to know the constant term in order to be able to generate the next oneand the whole series. The de�nition above is equivalent to the obvious identityfor any series f : fn = f 0n�1=n.The integration gives thus the direct solution to the classical trick whichconstructs the transcendental functions on the series domain as the solutions ofsimple di�erential equations, see [13, 14] or [15]. For example, if w = exp(u),then w0 = u0 exp(u) = u0w, andw = Z w � u0 dx: (1)We code thus, knowing that the integration constant is equal to eu0 :serExp u@(u0 : u) = w wherew = integ (exp u0) (w � di� u)In the same way we construct a (real) power. If w = u�, then w0 �u = �u0 �u�, orw = u�0 +� R w � u0=u which can be coded again in two lines. And the logarithmis: log u = w, where w = log u0 + R u0=u, which is not even self-referring.Sometimes one has to be careful. If we take the reduced Bessel equation:u00 + 2� + 1x u0 + u = 0 (2)we see that the �rst two terms have the same expansion order, and the lazyintegration is cumbersome. But, knowing the parity properties of the Besselfunction, we introduce an auxiliary function w : w(x2) = u(x), and we integrate:w = 1� 1� + 1 Z �14w + x2w00�; (3)where the reader shall note the perversion: one does not integrate w00, but w0in order to obtain w, whose second derivative is reinjected into the formula.This derivative is \protected" by the integration and the multiplication by x2,which together add three known items in front of it. Lazy techniques mightbe quite laborious, and one-line procedures do not come for free. . . The lazyapproach does no miracles, it just replaces the iterative coding of the equivalentrecurrence relations. But we had to massage a little our program, exactly assomebody would manipulate a symbolic formula.Another nice application of the co-recurrent schemes is the reversion of powerseries. The reverse of a given series is the solution of the following problem.Given z = t+ V2t2 + V3t3 + : : : ; �nd t = z +W2z2 +W3z3 + : : : : (4)Among several possible approaches to this challenge, one consists in reducingit to a composition of series. This is readily done if we note that an auxiliaryseries p de�ned by t = z(1 � zp) ful�ls the identity:p = (1 � zp)2 �V2 + V3z(1 � zp) + V4z2(1� zp)2 + : : :� ; (5)4



and the task is recursively solvable. The composition is very simple. We want to�nd W (x) = U(V (x)), where the series V is free from the 0-th term, otherwisea full numerical series would have to be summed. The solution is nothing morethan the ordinary, but in�nite Horner scheme:U(V ) = U0 + x(V1 + V2x+ : : :) � (U1 + x(V1 + V2x+ : : :) � (U2 + x(: : :))) ; (6)or, horribly enoughscomp u (0 : v) = cmv u wherecmv (u0 : u) = u0 : v � (cmv u)and for the reverse we getserrev (0 : 1 : v) = t wheret = 0 : mm = 1 : (�m2) � scomp v tOther approaches are also practical. One might code in three lines the Lagrangereversion algorithm (see [13]), or use the Newton method to solve iteratively theequation f(t) = t+ v2t2 + : : :� z = 0, and obtain t as a function of z (see [16]).But in this case one should �rst read the next section.3 Iterative approximation which pretends to beexactIf a series satis�es a more complicated, non-linear equation f(U) = 0, the lazyapproach may in
uence also the construction of the Newton algorithm. Theidea of using Newton algorithm in the series domain is not new, see [16, 17].Again, instead of coding a loop broken by some convergence criteria, we con-struct shamelessly an in�nite list of in�nite iterates. For example, if W = pU ,then we get [W (0);W (1); : : : ;W (n) : : :], where W (n+1) = 12 �W (n) + U=W (n)�.The construction of this stream is quite simple, the standard prelude functioniterate does the job:sqrtS y@(y0 : ) = iterate ��x! (1=2) � (x+ y=x)� (sqrt y0);We should note that the starting value in this formula is not a number, theconstant py0 is promoted into the series: [py0; 0; 0; : : :]. But now comes themain point: suppose we need 7 terms of the solution. Knowing the quadraticconvergence of the algorithmwe take the 3-th iterate, as we know that its 8 termsare correct. If we change our mind and take another 2 terms, we have to generatethe next iterate. The lazy d�mons will do all this clumsy administration, andwill not permit the users to fall into their bad habits, and claim that the numberof terms wanted must be explicitly given.So, we choose well the 0-th (initial) iterate, whose constant term must agreewith the constant term of the exact solution, otherwise an arbitrary number ofiterations would be necessary to construct even this.The �nal answer is a lazily constructed series which takes 1 term from the0-th iterate, 1 (the second) from the �rst approximation, 2 (the third and thefourth) from the next one, 4 (from 5 to 8) from the third iterate, then 8, 16, etc.All these segments are (lazily) concatenated, and the end user will see the initial5



segment of the exact solution and will not even think about the approximationorder. The correct choice of the starting value is of utmost importance, otherwisethe lazy development would propagate the error through all the terms.Here is the code of the lazy 
attening. The function segc drops ndropelements from a list and concatenates the following ntake items with rst.
atn ((s0 : ) : v) = s0 : aux 1 v whereaux nd (u0 : u) = segc u nd nd (aux m u)where m = 2 � ndsegc u@(u0 : u)ndrop ntake rstjndrop > 0 = segc u (ndrop �1) ntake rstjntake > 0 = u0 : segc undrop (ntake �1) rstj otherwise = rstThe lazy treadmill does not free us from the necessity of analyzing special casessuch as the degeneration of series, or non-trivial analyticity properties. Morit-sugu et al. [18] discussed the development of the function p = ptan(s) which isthe solution of p � tan(p) = s, and �nds its applications in the analysis of theJosephson junction.We see that this function is not regular, but it is rather a Puiseux seriesbeginning with p = �(3s)1=3 + : : :. If we want to use the reversion method,it should be intelligent. Here is the solution in the form of an entire series inx = (3s)1=3:ptan =let x = 0 : 1 { Series: U(x) = xp =serpow (3 � v) (1=3) where( : : v) = x � tan xin serrev (0 : p)The authors of [18] discuss the application of the Newton algorithm for theequation m(p) = tan(p) � p � 13x3 = 0, observing that the derivative m0(p) =tan2 p has no free term, so additional work is needed. The relatively simplistictechniques presented in our paper should be somehow extended if we wantto generate lazily the Laurent expansions, to calculate the residues, etc., buteverything can be done. In particular, a suggestive generalization of our lazyseries which imposes itself, is the sparse representation, where the items arenot just the coe�cients, but pairs (coe�cient ; exponent ). We found it usefulalso to include, where possible, a special object (in fact the empty list; the lazysemantics does not preclude the existence of �nite objects) to denote 0. In sucha way the standard polynomial packages realized in a lazy language might belifted to the series domain.The regular solution for x = 3p3s of the discussed equation isptan(x) = �x + 215x3 � 3175x5 + 21575x7 + 16202125x9 � 3629384375x11+ 4971112415528125x13 + 1395227918515625x15 � 5744066272573221666640625x17 (7)(The last term in [18] is erroneous, quite probably because of some bad trunca-tion, a mistake which we could not have committed.)6



4 Continued fractions and Pad�e approximantsThe power series are not the only \in�nite" data structures which can be pro-cessed by lazy algorithms, although here the co-recursion is particularly simple.But already in 1972 Gosper [19] (see also [13, 20]) has shown that the arithmeticof continued fractions can be very elegantly realized through incremental streamprocessing. We could give here a particularly simple realization of such arith-metic package, but for algebraic manipulation it might be more interesting towork with series than with numbers. It is quite simple to construct from a givenseries an in�nite continued fraction. We give here a particular, simplistic formwhich breaks down in presence of vanishing coe�cients, but its generalisationsare relatively simple, see the comments at the end of the previous section.u0 + u1x + u2x2 + � � � = g0 + g1x1 + g2x1 + g3x1 + .. . (8)We can forget about the 0-th term which is trivial. The rest of the expansionis a 2-liner:cnf u@(u1 : u) = u1 : g whereg = cnf (tail (u1=u))where tail removes the �rst element of the list (it is always 1), and u1 in thedivision u1=u should be promoted to a series. We do not discuss the degeneratecases when the series U is in fact a �nite rational function, which stops theexpansion, and requires a more intelligent treatment. But if we truncate thecontinued fraction after 2m terms, and if we reconvolute it back, we obtain justthe [m=m] diagonal Pad�e approximant without solving any equations. This isthe reconvolution program:dpad 0 g0 (g1 : ) = (c; 1)dpad m g0 (g1 : g) = (c � p+ (0 : g1 � q); p)where (p; q) = dpad (m� 1) 1 gThe continuant sequence for the exponential function is equal to [1, 1, �12 , 16 , �16 ,110 , �110 , 114 , �114 , 118 ,. . . ], and this is a good testing exercice. The generation of thecontinued fractions from the 1=n! series is not very stable, the cancellations areimportant, and 
oating calculations behave badly. The example above servedthe author to discover (unwillingly!) a bug in one in�nite precision rationalpackage.For the [4=4] approximant of the exponential function we immediately get:1 + 12x + 328x2 + 184x3 + 11680x41� 12x + 328x2 � 184x3 + 11680x4 : (9)Of course, the claim that we got the Pad�e approximant \without solving anyequations" is just a magic incantation. In fact, the reconvolution procedure isan equation solver by backward substitution. In the next section we presentanother equation solver in a Byzantine style.7



A critical reader should note that the last algorithm is not lazy, although ituses an in�nite stream. This is just a standard recursive formula. Can we doit lazily? Of course, the extrapolating recurrence relations for the continuousfraction convergents are well known, see [14], in our case they take the followingform: g0 + g1x1 + g2x1 + g3x1 + .. . = g01 ; g0 + g1x1 ; g0 + g1x + g0g2x1 + g2x ;g0 + g1x+ g0g2x + g0g3x+ g0g1g3x21 + g2x + g3x ; : : : ; Pn(x)Qn(x) ; : : : (10)where the convergents ful�l the recurrencePn+1(x)Qn+1(x) = gn+1xPn�1(x) + Pn(x)gn+1xQn�1(x) +Qn(x) (11)which gives the program below. Now we don't have to recalculate backwardsanother approximant if we need the next term:cnvg (g0 : g1 : g) = cnx (g0; 1) (g0 : g1; 1) wherecnx r@(pp; qp)s@(pm; qm)(a0 : a) = r : cnx s t a wheret = ((0 : a0 � pp) + pm;(0 : a0 � qp) + qm))5 Asymptotic expansionsSome asymptotic developments are ideally well adapted to the lazy treatement.Take a typical series obtained by the iteration of the integration by parts, forexample the generalized erfc function:Z 1x e�t2=2tm dt = e�x2=2xm+1 � (m+ 1)Z 1x e�t2=2tm+2 dt (12)This is an extremely simple open recurrence for the series in 1x :erfg m = 1 : 0 : �(m+ 1) � erfg (m+ 2).Here the result is trivially known, but the same technique is applicable in moreintricate cases.We present here another example, suggested in the wonderful book [21].This example is su�ciently archetypical to be useful, and su�ciently crazy to beinteresting. We will show how the perturbation of the Stirling asymptotic seriesfor the factorial will generate this series. Asymptotically n! ' p2�n(n=e)nS(n),where the series S(n) = (1 + a1=n + a2=n2 + : : :) is known, but we shall notunveil the mystery yet. What we assume is that if the formula above holds, itshould agree with the recurrence n! = n � (n� 1)!, from which we deduceS(n� 1) = 1e �1� 1n��(n�1=2) S(n); (13)8



or, after introducing x � 1=n:S� x1� x� = G(x)S(x); (14)where G(x) = exp��1��1x � 12� log(1� x)� : (15)The correcting factor is easily computable by our package. We get:G(x) � 1+ x2f(x) = 1 + x212 + x312 + 1131440x4 + 53720x5 + 25163362880x6 + : : : : (16)This �xes the 0-th term of S, it must be 1. We write S(x) as 1+x �A(x) (whose�rst term we call A1, and not A0), and we realize with dismay that the formula11� xA� x1� x� = A(x) + x � f(x) + x2f(x)A(x) (17)is not an algorithm, but a system of equations, with the unknowns having thesame order on both sides. However, after the subtraction of A(x) from bothsides we obtainA1 1x � 11� x � 1�+x �A2 1x � 1(1 � x)2 � 1�+x2 �A3 1x � 1(1� x)3 � 1�+ : : : =(18)= f(x)(1 + x �A(x));where each factor 1x (1=(1� x)m � 1) is a regular series. Now the formula looks\su�ciently lazy", but it continues to be a system of equations for the coe�-cients of A. We propose thus a lazy approach to backward substitution. Supposewe try to �nd the series u obeying the equationu0g(0)(x) + x u1g(1)(x) + x2 u2g(2)(x) + : : : = b(x); (19)where g and b are known. Obviously u0 = g(0)0 � b0, andu1h(1)(x) + x u2h(2)(x) + : : : = 1x �b(x) � g(0)(x) � u0� ; (20)where h(k) = g(k)=g(0). The problem is solved. We construct the list of coe�-cient functions g, and we recklessly apply the schema (20) to the equation (18),\forgetting" that the right-hand side is not known, but involves A.stirl = a wherexm = 1 : (�1) { (1� x; completed with zeros)a = bksub (f � (1 : a)) glistglist = iterg xm whereiterg p = �p=(tail p) : iterg (p � xm)bksub b (g(0) : g) = z0 : z where(z0 : zq) = b � g(0)z = bksub zq (map (= g(0)) g)9



which produces the result:A = 1 + 112x+ 1288x2 + �13951840x3 + �5712488320x4 + 163879209018880x5 + � � � (21)to any precision you wish, which is not too easy to �nd in the popular textbooks.6 Some partition functionsWe present here two more examples which show the generating power of theco-recurrent algorithms.The generator of the unlabelled, rooted Cayley trees has the form:� (x) = x exp�� (x) + � (x2)2 + � (x3)3 + : : :+ � (xm)m + : : :� : (22)There is no closed expression known for the coe�cients of � . Such formul�might be interesting for people working in the theory of complexity ([22]), orfor physicists using the diagrammatic expansions in perturbation theory, andcomputing several combinatorial factors ([23]). The expression above seemsnot to be computable because of the in�nite sum in the exponent. But if weintroduce  such that � = x we see that the exponent satis�es in fact a\decent" recurrence relation, and we may immediately code:tau = (0 : psi ) wherepsi = serExp (exsum psi 1)exsum u m = 0 : ((1=m) � (compow m u) + exsum u (m+ 1)),where compow m is a simple function which separates the elements of its argu-ment by m zeros. We get immediately1, 1, 2, 4, 9, 20, 48, 115, 286, 719, 1842, 4766, 12486, 32973, 87811, 235381,634847, 1721159, 4688676, 12826228, 35221832, 97055181. . .Another case study is the generating function for the partitions of an integer.There are several ways of representing and for computing it, but we are partic-ularly interested by the in�nite product representation:Z(x) = 1Yn=1 11� xn : (23)Computing a �nite approximation to it by standard iterative methods is ratherunwieldy, so other representations are used. You may �nd the solution for Z(x)in [2], using logarithms and the Lambert function, but we can rewrite this asan open recurrence:Z(x) = Z1(x); where Zm(x) = 11� xmZm+1(x): (24)This is a runaway, Mephistophelean perversion rather than an algorithm, andthe lazy programming will not help us directly here. But after having rewrittenit as Zm(x) = Zm+1(x) + xnZm(x), and after introducing Bm(x) such thatZm(x) = 1 + xmBm(x), we have the �nal recipe:Bm(x) = 1 + x �Bm+1 + xm�1Bm(x)� ; (25)which gives us the following e�ective, and quite e�cient program:10



partgen = 1 : B 1 whereB n = p wherep = 1 : B (n+ 1) + byxn (n� 1) pwhere byxn is a function which multiplies a series by xn (adds n zeros at thebeginning). And here is the result: 1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101,135, 176, 231, 297, 385, 490, . . . , which starts to scroll immediately through thescreen, although after having generated some dozens of terms the process beginsto slow down, because the dynamically created thunks become bigger.7 Diagram generationThis is just a simplistic, \toy" example of algorithmic generation of open re-cursive structures: representations of Feynman diagrams, using the Dyson-Schwinger equation. The same or similar techniques can be used for the Mayergraphs in statistical mechanics, geometric models of solidi�cation, or other casesin physics, where the theory is nice enough to tell us how to expand a struc-ture, but not how to stop the expansion. The structures: full sums of graphs,or amorphous solids, are �xed points of in�nite growing processes. We restrictthe presentation to a 0-dimensional scalar '3 thory, see for example [24]. In a0-dimensional theory there are no spatial coordinates, so all objects are reducedto pure numbers. For us this is irrelevant, as we are just interested in the gen-erating algorithms, but even in general such models are not completely useless| they provide a reasonable way to calculate combinatorial weights in a serioustheory.A particle | the �eld quantum | can propagate, or interact through atriple, quadruple, etc. vertex:i j ki j i jlk etc. . . .Restricting the discussion to the scalar '3 case means that there are no othertypes of vertices than triple and that the propagators have no internal (spinorial,etc.) structure. The line represents the propagator, a function �ij, wherei; j denote the attributs of the particle in the initial and the �nal state. Thevertex, or the primitive interaction is a function 
ijk which is considered smalland which will be used as the perturbation parameter. The aim of the theoryis to obtain the transition amplitude G(i1; i2; : : : ; in) between two arbitrarystates: one subset of fikg denotes the incoming particles, and the remainingindices | outgoing, taking into account all possible interactions: emissions andabsorptions of particles in the vertices. From these atoms one can construct allkind of composite behaviour. For example, the amplitude (or Green function)for a binary interaction (scattering) has the following graph expansion:G(i; j; k; l) =11



= + + +. . .+. . . +. . .The exact theory requires the summation of all the graphs. If the vertex corre-sponds to a small coupling constant, the perturbation theory can be used (withall usual caveats). We introduce the generating functional:Z[J ] = 1Xn=0 1n! Xi1:::inG(i1; i2; : : : ; in)Ji1Ji2 � � �Jin ; or= 1Xn 1n!where the crosses denote the �ctitious sources J . The Green functions are givenby the functional derivatives:G(i1; i2 : : : ; in) = @n@Ji1 : : : @Jin Z[J ]; (26)for J = 0. If the theory is closed, each particle either passes through as aspectator, or interacts at least once. The recursive reduction of the amplitudesbecomes clear: = + +. . .from which we can deduce the recursive representation of Z[J ]:= + 1/212



or: @@JiZ[J ] = �ijJjZ[J ] + 12�ij
jkl @@Jk @@JlZ[J ]: (27)Z[J ] generates all the graphs, including those with disconnected spectators.But from the general graph theory it is well known that W [J ] = lnZ[J ] is thegenerator of all the connected components. It satis�es the equation@@JiW [J ] = �ij �Jj + 12
jkl� @2W@Jk@Jl + @W@Jk @W@Jl �� : (28)which corresponds to:= +1/2 +1/2The Dyson-Schwinger equations (27) and (28) are so elegant, that one can �ndthem in any book on Quantum Field Thory. Sometimes the authors remarkcasually that these equations are not very practical. For the actual Feynmandiagram generation other frameworks are used, see for example ([25]) and ref-erences therein.One reason for this disfavour is clear, the D-S equations are open recursiveformul�. However, from the lazy semantics standpoint they are not just recur-rences but algorithms! Of course, for a full-
edged theory we would need thespinor/tensor algebra, multidimensional integration, etc. They are extremelyimportant, but from the generational point of view | almost irrelevant. In the0-dimensional space the vertex and the propagator are just scalars. We cannormalize the propagator, taking � = 1.We introduce now an auxiliary variable ' = dW=dJ . It obeys the equation' = J + 12
 �'0 + '2� : (29)This is a derivative of W | a series in J representing the \full theory": eachterm is a series in 
. The equation for ' is di�erential in J , but algebraic in 
.Disentangling this by hand is very clumsy (this is a suggestion for particularlysadistic teachers of Quantum Field Theory)We base our strategy on the following: ' will be considered �rst as a seriesin 
, whose elements are series in J . The �rst term is equal to '0(J) = J ,the unit series. We de�ne the derivative of such a compound as a map over itselements. Its coding in Haskell is: indiff = map diff. We code thusphi = j : (1=2) � (phi 2+ indi� phi ) wherej = 0 : 1 { The unit seriesIn order to compute the scattering amplitudes, the propagators, etc., we haveto transpose '. It will be treated as a series in J , whose elements are functions13



of 
. The propagator is equal to W 00 = '0jJ=0, so, it is enough to collect thesecond elements of the internal items of ':d2 = map (head : tail ) phiThe �nal formula for the propagator is:d2 = 1 + 
2 + 258 
4 + 15
6 + 12155128 
8 + 1186516 
10 + : : : (30)(which corrects a small mistake in the Cvitanovi�c's book.)8 ConclusionsOne may observe that the presented examples do not belong to the domaincalled usually \computer algebra", as there are no symbolic indeterminates inthe results. (We don't cheat: a univariate polynomial or series does not needto include explicitly the indeterminate. As we know, Knuth calls this domain\seminumerical".) We want to stress upon the following:The co-recurrent approach to the construction of lazy data structures does notdepend on the underlying mathematical domain. We have voluntarily used auniversal functional language in order to keep the examples simple, but the se-ries, etc. could have symbolic coe�cients as well, which would require the use ofsome symbolic package just to manipulate these coe�cients. We tried to suggestthat the manipulation of programs | co-recursive arrangement of evaluations,auto- and cross-referring (lazy) data, application of higher-order combinators(maps and zips), etc. provides an elegant and practical alternative to somesymbolic data manipulations. The lazy formulation of algorithms permits to� deal directly with some extrapolating recursive problems found in sciences;� replace the chain of recurrence formul� by a compact representation ofthe full solution of these recurrences;� liberate the user from the curse of controlling explicitly the truncationorders in all sorts of iterative processes;� formulate in an extremely compact way the solution of a system of equa-tions adapted to the back-substitution mechanism.The potential of non-strict evaluation is not restricted to \in�nite" streams, butconstitutes a reasonable coding tool in many other cases, it has been used to con-struct animation packages, or solve numerical problems using �nite elements. Itwould be very useful to have a full-
edged lazy algebraic package, but it seemsthat for e�ciency reasons it must be built upon a lazy evaluation kernel, asadding it ad hoc to an existing strict systems makes it di�cult to exploit its fullpower. So, those who would like to implement immediately their lazy algorithmsshould use lazy languages such as Haskell, Hope [26], or commercial, superblydistributed and documented Miranda of Research Software Ltd. The programsare in general as e�cient as their strict equivalents, but the comparison is dif-�cult, as often there are no equivalents. . . In all of the presented examples theresults started to appear on the screen immediately, even if the last term could14



take a few minutes. The suspended evaluations might save much work, but thedynamic creation of thunks is costly, and the unevaluated closures occupy thestorage which must be reclaimed by the garbage collector after the evaluation.This is one of the reasons why the lazy functional languages are considered tobe not very e�cient. We are mostly interested in saving human work, and herethe lazy approach clearly wins.The author implemented a toy lazy package in MuPAD using its powerful anduser-friendly object-oriented subsystem, but neither MuPAD [27] nor Maple aresuitable for this purpose, due to the fact that the lexical closures (local, dynam-ically constructed functions) must be simulated by substitutions.Unfortunately, the industrial strength functional lazy languages are rela-tively new, and the work has just begun. For the time being, the reader who ismainly interested in computer algebra, is encouraged to do some experiments inAxiom or, perhaps, in Mathematica, which, being partially a rewriting system,might be better adapted to lazy manipulations than a procedural language suchas Maple.References[1] H. Abelson, G.J. Sussman, Structure and Interpretation of Computer Pro-grams, MIT Press, (1984).[2] William H. Burge, Stephen M. Watt, In�nite Structures in Scratchpad II,EUROCAL'87, LNCS 378, pp. 138{148.[3] R. S. Bird, P. Wadler, Introduction to Functional Programming, PrenticeHall, (1988).[4] William H. Burge, Recursive Programming Techniques, Addison-Wesley,Reading, Mass., (1975).[5] D. Guntz, M. Monagan, Introduction to Gauss, Sigsam Bulletin 28, no. 2,(1994), pp 3 { 19.[6] Mark P. Jones, Gofer, Functional Programming Environment, (1991).[7] P. Hudak, S. Peyton Jones, P. Wadler et al., Report on the programminglanguage Haskell, (Version 1.3), Technical report Yale University/GlasgowUniversity, (1996).[8] Jerzy Karczmarczuk, Functional Programming and Mathematical Objets,Functional Programming Languages in Education, FPLE '95, LNCS 1022,Springer, (1995), pp. 121{137.[9] Lloyd Allison, Circular Programs and Self-referential Structures, Software| Practice and Experience, Vol. 19(2), (1989), pp. 99 { 109.[10] Andrew D. Gordon, A Tutorial on Co-induction and Functional Program-ming, Proceedings, 1994 Glasgow Workshop on Functional Programming,Ayr, Scotland, September (1994).15
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