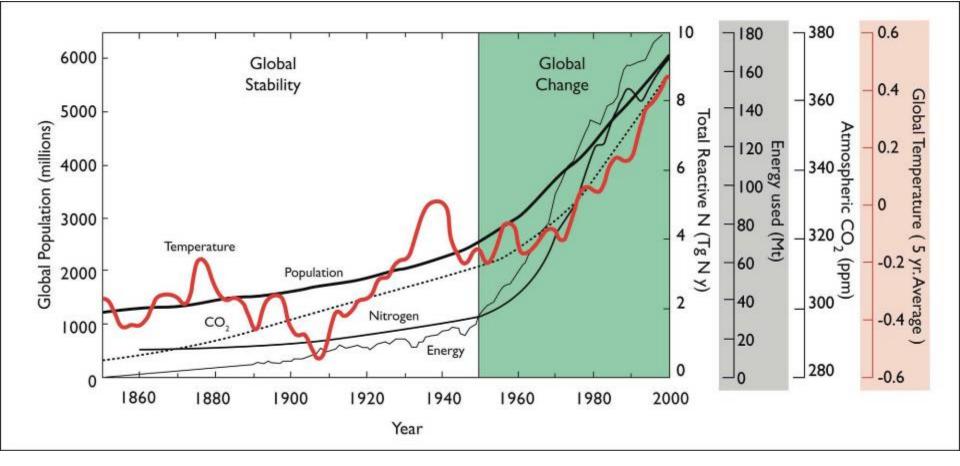


Envisioning a New Distributed Organization and Cyberinfrastructure to Enable Science

Stephen Abrams Patricia Cruse John Kunze

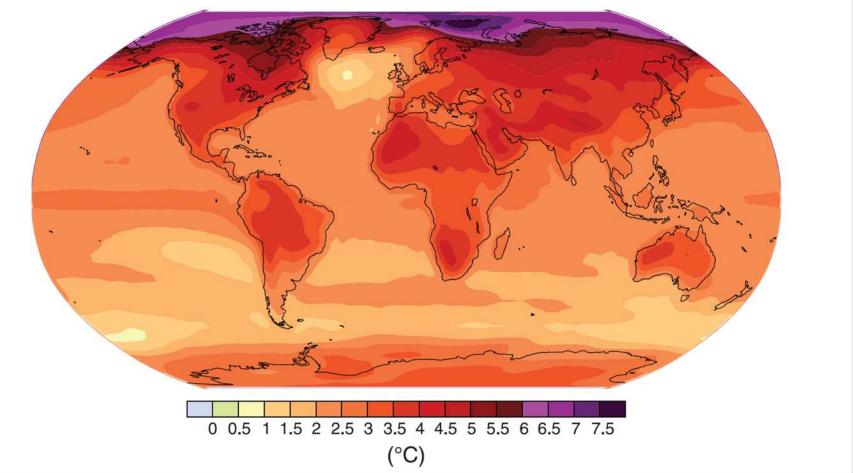
California Digital Library

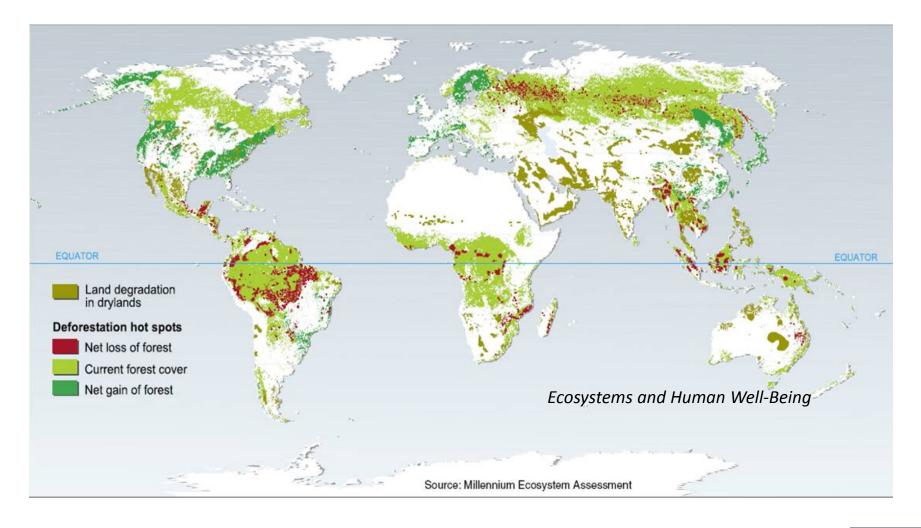
Outline of today's talk


- Complexities of global change
- Challenges for cyberinfrastructure and data intensive research
- A solution: DataONE
- An approach: curation micro-services

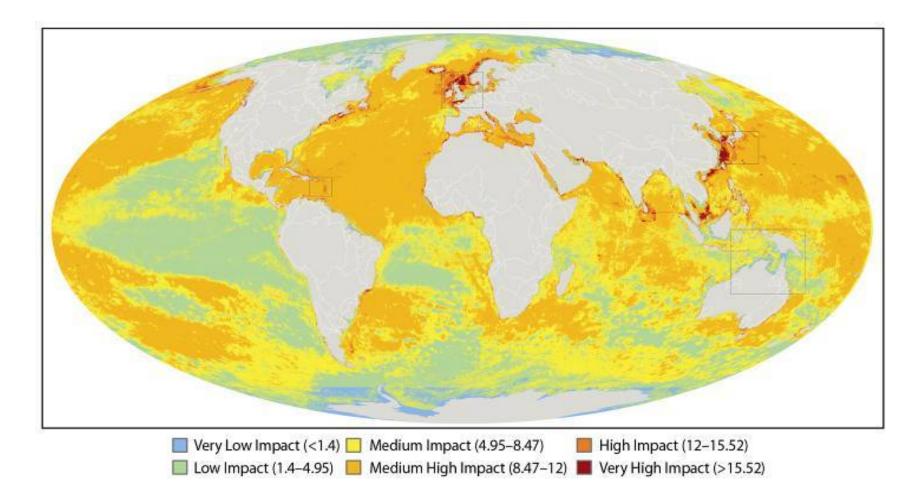
Scientific challenges and data needs

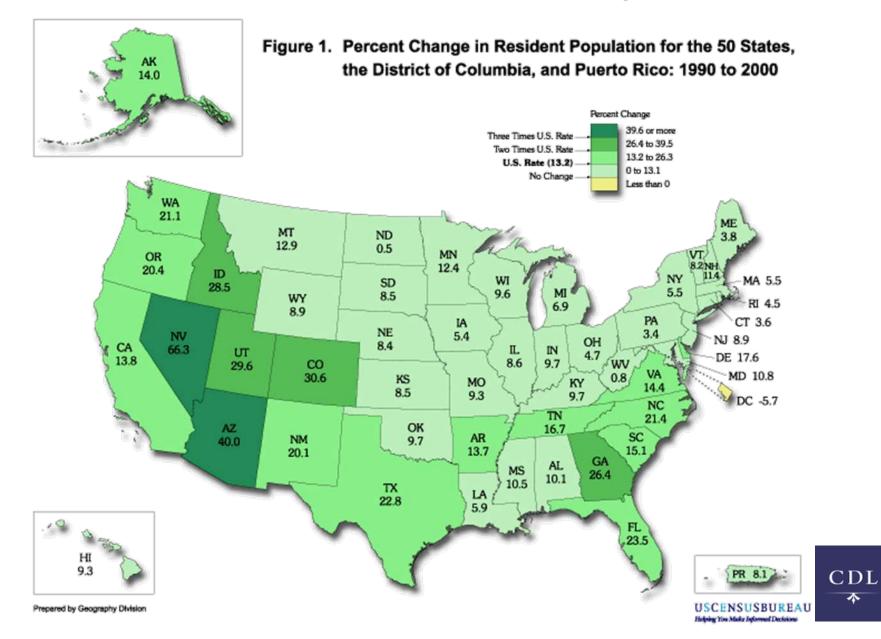
- Global change is a complex scientific and societal challenge
- Community needs good data
- Good data…
 - builds good science
 - makes possible wise management
 - enables sound decisions
- Good data needs…
 - solid technical infrastructure
 - sound organization
 - community engagement (you)


The complexities of global change


Smith, Knapp, Collins. In press.

Critical areas in the Earth's system


Geographical pattern of surface warming


Human impacts on land-based ecosystems

Human impacts on the world's oceans

Human population change

 \mathbf{A}

Outline of today's talk

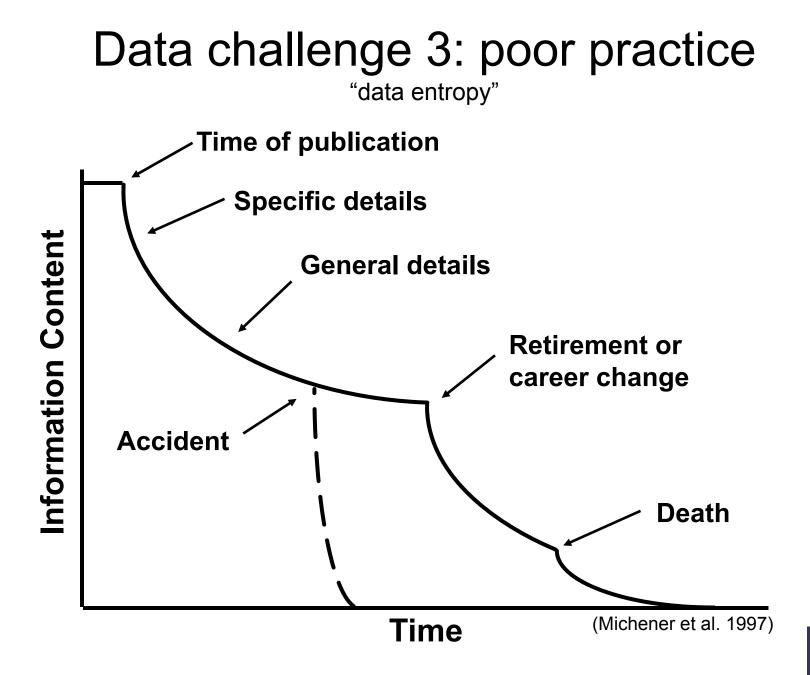
- Complexities of global change
- Challenges for cyberinfrastructure and data intensive research
- DataONE: A solution
- An approach: curation micro-services

Data challenge 1: dispersed sources

("finding the needle in the haystack")

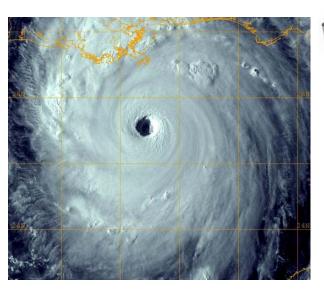
- Data are massively dispersed
 - Ecological field stations and research centers (100's)
 - Natural history museums and biocollection facilities (100's)
 - Agency data collections (100's to 1000's)
 - Individual scientists (1000's to 10,000s to 100,000s)

Data challenge 2: diversity


"the flood of increasingly heterogeneous data"

- Data are heterogeneous
 - **Syntax**
 - (format)

- Schema
 - (model)
- **Semantics**
 - (meaning)


(from EML)	Study Area c PIRU BEPA		White I s: sq. me Picea r Betula	ter ubens	\$						
	date	site	species	area	count						
	0/1/1993	N654	PIRU	2	26		1.025				
10	0/3/1994	N654	PIRU	2	29		inte	grated	Da	ta	
									1		
10)/1/1993	N654	BEPA	1	3		study	date	site	species	density
10)/1/1993	N654	BEPA	1	3		study	date	2000	species Picea Rubens	density 13:0
10	0/1/1993	N654	BEPA	1	3	Je	A A	15 - CO 102	N654		density 13.0 14.5
10	0/1/1993	N654	BEPA	1	3	4	A	0/1/1993	N654 N654	Picea Rubens	13.0
Stu	dy B			1		1	A A A	10/1/1993 10/3/1994	N654 N654	Picea Rubens Picea Rubens	13.0 14.5
Stu	dy B Study	в:	Green f			1	A A A	0/1/1993 0/3/1994 10/1/1993	N654 N654	Picea Rubens Picea Rubens Betula papyifera	13.0 14.5 3.0 13.5
Stu	dy B Study Areas picrub	B: amplec =	Green I I: 1 sq. m Pices n	eter ubens	tains	2	A A B	10/1/1993 10/3/1994 10/1/1993 10/31/1993	N654 N654	Picea Rubens Picea Rubens Betula papyifera Picea Rubens	13.0 14.5 3.0
Stu	dy B Study Area s	B: amplec =	Green I	eter ubens	tains	2	A A B B	10/1/1993 10/3/1994 10/1/1993 10/31/1993 10/31/1993	N654 N654	Picea Rubens Picea Rubens Betula papyifera Picea Rubens Betula papyifera	13.0 14.5 3.0 13.5 1.6 8.4
Stu	dy B Study Areas picrub	B: amplec = 0 =	Green I I: 1 sq. m Pices n	eter ubens papyit	tains	2	A A B B	10/1/1993 10/3/1994 10/1/1993 10/31/1993 10/31/1993 11/14/1994	N654 N654	Picea Rubens Picea Rubens Betula papyifera Picea Rubens Betula papyifera Picea Rubens	13.0 14.5 3.0 13.5 1.6
	Study Study Area s picrub betpap	B: amplec = 0 =	Green I I: 1 sq. m Pices n Betula j	eter ubens papyit ub	tains fera	2	A A B B	10/1/1993 10/3/1994 10/1/1993 10/31/1993 10/31/1993 11/14/1994	N654 N654 1 1 1 1	Picea Rubens Picea Rubens Betula papyifera Picea Rubens Betula papyifera Picea Rubens	13.0 14.5 3.0 13.5 1.6 8.4

Jones et al. 2007

Data challenge 4: loss

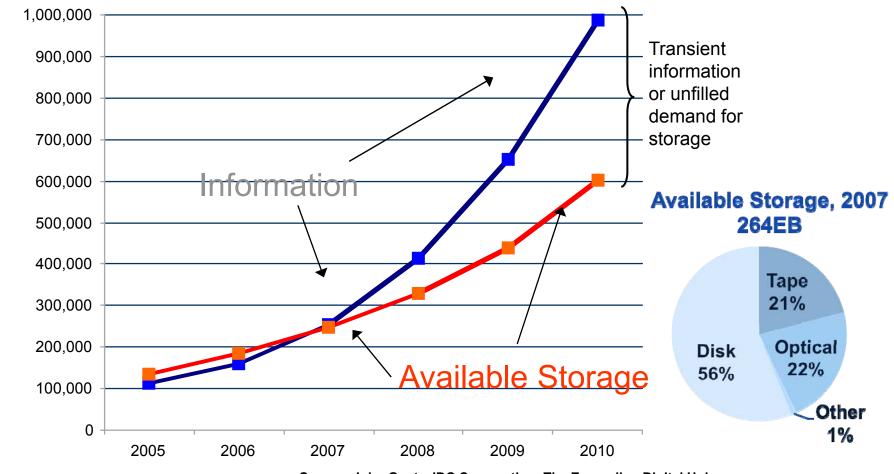
Storage failure
Server hardware/software failure
Application software failure
External dependencies (e.g. PKI failure)

н.

Format obsolescence

Natural disaster

- Legal encumbrance
- Human error
- Malicious attack by human or automated agents


Facilities infrastructure failure

- Loss of staffing competencies
- Loss of institutional commitment
- Loss of financial stability
- Changes in user expectations and requirements

Source: S. Abrams, CDL

Data challenge 4: more loss

Petabytes Worldwide

Source: John Gantz, IDC Corporation: The Expanding Digital Universe

CDL *

Cumulative impact: data longevity

Study	Resource Type	Resource Half-life
Rumsey (2002)	Legal Citations	1.4 years
Harter and Kim (1996)	Scholarly Article Citations	1.5 years
Koehler (1999 and 2002)	Random Web Pages	2.0 years
Spinellis (2003)	Computer Science Citations	4.0 years
Markwell and Brooks (2002)	Biological Science Education Resources	4.6 years
Nelson and Allen (2002)	Digital Library Objects	24.5 years

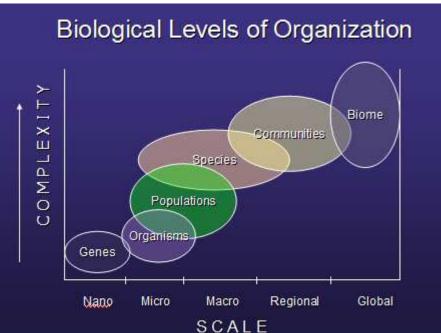
Koehler, W. (2004) Information Research 9(2): 174.

Outline of today's talk

- Complexities of global change
- Challenges for cyberinfrastructure and data intensive research
- DataONE: a solution
 - Building on existing cyberinfrastructure
 - Creating new cyberinfrastructure
 - Changing science culture and institutions
- An approach: curation micro-services

Data SNE Data Observation Network for Earth

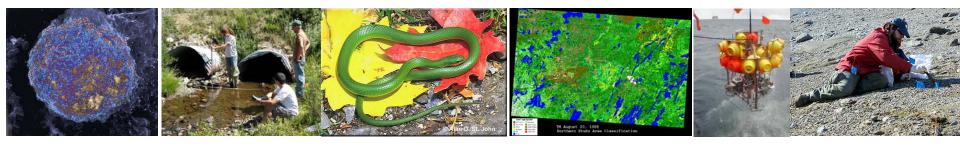
The goal of DataONE is to enable new science through universal access to data about life on earth by:


- engaging the scientist in the data preservation process
- supporting the full data life cycle,
- encouraging data stewardship and sharing
- promoting best practices
- engaging citizens
- One of two DataNet awardees recommended for funding by NSF

DataSNE

Data types

- Biological (genes to biomes)
- Environmental
 - Atmospheric
 - Ecological
 - Hydrological
 - Oceanographic



Data sources

- Research networks and environmental observatories
- Biological specimens
- Individual Scientists
- Citizen scientists' data
- Natural resources and conservation data
- Observational data
- Global and continental land cover/land change and biogeochemical data

Data SNE Existing biological data archives

ICS Fire Research And Management Exchange System

ESA's Ecological Archive

Distributed Active Archive Center

National Biological Information Infrastructure

Fire Research & Management Exchange System

CDL

Long Term Ecological Research Network

Knowledge Network for Biocomplexity

Long Term Ecological Research

The Knowledge Network for Biocomplexity

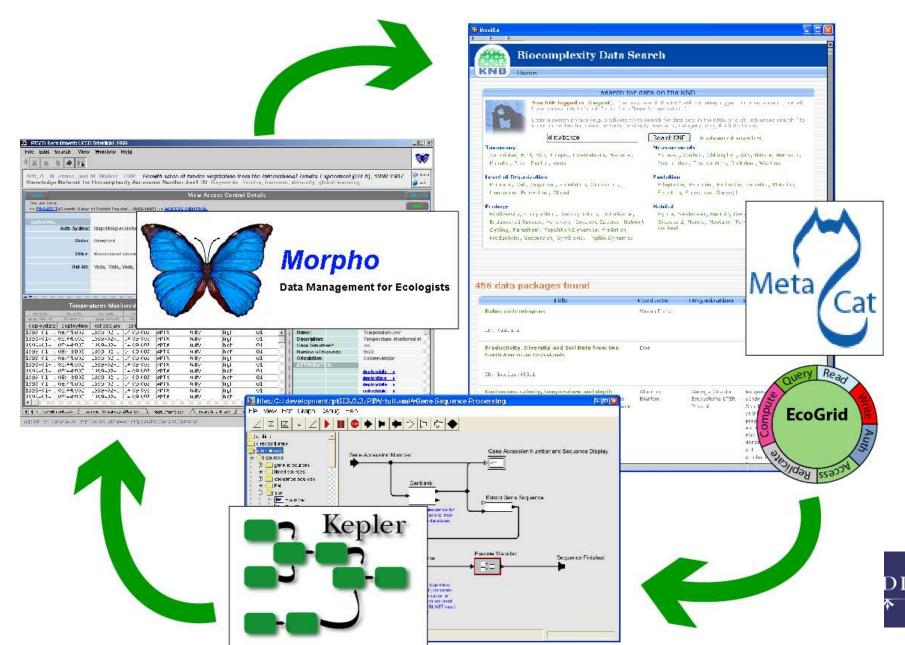
Examples of data holdings

Metadata Interoperability Across Data Holdings

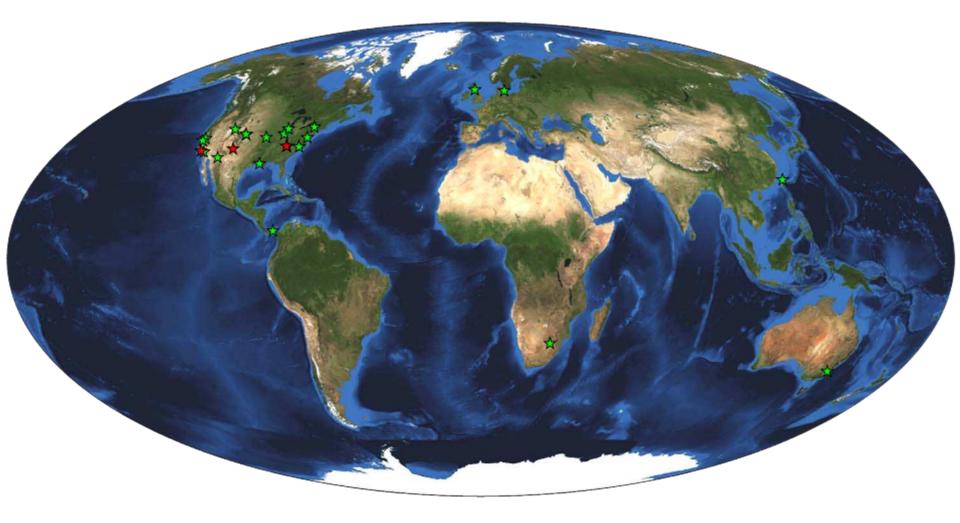
Data Archive	Types of Data Managed	Metadata Standard(s)
National Biological Information Infrastructure	Biodiversity, taxonomic, ecological	BDP, DwC, DC, OGIS
for biogeochemical dynamics	Biogeochemical dynamics, terrestrial ecological Earth observation imagery	DIF, BDP, ECHO
The US Long Term Ecological Research Network	Ecological, biodiversity, biophysical, social, genomics, and taxonomic	EML
Avian Knowledge Network	Avian populations and molecular biology	DC
ALA ATLAS OF LIVING AUSTRALIA	Biological and taxonomic	DC subset
South African Environmental Observation Network	Biophysical, biodiversity, disturbance, and Earth observation imagery	EML
TAIWAN ECOLOGICAL RESEARCH NETWORK	Biodiversity, biotic structure, function/process, biogeochemical, climate, and hydrologic	EML
BDP=Biological Data Profile DC subset=Dub	EML=Ecological Metadata Language	=OpenGIS CI

DIF=Directory Interchange Format ECHO=EOS ClearingHOuse

Data NE Providing one-stop shopping for data

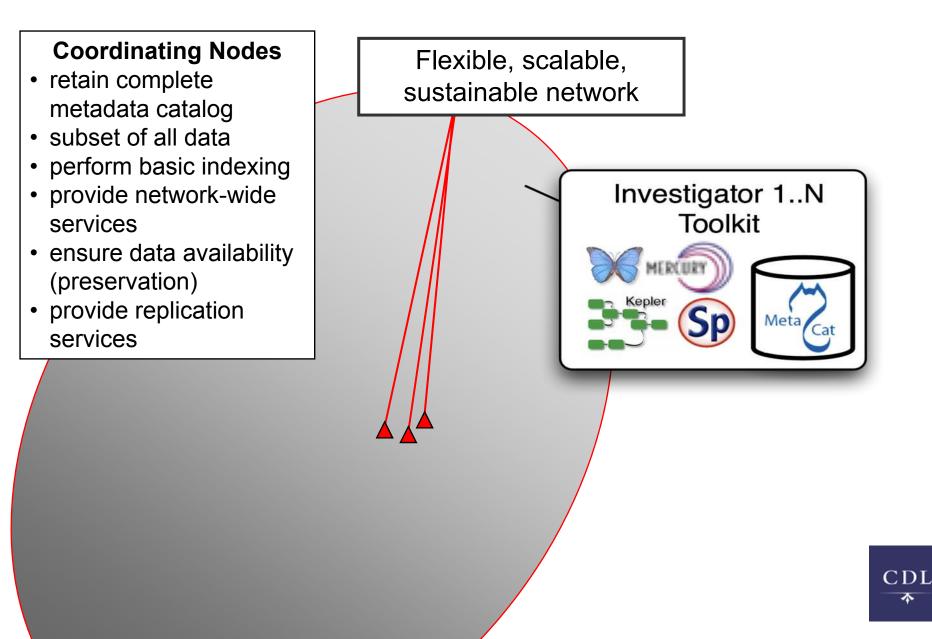

DataNe	DataNetONE Metadata Clearinghou	A Pilot Catalog Fo Earth Observations
Simple Search	Advanced Search	
	Search All Records Fo	or
	Hint: boolean operators, wildcards and phrases are a ex: precipitation or (rain* and "moisture conter	and the second se
uery being built:—		
Not Editable		
LEAR QUERY		

Olympic Dilet Octoberging Instante

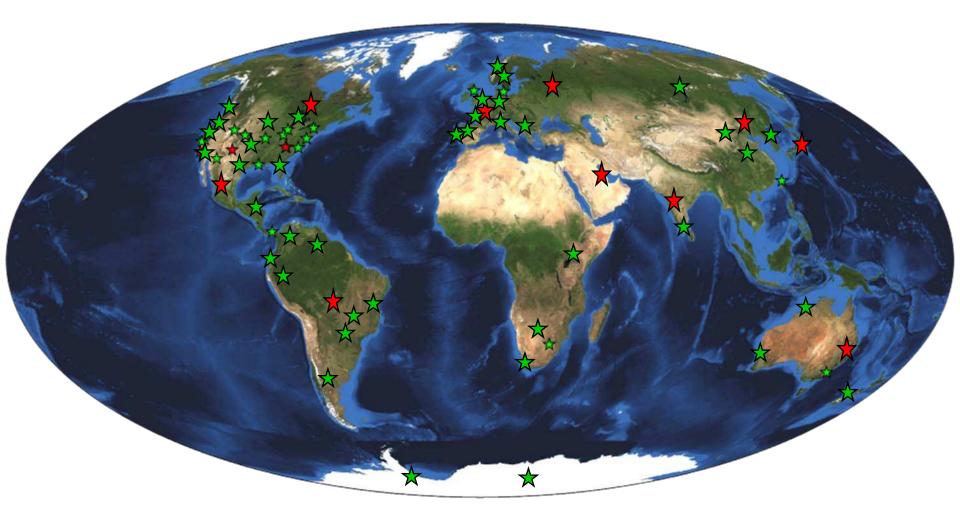

40,000 Data Set Records

NBII Metadata Clearinghouse (31,864)
Long Term Ecological Research (LTER) Network (6,897)
ORNL Distributed Active Archive Center for Biogeochemical Data (810)
Large Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) (783)
Organization of Biological Field Stations (124)
Inter-American Institute for Global Change Research (IAI) (79)
MODIS and ASTER Products (LPDAAC) (38)
National Phenology Network (USANPN) (29)

Data Existing cyberinfrastructure: tools

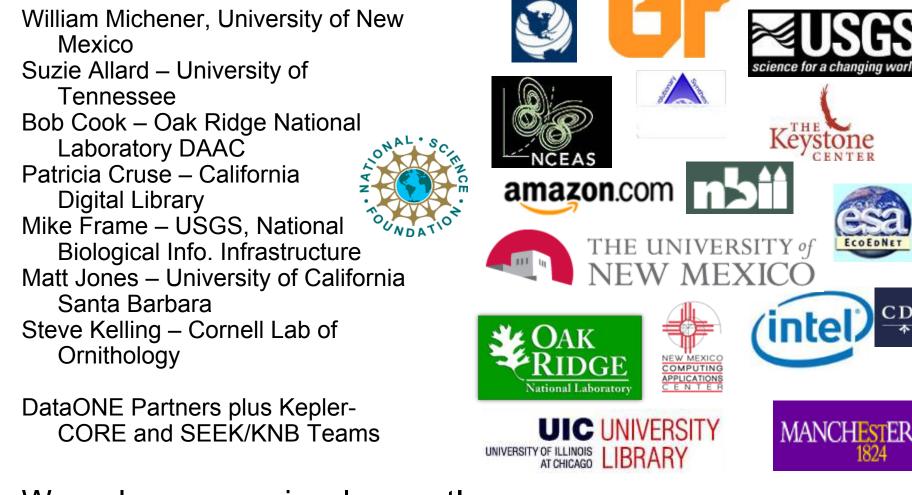


Data SNE Building new global cyberinfrastructure



CDL

Data New distributed framework



Data SNE Building new global cyberinfrastructure

CDL

Data NE DataONE management and partners

CDL

We welcome your involvement!

Data CNE Engaging citizens in science

Data CALE Building global communities of practice and long-lived cyberinfrastructure

- Community engagement
 - Involve library and science educators
 - Engage new generations of students in best practices
 - Build on existing programs
- Involvement of cultural memory organizations brings centuries of preservation experience to datasets

Outline of today's talk

- Complexities of global change
- Challenges for cyberinfrastructure and data intensive research
- DataONE: A solution
- An approach: curation micro-services

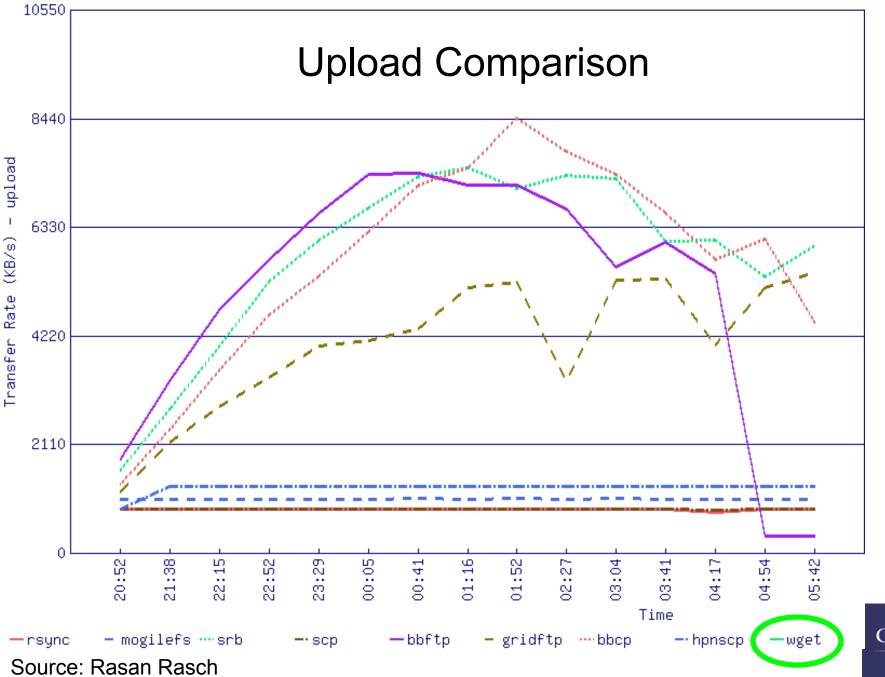
Data curation is hard

- Data sets encompass everything, including "regular" object types
 - Documents, images, audio, video, etc.
- Data is like software, but even more specialized
- Tension between establishing standards and fostering innovation
- Heavy processing requires a tricky long-term migration/emulation of custom data/software
- Heavy provenance and snapshot coherence requirements
- Instability: value of some preserved data depends on ongoing change, in particular, on researcher annotation

Imagining the Non-Repository

What are micro-services?

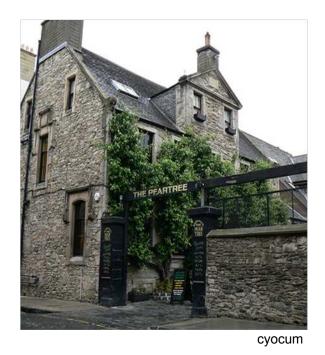
- Unbundled alternative to monolithic systems with single archival "culture"; avoiding the deadly embrace
- Low barrier, low commitment tools
 - Leverage native operating system file handling tools



- Decoupled in design
- Recoupled in deployment
 - Late binding, e.g., Unix pipes
- Creates flexible systems, mix-andmatch depending on need

The wisdom of the web

- Resist urge to design user and programming interfaces without using the web's interfaces
 - The web is the *de facto* distributed filesystem (M. Nelson)
 - Make interactions web-browser-friendly
 - ... and RESTful to make them program-friendly
- "Wget" is the basic automated client, e.g., for known-item ingest and outgest
 - Very high speed obtained by multiple wget's in parallel


CDL \mathbf{A}

The wisdom of files

- After 30 years, we're *really* good at modern filesystems
 - Files and directories (folders) are fast, plentiful, stable, highly interoperable across platforms
 - They form an implicit standard for holding generic content
 - You can use native OS tools to create, list, change, & backup
- What's the least work to make an "objectsystem"?
 - Object system = File system plus minimal naming conventions

Pairtree: hierarchy-based collection

- Pairtree to hold a collection of object containers (directories)
 - Pairs of id/en/ti/fi/er characters create paths to objects
 - End of path is start of object
 - Early adopter: Hathi Trust for scanned books

You can import a pairtree and, knowing *nothing* about object purpose or structure, can reliably

- Enumerate all objects and their ids
- Produce any object by requested id
- Maintain and back it up with ordinary OS tools
- Rebuild the collection simply by walking the filesystem

Directory-based objects and object parts

- Dflat (digital flat) as residence for a generic digital object, with common amentities, if present, under reserved file names
- ReDD (reverse directory deltas) for simple file-level diffs
- *CAN* (content access node) for a repository instance
 - A Pairtree with Dflats for leaves and
 - ReDD-tinged versions

Directory typing for humans and machines

- We have lots of directory types to declare
 - ReDD versions
 - Dflat object residences
 - Pairtree roots
 - CAN instances
 - and of course Bagit bags for import/export
- Namaste (NAMe AS TExt) tags are filenames for humans
 - Example filename: "0=dflat_1.1"
 - File content has the non-lossy version for machines

Minimalism: ANVL and Dublin Core Kernel

A Name Value Language (ANVL) – back to basics

- An ANVL record is a sequence of elements in email header format:
 ⇒ label, colon, value
- Long values are continued on indented lines
- A blank line ends a record

Based on cross-domain kernel distilled from Dublin Core

- who a responsible person or party
- what a name or other human-oriented identifier
- when a date important in the object's lifecycle
- where a location or a machine-oriented identifier

Extended Namaste "greeting files"

 Other Namaste tags hold Dublin Core Kernel metadata, and greet a visitor who requests a directory listing with

0 = one of {bagit, redd, dflat, pairtree, can, etc.}

\$ ls 12/34/5		
0=dflat_1.8	admin/	splash.txt
1=Twain,_Mark	annotations/	v001/
2=Huckleberry	data/	v002/
3=1898	log/	v003/
4=12345	manifest.txt	

(1, 2, 3, 4) = Kernel elements (who, what, when, where)

Other micro-service tools

- BagIt for opaque content import and export
- Checkm manifest format to support:
 - import, export, fixity, replication, harvesting
- NOID for opaque identifier minting, resolving
- JHOVE2 for object characterization
- XTF for index and search

A possible data protocol: THUMP

The HTTP URL Mapping Protocol (THUMP)

- A set of URL-based conventions for retrieving information and conducting searches
- Can be used for focused retrievals or for broad database searches
- Based on commands put in the query string after '?'

http://example.com/?in(books)find(war and peace)show(full)

THUMP requests

The HTTP URL Mapping Protocol (THUMP) Shortest request is a URL ending in `?', as in

http://example.foo.com/object321?

Which is shorthand for the common request:

http://example.foo.com/object321?show(brief)as(anvl/erc)

Naked '?' and '??' are designed to support the known-item query convention from the ARK persistent id scheme

THUMP responses

Responses consist of HTTP response headers, and one or more ANVL records

- 1 C: [opens session]
 - C: GET http://ark.cdlib.org/ark:/13030/ft167nb0vq? HTTP/1.1
 - С:
 - S: HTTP/1.1 200 OK
- 5 S: Content-Type: text/plain
 - S: THUMP-Status: 0.5 200 OK
 - S:
 - S: erc:
 - S: who: Stanton A. Glantz and Edith D. Balbach
- 10 S: what: Tobacco War: Inside the California Battles
 - S: when: 20000510
 - S: where: http://ark.cdlib.org/ark:/13030/ft167nb0vq
 - S: [closes session]

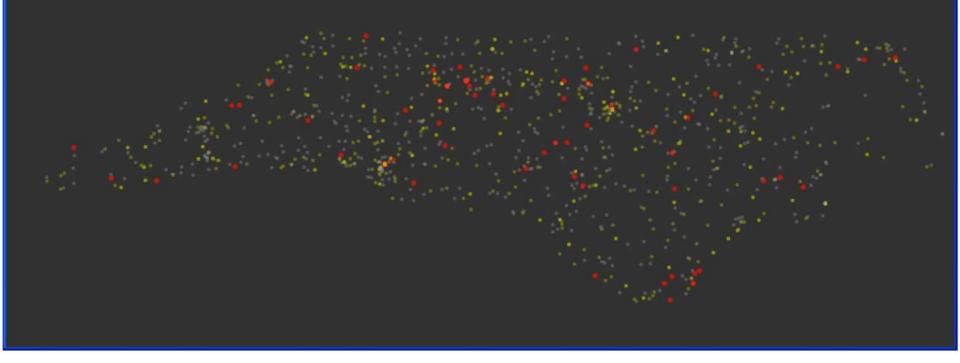
Broad searching in THUMP

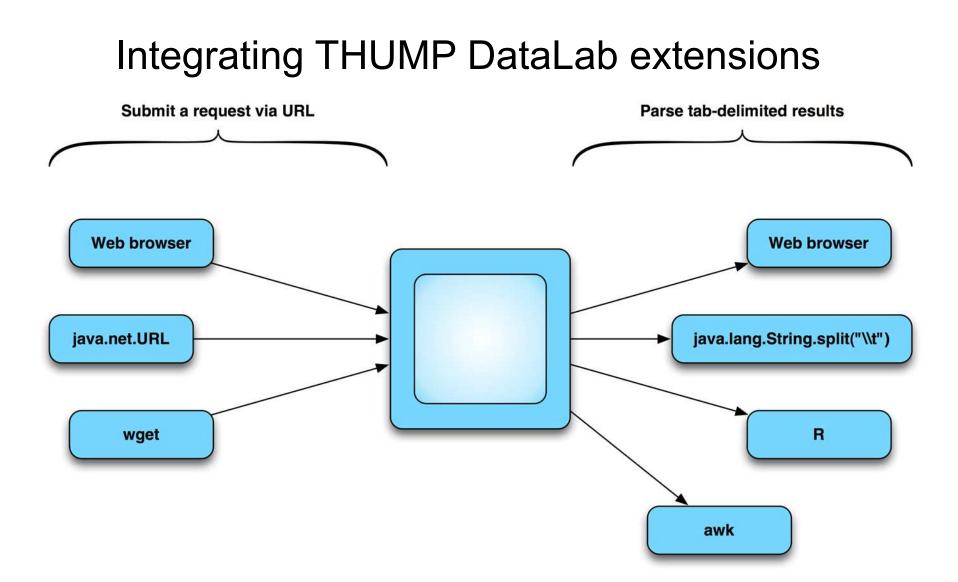
General form of broad query

Key ? in(DB) find(QUERY) list(RANGE) show(ELEMS) as(FORMAT)

Many details to be worked out; watch for

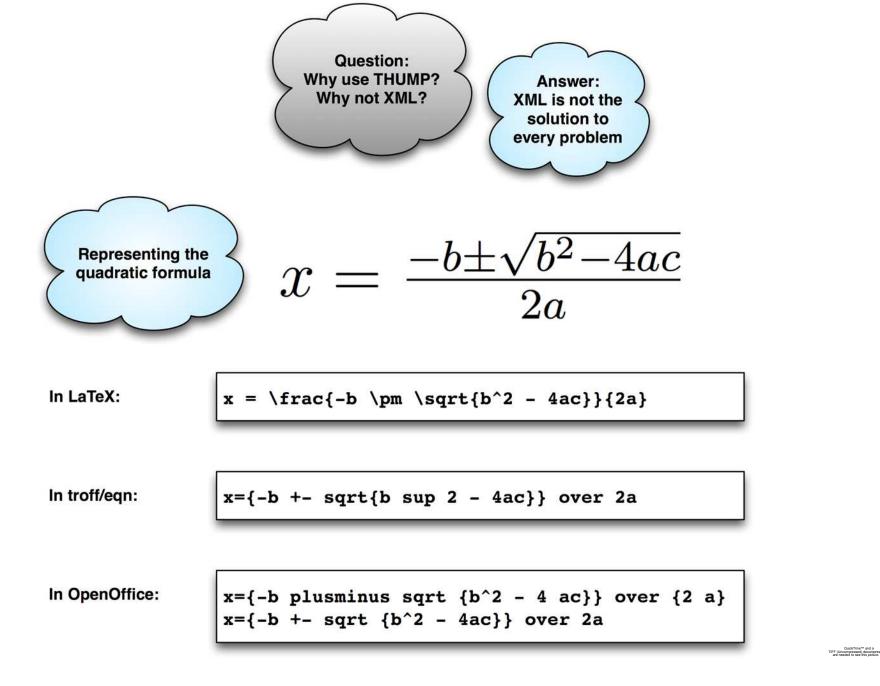
http://www.cdlib.org/inside/diglib/ark/thumpspec.pdf


"DataLab" project extending THUMP for tabular data integration and visualization (Nassib Nassar, RENCI)


Sample Java visualization by ZIP code

DatalabZipCode2

North Carolina: zipcode level data


A sample Java application visualizing data retrieved from DataLab by ZIP code (Ketan Mane)

Source: Nassib Nassar

Integrating Sarcomere and THUMP-DL with other tools and programming languages

QuickTimeTM and a TIFF (Uncompressed) decompressor are needed to see this picture.


```
In MathML:
```

```
<math mode="display" xmlns="http://www.w3.org/1998/Math/MathML">
  <mrow>
    <mi>x</mi>
    <mo>=</mo>
    <mfrac>
       <mrow>
         <mo form="prefix">&minus;</mo>
         <mi>b</mi>
         <mo>&PlusMinus;</mo>
         <msqrt>
            <msup>
              <mi>b</mi>
              <mn>2</mn>
            </msup>
            <mo>&minus;</mo>
            <mn>4</mn>
            <mo>&InvisibleTimes;</mo>
            <mi>a</mi>
            <mo>&InvisibleTimes;</mo>
            <mi>c</mi>
         </msqrt>
       </mrow>
       <mrow>
         <mn>2</mn>
         <mo>&InvisibleTimes;</mo>
         <mi>a</mi>
       </mrow>
    </mfrac>
                                                                            QuickTime™ and a
TIFF (Uncompressed) decompres
are needed to see this picture.
  </mrow>
```

Micro-services and curation in DataONE

- We will keep working to apply our micro-services approach to the problems presented by DataONE
- Much depends on community uptake of best-practices via education about early intervention as close to data producers as possible
- Our micro-services are all works-in-progress, the specifications, and some software, are summarized at

http://www.cdlib.org/inside/diglib/

- 7. Characterization Ingest 1. Identity 8. Description 2. Micro-services 3. 9. Index Storage eventual roster: Catalog 10. Search 4. Fixity 11. Annotation 5.
 - 6. Replication 12. Publication
- More details in Stephen Abrams' talk on 1pm Tuesday!

Come join us! San Francisco October 5-6, 2009 http://www.cdlib.org/iPres/

Contact Perry Willett for more info: perry.willett@ucop.edu